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Abstract

The problem of active control of nonlinear structural dynamical systems, in the presence of both process and
measurement noises, is considered. The focus of the study is on the use of particle filters for state estimation in feedback
control algorithms for nonlinear structures, when a limited number of noisy output measurements are available. The
control design is done using the state-dependent Riccati equation (SDRE) method. The stochastic differential equations
(SDEs) governing the dynamical systems are discretized using explicit forms of Ito—Taylor expansions. The Bayesian
bootstrap filter and that based on sequential important sampling (SIS) are employed for state estimation. The simulation
results show the feasibility of using particle filters and SDRE techniques in control of nonlinear structural dynamical
systems.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of active structural control, since its introduction in 1972 [1], has been extensively used for
control of civil engineering structures subjected to dynamic loads. The ability of the actively controlled
structures to adapt themselves to the frequency characteristics of the excitation [2] makes it very attractive in
the field of earthquake engineering. Excellent surveys of the state-of-the-art techniques and developments in
this field are available in Refs. [3,4]. Most of the research in this field deals with control of linear structures.
The real engineering structure is, however, typically nonlinear and therefore a successful implementation of
control systems demands control algorithms which are capable of handling structural nonlinearity.

Different control schemes, such as feedback linearization, gain scheduling, sliding mode control and back
stepping control are used in practice for control of nonlinear systems. The details of these methods can be
found in Refs. [5,6]. A recently developed technique that has shown considerable promise is the nonlinear
extension to the linear quadratic regulator (LQR) problem, called the state-dependent Riccati equation
(SDRE) method. An overview of this method is available in Ref. [7]. In the SDRE method, the equations of
motion are represented in a linear-like form, called the state-dependant coefficient (SDC) form that
corresponds to the system matrices expressed explicitly as functions of the current state. A standard LQR
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problem can then be solved over each time step to design the state feedback control law. Indeed, most of the
dynamical systems of engineering interest allow a direct parameterization of the equations of motion in the
SDC form. However, systems, which do not admit a direct parameterization, may also be handled [8]. The
parameterization is not unique and the control law is sub-optimal. It has been shown that there exists a
representation such that the SDRE feedback produces the optimal control law [9]. The stability of the
feedback control law resulting from the SDRE method is well studied [9—-13]. Global asymptotic stability of a
general nonlinear system can be achieved by tuning the weighing parameters of the cost function as function of
states [10]. Although computationally intensive, the SDRE technique is found to be practicable for real-time
control applications [11,14]. The availability of fast and efficient numerical algorithms for solving the SDRE
makes the SDRE method suitable for field applications of real-time control systems [15]. The SDRE-based
control design has received wide acceptance among researchers in different fields like, aerospace engineering
[16-20], robotics [14] and bio-medical engineering [21]. However, the potential of this method in structural
control problems appears not to have been explored yet.

To develop a control algorithm, to be implemented successfully in structural engineering applications, one
has to consider important issues such as limitations of the mathematical model, and the difficulty in measuring
all the state variables. Due to the size and complexity of many structures, mathematical models may not
represent all aspects of their behavior. The uncertainty so introduced in the model (process noise) assumes
great importance in control design, since the performance of the control design depends on the accuracy of the
predicted response. Although considerable literature is available on the control of nonlinear structural systems
[22—-34], uncertainties in the model have not been generally considered except in a few studies [28,32-34].
Studies reported in Refs. [29-31] refer to the optimal control of nonlinear systems of interest in structural
engineering. However, stochastic optimal control of nonlinear systems has been considered only in a very few
studies [32-34]. A comprehensive review on the recent advances in the control of nonlinear stochastic systems
is available in Ref. [35]. One important aspect of considerable relevance in structural control is the non-
availability of the full states of the system. It is seldom feasible to measure all the states of the system that are
required for the design of the control system. Measurements of a very few states, often contaminated by noise,
are usually available. If the effect of noise is ignored, one can still design a control system, using the concept of
direct output feedback control design [36]. But the resulting control will not be as effective as the state
feedback control. A practical strategy for designing an efficient control system using the available noisy
measurements would be to use a filter for estimating the states from the limited available responses and design
a state feedback control via the estimated states. The separation principle in control theory allows one to
handle the control design and filtering separately. Though the theory holds for linear systems [37] and possibly
for a class of nonlinear systems [38—40], a generally applicable form of such a theory is not yet available for
nonlinear systems [5]. It is nevertheless desirable to design the controller and state estimator separately, even in
the absence of a rigorously established separation principle [41,42]. In the present study, the filtering and
control strategies are designed separately with the implicit assumption that a separation theory holds.

One has to use an appropriate filter/state estimator to estimate the states that in turn serve as input to the
feedback controller. For a linear system with Gaussian additive noises, the classical Kalman filter provides the
optimal state estimator. For nonlinear state estimation, there are two main classes of methods, viz., those based
on extended Kalman filter (EKF) and its variants [43,44], and, those based on Monte Carlo simulations,
popularly known as the particle filters [45-50]. The current practice for estimating dynamic states of a nonlinear
system, required for control applications, is to use the EKF [41,42,51]. The EKF, which uses a local linearization
around the current state, does not account for the non-Gaussian nature of nonlinear system states, and, therefore,
can approximately capture only the first two moments of the conditional probability density function (pdf) of the
state. This may be contrasted with particle filters, wherein the conditional pdf is directly updated through a set of
random particles with associated weights. Therefore, unlike the EKF, particle filters are far more versatile in
handling system nonlinearity, non-Gaussian nature of response and even non-Gaussian nature of noises.
Different versions of particle filters are discussed in the literature. Density-based Monte Carlo filter, Bayesian
bootstrap filter and sequential important sampling (SIS)-based filter are some of them. A summary of the
development of these filters can be found in Refs. [52,53]. Particle filters provide powerful tools in state
estimation, system identification and control [54]. Recently, the potential of this technique has been demonstrated
for system identification of nonlinear structural dynamical systems [53].
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To the best of the authors’ knowledge, the applicability of particle filters for state estimation in nonlinear
structural control applications has not been explored yet. In the present work, we use particle filters for state
estimation and control of a few typically nonlinear oscillators of interest in structural engineering. The
example problems include a Duffing oscillator, a Van der Pol oscillator, and a three degree-of-freedom (3-dof)
spring mass system with bilinear stiffness characteristics. The control strategy, designed using the SDRE
method, uses the states estimated from a limited number of noisy measurements available. The governing
stochastic differential equations (SDEs) of these oscillators are numerically integrated using explicit marching
schemes based on the Ito-Taylor expansion, for processing in the filtering algorithm. The simulations are
clearly indicative of the feasibility of particle filters and SDRE technique in control of nonlinear structural
dynamical systems.

2. Problem description

By way of a general framework, consider a nonlinear dynamical system in the state space form as
X = f(x,u), where x(z,u) : R x R™ — R™ represents the state vector and u € RN™ is the control force acting on
the system. For notational convenience, we will often write x(¢, u) as x(¢) by dropping the argument u. The
uncertainty in the system, arising from errors due to modeling and other sources, is assumed to admit a
representation through Gaussian white noise processes. The governing equations therefore take the form of a
system of SDEs. The white noise process, which is defined as the formal derivative of the Weiner process, only
exists as a measure and not as a valid mathematical function. Hence, the governing SDEs are expressed in the
following incremental form:

dx(0) = Flx(0), u(0), ]dt + G[x(2), 1d B (), x(0) = xq. (1)

Here, B;(7) € %" is a standard vector Brownian motion process; F o9t x ™ x R — 9™ is the drift vector
function, G : X" x N — R™*™ is the diffusion coefficient matrix and xy = x(7) is the initial condition vector,
which may be deterministic or random with a known description. If one directly measures the state at a set of

discrete time instants {7 };% |, the measurement equation may be formally expressed as

ylczﬂk(xk)+é/(9 k= 1929"-5nk' (2)

Here, &, € W formally represents the vector of measurement noise. The objective is to determine the
control force u(t) so that a performance index of the form

t

J = lim lE{//L[x(t), u(t), t]dt} 3)
ooty 0

is minimized. Here E[ -] represents the mathematical expectation operator and L[-] is a cost function whose

definition would be made more precise later in the paper.

Since the focus of the present study is to demonstrate the use of particle filters in a structural control
algorithm, the problem described through Eqgs. (1)—(3) is not directly attempted here.

Assuming that the separation principle holds, one may tackle the output feedback control problem in two
steps: (1) design a state feedback control law, assuming that the state x(¢) is available and (2) design a filter and
replace x with the estimate X in the control law. Though, there is no general separation principle available for
nonlinear systems, its validity is often assumed for all practical purposes. The controller-filter arrangement is
schematically shown in Fig. 1. In the present study, we assume that the separation principle holds and design
the controller and state estimator separately. A sub-optimal control law is designed using the SDRE method
and the state estimation is done using a particle filter.

3. The control design using the SDRE method

The SDRE method, which is a nonlinear extension of the classical LQR control law, has received wide
acceptance for control of nonlinear structures in recent years [14,16-21]. The details of this method can be
found in Refs. [7,8]. The SDRE control design procedure is briefly outlined here. Here the governing equation
of the nonlinear system X = f(x,u) is represented in a linear-like form, i.e., the SDC form with the system
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Fig. 1. A schematic diagram of the controller-filter arrangement.

matrices being explicit functions of the current state, as
X = A(x)x + B(x)u. 4)

For the system to be controllable, the matrices 4(x) and B(x), evaluated at all possible states, should satisfy
the controllability condition

Rank[B(x), A(x)B(x), A*(x)B(x),...,A" '(x)B(x)]=n, (5)
where 7 is the size of the system matrix A(x). A SDRE
AT(x)P(x) + P(x)A(x) — P(X)B(x)R™'(x)B" (x)P(x) + O(x) = 0 (6)

is then formulated and solved for the symmetric, positive definite state-dependent matrix P(x) to obtain the
control law given by

u = —R7'(x)BT(x)P(x)x. (7
The matrices Q(x) and R(x) are the weighing matrices in the performance index:
1 o0
J = E/ (xT O(x)x + uTR(x)u) dz. (8)
0

To ensure local stability, we require that Q(x) is positive semi-definite and R(x) positive definite. We can
tune the weighing matrices Q(x) and R(x) appropriately to obtain the desired performance objectives. Note
that, as the separation principle is assumed to hold in the present study, control design may be done in a
deterministic framework. It is also worth noting that, in contrast to Eq. (3) that represents a general form of
the performance index of a stochastic control problem, Eq. (8) refers to the standard form of a deterministic
controller.

4. The state estimation using particle filters

A brief overview of the particle filters is provided in this section. In order to obtain estimates of the dynamic
states, the SDEs representing the system dynamics/observations need to be numerically integrated through a
discretized time-marching scheme. Thus consider a discretization of the form

X1 = S Xk, Wio), (%a)

Vi = he(xg, vp), (9b)
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where f : "™ x R™ — N is a nonlinear function of the state x; € R (with the subscript k denoting the
time instant #), /iy : R™ x R — R is a linear/nonlinear function of the state, wy € N™ and v, € ™ are
zero-mean noise variables independent of current and past states and y, € W is the instantaneous
measurement vector. Since the vector sequence Xy is derived through a strong discretization of the governing
SDE:s, it follows that x; possesses the strong Markov property and that the conditional pdfs p(x.|x,_;) and
p(rlxi) are deducible from Eq. (9). For convenience, we introduce the following notations: xo;kzz{xi}fzo and
ylzkzz{yi}fv‘zl. The objective is to determine the conditional pdf, p(xo..|y1.x), which represents the pdf of the
discretized state vectors conditioned on the observations available up to time .

More specifically, we need to obtain the marginal pdf p(xx|y;.x), known as the filtering density, to estimate
such statistical properties as conditional mean X; and conditional covariance X, given by

)%k = E[Xk |yl:k] = / xkp(xk |y1:k) ka, (103)

Sk = E[(xx — X)) (xx — %) = / (xx — X)) Cor — %0 pCrrc ) dox. (10b)

The integrals in Eq. (10) are multidimensional in nature and their analytical evaluations are generally not
possible. However, when the process and measurement equations are linear and the noises are Gaussian and
additive, the Kalman filter provides the exact solution. For a more general case, a formal solution may be
derived as follows [45]:

PXk|yige—1) = /p(xk,xk—1|y1:k—l)dxk—l = /P(xk|xk—1)l7(xk—1|y1:k71)dxk—l- (11)

This equation represents the prediction equation. When the measurement vector y; becomes available, one
can derive the updation equation as follows:
POl ) = P& Y1) _ Pk Vi Yik—1) _ PORIXOPCKIP 1) (12)
PO1) POk Vik-1) POrlYix-1)

Using the identity p(yi|yi—1) = [Pk, vilvis—1) dxi = [ plxi)p(xkly14—1) dxx, the updation equation
may further be expressed as

POrIX)PXk |y 14-1)
[ POrlxip(xily gy dxg

Egs. (11) and (13) constitute the formal solution to the estimation problem. The general principle of the
particle filters is to use Monte Carlo simulation strategies to approximately obtain the above integrals.
Different versions of particle filters such as density filter [46], Bayesian bootstrap filter [45], and SIS filters
[48,49,52] are available in the literature. The density filter does not use a resampling scheme and hence, after a
few time steps, the effective sample size reduces. Both Bayesian bootstrap filter and filter based on SIS density
function uses some resampling strategies so that the samples get concentrated near regions of high probability
densities. In the present study, we mainly employ the Bayesian bootstrap filter for state estimation owing to its
simplicity and computational ease. However, we also use the filter based on SIS for comparison.

The formulation of the Bayesian bootstrap filter is based on an earlier result by Smith and Gelfand [55].
This result can be stated as follows. Let {x,f(i)}fil be samples available from a continuous density function
G(x) (where the argument ‘/” within the inner parenthesis represents the ith event). Moreover, suppose that we
need samples from the pdf proportional to L(x)G(x), where L(x) is a known function. Then the theorem states
that samples drawn from a discrete distribution over {x,’g(i)}fi , with probability mass function
L(x((7)) Zj]\; \L(x;(j)) on xj(i) tends in distribution to the required density as N tends to infinity. The
algorithm for implementing the filter is as follows:

P(Xklyi) = (13)

1. Set k = 0. Draw sample {xg(i)}f-v=1 from the pdf p(xo) and {wo(i)}f\;1 from the pdf p(w) of the noise.
2. Using the process Eq. (9a), obtain {x,t(i)}N k>0, recursively.

i=1°

3. When yy arrives, find p(y|x7,) and define g¢; = p(y;|x;(i) / POy JOVERH 1))
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4. Define the probability mass function P[x;(i) = x}(i)] = ¢; and generate samples {x,’@(z’)}fv= , from this discrete
distribution.

S. Estimate the conditional mean X; =~ (1 /N)Zfilxk(i) and conditional covariance X, =~ (1/(N — 1))
Zf\; 1) — X)) (e (i) — %0)T. The diagonal elements of X, represent the variance associated with the
estimated states.

6. With k replaced by k+ 1, repeat steps 2 through 5 till the terminal time is reached.

Using the result by Smith and Gelfand, if G(x) is identified as p(x;|y1.x_1) and L(x) as p(yx|xx), one can see
from the updation Eq. (14) that the samples {xk(i)}f\;l, drawn in step 4 above, are approximately distributed as
per the pdf p(xi|y;.x). In other words, the samples from the initial pdf p(x,) are propagated through the process
equation and updated to represent samples from the filtering density.

If one uses the SIS filter, the estimate X; may be obtained by rewriting Eq. (10a) as

~ Xk| : * *

b= [ Py = [t Gy dx = Exfon Gl (14)
n(xklylzk)

where FE,[-] stands for the expectation operator defined with respect to the pdf n(x|y;.x) and

w*(xr) = p(xkly1.0)/7(Xk|y;4). Obtaining the optimal importance sampling density function is not an easy

task. However, when the process and measurement equations assume the form

X =f(xk-1) + s o~ N[Onx1 2], (15a)

Ve = Cxp +wi; wi~N[Onox1 2] (15b)

the optimal importance density function is shown to be a normal density function with mean my and
covariance X given by

mi = E(Z7 o) + CTEL ), (16a)

sl=x"14C"sC. (16b)

When the effective sample size at any time instant falls below a threshold (Vyyes), a resampling is performed
to counter an impoverishment of samples. The algorithm for implementing the SIS filter is available in Refs.
[49,52,53] and is skipped here for conciseness.

Theoretically, the estimate through the particle filter approaches the exact solution, as the number of
samples N tends to infinity. It is therefore of interest to study the performance of the particle filter with
different sample sizes, especially for a linear system with Gaussian additive noises—a problem for which the
exact solution is available through the Kalman filter. For a linear single degree of freedom (sdof) system
subjected to a harmonic load, the variance associated with the estimates of velocity using Kalman filter and
particle filter (bootstap filter) with different ensemble sizes is shown in Fig. 2; the caption to this figure
provides the details of the system parameters considered. It is readily observable that the particle filter estimate
approaches the Kalman filter estimate as N increases.

5. The discretization of the system/observation equations
5.1. The discretization

The governing SDEs for the system/observations need to be discretized and brought to a form consistent
with Egs. (9a) and (9b) and this enables further processing with the filtering algorithm. Just as a time-marching
algorithm for a deterministic ODE is often derived using variations of a Taylor expansion, the SDEs may
similarly be discretized using the stochastic Taylor (Ito—Taylor) expansion [56,57]. Details of Ito—Taylor
expansion and related concepts of stochastic calculus may be found in Refs. [53,56-58]. However, a brief
overview of the stochastic Taylor expansion is provided in the Appendix.

In the present study, we consider three nonlinear oscillators, namely, two sdof and a 3-dof oscillators. While
the sdof oscillators are the Duffing oscillator with a cubic stiffness term and the Van der Pol (VDP) oscillator
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Fig. 2. Performance of particle filter with different sample size. Here, a linear sdof system given by mX + cx + ax = Py cos At is
considered. Initial condition: x(0) = x(0) = 0. System parameters are: m = 1 kg, ¢ = 0.5Ns/m, & = 10 N/m, Py =5 N and / = 5 rad/s.
Process noise parameter ¢ = 0.05P, and standard deviation of measurement noise is 0.25. The filter estimates the states x; (displacement)
and x, (velocity) from the noisy measurement of x,.

with a nonlinear damping term, the nonlinearity in the 3-dof oscillator arises due to bilinear springs (Fig. 3).
The forces u(t), u»(z) and uz(f) acting in the model may be interpreted as control forces. The governing
equations of motion of the sdof Duffing and VDP oscillators, both subjected to support motions, are,
respectively, of the following forms:

mx + cx + ax + px° = u(t) — mixy, x(0) =x9, X(0) = Xo, (17

mix — (1l — x)x 4 oax = u(f) — mxy, x(0) = x9, X(0) = Xo, (18)

where u(¢) is the control force and x is the relative displacement of the mass point with respect to the support.
Referring to Fig. 3(a), the equations of motion of the 3-dof spring-mass system, again under support motion,
may be expressed as

mXy + (c1 + )X — Xy + f51(x1) + f52(x1 — x2) = —my Xy + uy (), (192)
myXo — X1 + (2 + c3)X2 — 3X3 + f52(x2 — x1) + f53(x2 — x3) = —maXy + ua(9), (19b)
m3Xs — 3% + ¢3X3 + f53(x3 — Xx2) = —m3 Xy + u3(?) (19¢)

with initial conditions x;(0) = X9, X2(0) = x50, Xx3(0) = x39, X1(0) = X9, X2(0) = X9 and x3(0) = x39. X1, X>
and xj3 are, respectively, the relative displacements of the mass points m;, m, and m3z with respect to the
support.

The SDEs corresponding to the Duffing oscillator (Eq. (17)), after incorporating the process noise, may be
expressed in the following incremental form:

dx; = x, dt, (203)

1
dx, = {E (—ooxy — B} — ex2 + u(?)) — )'éy} dt+04dB;. (20b)
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Fig. 3. (a) 3-dof spring—mass system with bilinear spring (x|, x, and x3 represent the relative displacement with respect to the support) and

(b) force-displacement relation of the bilinear spring.

For the VDP oscillator, the SDEs in an incremental form are given by

dx; = x» dl,

dx, = {—[( axy + u(l — x)xz + u(r)] — xq} dt+0,dB;.

Similarly, the SDEs representing the 3-dof spring-mass system are

dx; = xadt,
dx; = xs5dt,
dx; = x¢dt,

dxy4 = {— le[(Cl + c2)x4 — caxs + fs1(x1) + fs2(x1 — x2)] —

1 . X
dxs = {—m—[—czx4 + (c2 4 ¢3)x5 — c3X6 + f52(0x2 — x1) + f53000 — x3)] — Xy + —} dt+02dBs,

2

1
dxg = {— m—3[—6‘3x5 + c3x6 + f53(x3 — x2)] —

uy (1)

,,-I——}dl—i—O'ldBl,

u(1)

u3(1)

ms

(21a)

(21b)

(22a)
(22b)

(22¢)

(22d)

(22¢)

(226)

The coefficients 6,4, 0,, 01, 0> and o3 in the above equations measure intensities of the associated additive

noise processes; for instance, a zero value for these quantities implies a purely deterministic model.

Using the procedure outlined in the Appendix, we can write explicit forms of stochastic Taylor expansion
for the displacement and velocity components of the dynamical systems considered over the interval (7, #;1]
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with a uniform step-size # = t;+;—1;. Thus, for the Duffing oscillator (Eq. (20)), the maps for the
displacement and velocity updates can be shown to be:

2 2
¢ .. .
Xik+1) = X1k + Xoh + oql10 + e~ = Eﬁdhoo — (X, — xg(k,l))g
1 B xo P /S
+ E(uk - “(k—l))g - ?(“ + 3ﬂx%k)g - E@kg + Pk (23a)

2

B o h B , W\ o« "
Xollet1) = X2k = o (xlkh + Xok 7) - (Xlkh + 3x7 X0k > " Xorh + aoy >

X + X 1
_ﬁgdjlo_ e TNy 2 Uik+1) + Uk h+ aaly + poy., (23b)
m 2 m 2

where

1 .
W = %(_axlk - ﬁxfk — cxop + Ug) — Xgp

and I, I1o and I oo are the MSIs given by

/38 Tie41 s 41 s S1
11 = / dBl, 110 = / / dB] dSl and 1100 = / / / dB] dS] dS2. (24)
1 e 1 173 t Ji

Note that p;, and p,; are the remainder terms associated with the displacement and velocity maps,
respectively. For computational purposes, these maps are then approximately given by Eq. (23) without
including the remainder terms. It may be noted that the MSIs are denoted by I followed by a set of (non-
negative) integer subscripts indicating the scalar components of Wiener increments in the same order as they
appear within the integrals and integration with respect to time is indicated by a zero subscript. These MSIs
are martingales and, if interpreted as Ito integrals, they are zero-mean Gaussian random variables. For the
numerical implementation of the stochastic maps so obtained, one needs to generate realizations of these MSIs
which, in turn, requires the knowledge of their covariance matrix. We derive the covariance matrix of I, I
and Ijoo in Section 5.2. A similar discretization procedure may be applied to obtain the discrete maps for
displacement and velocity components of the VDP oscillator.

Before applying the discretization procedure to the SDEs of the 3-dof oscillator, we need to write down a
piecewise smooth expression for the forces in the bilinear springs. Thus, referring to Fig. 3(b), the force in the
ith bilinear spring may be written as

wixyi + Bilxi — xy) i x>

S5i(x;) = { %X if x| <xy (25)
—oixyi + fi(xi —x,) i i< — X,

Eq. (25) can be generalized as

f5i(xi) = p(O] + Bixi) + qiouixi + ri(— O + Bixy), (26)

where Q) = (o; — B,)x,; and p;, ¢;and r;are given by p; =1, ¢; = r; = 0if x;> x5 ¢: = 1, p; = r; = 0if | x| < x,
and r; = 1, p; = q; = 0 otherwise.

We may replace the spring forces in the governing SDEs of Eq. (22) by the RHS of Eq. (26). Now,
following the discretization procedure, we may obtain stochastic Taylor expansions for the displace-
ments and velocity components. The displacement and velocity maps for the first degree-of-freedom
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may be shown to be:
2

Xl(k+1) = X1k + Xah + s = o (181 + @100 + 1By + PaPy + G200 + 12 B2)xar
" n
—(P2Bs + G202 + 12By)xsk + (¢1 + e2)as — crasy] ra ().ég,\, - ig(k,],) 3
1 /s 1
+ — (uik — wig—1y) — + 01110 — —[(¢1 + ¢2)a 11100 — €2021200], (27a)
mq 6 m

1 " W ,
Xa(k+1) = Zak — o {(01 + ) <x4kh + as 5) -0 (XSkh + as 3) +(p, —r1)Oh

: W
+ (r2 = p2)O5h + (01 By + qioa + 1By + pafy + grta + 1) (xlkh + X4k —>

2
n Kooy T X 1 (u +u
—(Pafs + @02 +12fo) | Xokh +ask— || — ey "0 h+— 2D T Fik h+ o1,
2 2 m 2
1
- m—l[(cl + c2)arlio — c202150), (27b)
where
1 .ui(?)
gk = —m—l[(cl + )X — caxsi + f51(x14) + f2(x1e — x21)] — Xy, + .
and
1 . le(l‘)
asi = — m_z[_czx4k + (2 + €3)Xs5k — e3x6k + f52(Xok — X1k) + f353(x2% — X36)] — Xy, + .

The stochastic Taylor expansions for displacement and velocity components corresponding to the other
degrees-of-freedom may be obtained in a similar way.

The MSIs I, I, and I3 are stochastically independent, zero-mean normal random variables with variance /.
We also note that the above expansions assume that the vector field is adequately differentiable—a condition
that is not met by fs5,(x;) (see Eq. (26)) whenever the event x; = x,,; occurs. Even though this event has a
measure zero of occurrence, its occurrence should ideally be detected when the solutions are in the strong
form. However, an accurate detection of such events in the solutions of SDE:s is still an open research problem
and is beyond the scope of this study. It must be noted that, in neglecting the non-differentiability, the local
error within a close neighborhood of the time of the event as well as the global error would get affected.
However, local errors away from the point of discontinuity would remain unaffected. Moreover, for
sufficiently small 7, it is conjectured that the global error would not get significantly affected.

We observe that evaluations of the velocity components through the discretized maps at instant ¢, | require
information on uy 1 1, which is not known. Therefore, its value has to be extrapolated from the known values
of u, available up to the instant #;. A truncated Taylor expansion may readily be used to approximately obtain
Uje+1 a8

U1 = Uk + th. (28)

In Eq. (28), a dot over u; represents, formally, the time rate of u evaluated at #, and it is computed as
e = (U — ug—1y)/h. Since the state of the system is presently being measured, the observation equation is in a
discrete form: y; = hy(x;) + v, where vy is the vector of measurement noise.

5.2. Modeling the MSlIs

Using Ito’s formula, restricted to the interval (#;, fr+:], the elements of the covariance matrix of
the MSIs may be obtained. Consider the MSIs 1}, I}y and I}y (Eq. (24)). Let x = I}, y = I;¢ and z = I .
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From Eq. (24), one gets:
dx=dB;, dy=xdt and dz=yd: (29)

We know that E[I;] = E[l1o] = E[l100)] =0 and E[F]=h. Consider the SDE d(xy) = x*>dr+ydB,.
Therefore, d(E[xy]) = E(x?)dt or,

ey h2
Elol= Bl Tl = [ EGhdi=" (30)
143
Now, consider the SDE d(xz) = xyd¢+zdB,, so that d(E[xz]) = E(xy)d¢ or,
Tjt1 W
Elxs) = Bl Tl = [ EGoydi = 31)
174
Moreover, from d(y?) = 2xydr, we have d(E[y*]) = 2E(xy)dr. This leads to
78] h3
EW)= Hf=2 [ Eeodr=5, (32)
173
Similarly, use of the SDE d(yz) = y*d¢+ xzdr leads to
tit Uy h4
B = Bl dd = [ EGAdr+ [ Bedi = (33)
17 173
From d(z%) = 2yzdt, we get
(/28] h5
E[Z?] = E[I3y]) =2 / E(yz)dt = —. (34)
" 20
Thus, we observe that these MSIs are normal random variables of the form
_ ~ 53 q
p B
7 2 6
: »owr
I ~N | 03x - = —
10 N | Usxa > 3 % . (35
I10 B
L6 8 20

6. Numerical illustrations

We now illustrate the control methodology with the two sdof and the 3-dof nonlinear oscillators as
described earlier. Whilst the Duffing and VDP oscillators are typically workhorse nonlinear systems of general
engineering interest, the 3-dof oscillator is a model, frequently encountered in earthquake engineering. The
excitations in the sdof oscillators are in the form of harmonic support displacement, whereas for the 3-dof
oscillator, an earthquake like support motion is considered. In most of the illustrations the structures are
assumed to start from rest. The equations of motion of these structures are given (in Section 5) (see Egs.
(17)—(19)). The discretized forms of the SDEs resulting from these equations (following the introduction of
process noises) have already been derived in the previous section.

We have presently considered the following parameter values for the Duffing oscillator: m = 1kg,
¢ =0.5Ns/m, « = 10N/m and = 5000 N/m>. The process noise parameter oz = 0.01 |Xg|max 1 assumed. For
the VDP oscillator, we choose the system parameters as: m = 1kg, « = 10N/m and = 2Ns/m®. The noise
parameter is taken as ¢, = 0.01]X,| .. Finally, we choose the following parameter values for the 3-dof spring-
mass system: m; = m, = mz = 10kg and ¢; = ¢; = ¢3 = SNs/m. The stiffnesses corresponding to the two
piecewise linear regimes of the bilinear springs are assumed as o) =, = o3 =3000N/m and
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Bi1 = B> = P3=T750N/m. The critical displacements (x,,; i =1, 2, 3) corresponding to the common point
(henceforth called the critical point in the force-displacement space) of the two linear arms of the springs are
taken to be 0.01 m and, the noise parameters are assumed as ¢; = 0.01]|%y|..x (I = 1,2,3). For all cases, the
standard deviation of measurement noise is assumed to be 6% of the maximum absolute value of the
measured response quantity under noise free conditions. During simulations, the initial conditions are
assumed to be deterministic. Considering small displacements, the natural frequency of the linear models of
the sdof oscillators (obtained by removing the nonlinear terms in the vector fields) is found to be 3.1623 rad/s;
whereas, for the 3-dof system the natural frequencies are 7.7084, 21.5983 and 31.2105rad/s The harmonic
support displacement for the sdof systems is given by x,(f) = x,sin (Af) with parameters x, = 0.05m and
A =4rad/s. It may be noted that the driving frequency is close to the natural frequency of the corresponding
linear models in all the cases. The earthquake support motion considered for the 3-dof system is the El Centro
(1940) ground acceleration. First 10s of the earthquake acceleration, which contains the strong motion part, is
considered for the simulation. In the simulations of the sdof systems, the measurements on velocity are
assumed to be made. For the 3-dof system, on the other hand, the velocity of the third mass point is assumed
to be measured. In the present study, all these measurements are synthetically (numerically) generated. While a
uniform time step 2 = 0.01 s is used for simulating the Duffing and the 3-dof oscillators, the step size is halved
to h = 0.005s for the VDP oscillator. The ensemble sizes used are: N = 100 for the two sdof oscillators and
N =200 for the 3-dof system. To study the effect of initial conditions on the performance of the control
system, the Duffing oscillator is simulated with three different initial conditions, with the initial condition
vector [xg; Xo] taking values [0.1; 0], [0.1; 0.5] and [0; 1], where x is in m and X, in m/s.

The SDRE control design requires expressing the equations of motion in the SDC form: x = A(x)x + B(x)u.
In all the examples considered here, B(x) is a constant matrix. Thus the matrices 4(x) and B(x) for the Duffing
oscillator may be shown to be

0 1 0
Ax)=| o+pBxi c¢| and B={1 5. (36)
m m m

Similarly, when the equation of motion for the VDP oscillator is expressed in the SDC form, the system
matrices are given by

0 1 0
Ax)=| o _,u(l — x%) and B= i . (37)
m m m

For the 3-dof spring—mass system with bilinear springs, the SDC form of the equation of motion is obtained
in a simple way. One readily observes that, for a system with linear springs having stiffness &, k> and k3 (i.e.
o1 = ki, ap = ko, 03 = k3, f1 =0, B, =0 and f3 = 0), the system matrix A(x) is constant and is given by

03x3 I3

A=k —mie) %)
where
m 0 0 1+ —0 0 ki 4+ ks —k> 0
M=|0 m 0|, C=| —a a+a —-a| and K=| —k2 ka+ks —ki|. (39)
0 0 ms3 0 —C3 C3 0 —k3 k3

03,3 1s a 3 x 3 zero matrix and I3 is a 3 x 3 identity matrix. However for the given system with bilinear
springs, K is a state-dependent matrix K.p(x) with elements k;, k> and k3 replaced by the effective stiffness
coefficients kg 1, ker, 2 and kegr, 3. Referring to Fig. 3(b), kerr, ; (i = 1, 2 and 3), are computed as

o ifleci| <xy,

keff,j = Xy + ﬁi(|€x,i| - xy,i)
|ex,i|

otherwise. (40)
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In Eq. (40), e, ; represents the extension of the ith spring. The system matrix 4A(x)in the SDC form is now
obtained by replacing K with K (x) in Eq. (38). In the present work, two control configurations have been
studied for the 3-dof structure. In case 1, the control force is applied at the third dof only; and in case 2,
control forces are applied at all the three dofs. For the first case, the system matrix B is given by B =

T T
00000 1/’”3} and, for the second case, it takes the form B = {03X3 M‘l} . The weighing

parameter Q(x) is assumed to be of the form:

(41)

K 0
0(x) = { () }

0 0]

K(x) for the Duffing and VDP oscillators are chosen as « + fix7 and « respectively. For the 3-dof system,
K(x) is taken as K.(x). 0 in Eq. (41) represents a zero matrix having the same size as K(x). The weighing
parameter R(x) is assumed to be constant, whose values for the Duffing and VDP oscillators are taken as
0.001 and 1, respectively. For the 3-dof system its value is taken as 0.001 for case 1 and 0.001/5 for case 2. It
may be noted here that the weighing parameters Q(x) and R(x) are design parameter functions that are chosen
to provide the desired response. Thus, one can tune these parameters for reshaping the response. The choice of
O(x) as in Eq. (41) makes the first term of the cost function (Eq. (8)) to represent the structural strain energy.
The parameter R(x) determines the relative importance of control effectiveness and economy; for instance, a
smaller value implies greater weight on control effectiveness. In any given situation, one needs to take into
account the limits on available control resources before a meaningful value of R(x) could be selected. A suite
of digital simulations would further provide essential insights into levels to which the response could in turn be
controlled. In the present study, it was found that the proposed algorithms performed satisfactorily for a wide
choice of R(x) and in the present paper we provide a subset of results from this investigation.

In the simulations of all the example problems considered here, we mainly use the bootstrap filter for state
estimation. However, given the limitations of the bootstrap filter, its performance in state estimation has been
compared with that of the SIS filter in all the cases. In implementing the SIS filter, the threshold of the effective
sample size (that decides the need for resampling) is taken to be 1/3rd of the sample size. It may be noted that
the control responses shown in the figures are those obtained by control algorithms employing bootstrap filter,
unless otherwise mentioned explicitly. The estimated velocity history and the associated variance histories of
the estimators for displacement and velocity are shown in Fig. 4. Fig. 4(a) also plots the measurement taken on
the velocity. Fig. 4(b) shows a comparison of the variance of the states estimated by the control algorithm with
bootstrap filter and SIS-based filter. As anticipated, a significant reduction in the variance can be observed
when the algorithm uses the SIS filter. Fig. 5 shows a comparison of the uncontrolled and controlled responses
of the Duffing oscillator in the 1-period regime. Apart from a drastic reduction of the response amplitude, the
type of dynamical response also changes from a dumb-bell shaped to an elliptical orbit with the application of
the control force. Fig. 6 shows six different realizations of the velocity history of the Duffing oscillator under
two different schemes of measurements—(i) displacement alone is measured and (ii) velocity alone is
measured. The results obtained when bootstrap filter and SIS filter are used for state estimation, are given
separately. One can observe the robustness of the algorithm with both the filters under both schemes of
measurement. Fig. 7 shows the phase plane plots of the Duffing oscillator, for uncontrolled and controlled
cases, for different initial conditions. One may easily see that irrespective of the initial conditions, the control
force drives the system close to the origin, which is a stable equilibrium point. Simulation results of the VDP
oscillator are reported in Figs. 8 and 9. Again, the effectiveness of the estimation as well as the control
algorithm is clearly brought out. This is probably also indicative of the applicability of the proposed schemes
for different types of nonlinearities in the vector field. One may also observe from Fig. 9(b) that the origin,
which is an unstable fixed point in the uncontrolled case, becomes stable owing to a possible modification of
the system parameters by the control force and, the control force drives the system to the origin.

Figs. 10-14 show the results on simulations of the 3-dof oscillator. Fig. 10 shows a comparison of the
variance associated with state estimation using bootstrap and SIS filters for control case 2. Similar results are
obtained for case 1 also. Here also, one can observe the superiority of the SIS filter over bootstrap filter.
Comparisons of the time histories of the relative displacement of the third mass point for the uncontrolled and
controlled systems (corresponding to cases 1 and 2) are shown in Fig. 11. A similar comparison of the phase
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Fig. 4. State estimation of the Duffing oscillator: (a) measured and estimated velocity (x,) and (b) performance of bootstrap filter and SIS
filter in state estimation.

plane plots of the states is shown in Fig. 12. That case 2 performs better as a control strategy than case 1
should be clear from these figures. The control configuration in case 2 obviously corresponds to the smallest
reaction force and this is indicated in Fig. 13, which shows the time histories of the force in the first spring,
for different cases. The force-displacement graphs for all springs, for various control cases, are compared in
Fig. 14. As can be seen from this figure, the displacement of the uncontrolled system is excessive and all the
springs cross the critical point; and, in the controlled system, the springs remain within the linear range by and
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Fig. 6. Six different realizations of the time history of velocity of the Duffing oscillator, with states estimated using bootstrap filter and SIS
filter under two different measurement schemes: (i) displacement alone is measured (time history with solid lines) and (ii) velocity alone is
measured (time history with dotted lines).

large. It may be noted here that the superiority in the performance of the SIS filter compared to that of the
bootstrap filter in control algorithms is at the expense of the increased computational cost. It has been
observed that the simulation time for the SIS filter-based control system is approximately 50% more
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Fig. 8. Performance of bootstrap filter and SIS filter in state estimation of the VDP oscillator.

compared to that of the system employing bootstrap filter, for sdof oscillators; and, for the 3-dof system it is
115% more. This increase in time is attributable to the extra computational effort needed for drawing samples
from the (multidimensional) importance density function.
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All the simulation results (except Fig. 6) shown here are in the form of single specific realizations of the
response. In order to assess the overall performance of the proposed algorithm with respect to sampling
fluctuations, for a given realization of the measurement noise, 100 Monte Carlo simulations, each with a
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sample size of 200, are performed on the 3-dof system and the time history of the displacement of the third
mass point in five different runs is shown in Fig. 15. The robustness of the algorithm may be observed for both
control cases. Also, the average values of the peak response quantities, peak control forces and control
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Comparison of the time history of the force in the first spring of the 3-dof system for uncontrolled and controlled cases.
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Fig. 14. Comparison of the force-displacement graphs for various springs of the 3-dof system for uncontrolled and controlled cases.

efficiencies are tabulated in Table 1. The control efficiency is calculated as 100(llxycllnax— Xl max)/ 1 Xucll maxs
where II- Il represents the Euclidian norm, x,. and x. represent the state vectors in the uncontrolled and
controlled cases, respectively. A higher efficiency in control case 2 is observable compared to case 1. It is again
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and 2.

emphasized that, depending on the available control resources, one may tune the control parameters in
order to obtain a desirable level of control. To assess the performance of the algorithm for different
particle sizes, for a given realization of the measurement noise, 100 Monte Carlo simulations are performed on
the 3-dof system, under control case 1, with N =50, 100, 200, 1000 and 3000. The mean values of the
estimated states of the system corresponding to a given time instant (taken as ¢ = 2.5s.) for different sample
sizes are shown in Fig. 16. The 95% probability bounds are also marked. It may be readily observed that the
dispersion from the mean, which is a consequence of the sampling fluctuations, reduces consistently with
increase in particle size.

7. Concluding remarks

The problem of active control of nonlinear oscillators, especially those of interest in structural engineering,
is considered while incorporating both process and measurement noises. The Monte Carlo filters, popularly
known as particle filters, are identified as powerful tools for estimation of the controlled states of such
nonlinear systems. Particle filters are observed to be very useful in feedback control applications of nonlinear
structural dynamical systems, which require the estimation of full states of the systems from a few noisy
measurements available. Despite its versatility, the particle filter has not been made use of for control of
nonlinear structures with noise. To the best of authors’ knowledge, the present work constitutes the first
attempt at demonstrating the usefulness of particle filters in control of nonlinear structural dynamical systems.
Presently, both the Bayesian boot strap filter and that based on sequential importance sampling have been
used for state estimation. The SIS filter provides more accurate estimation at the expense of increased
computational time. Indeed, in the context of real-time control applications, the bootstrap filter offers a simple
and reasonably accurate state estimation tool. However, as more advanced particle filters are available and
new schemes of variance reductions (variance due to finiteness of ensemble sizes) come into existence, the issue
of relative suitability of different types of particle filters in control applications would pose an interesting
problem. A more detailed exploration of this issue is however beyond the scope of this study. The particle
filters require discrete maps to work with, and, hence, the continuous forms of the SDEs, representing the



Table 1

Average values of peak response, peak control force and control efficiency of the 3-dof system, over 100 Monte Carlo simulations

Max. values of displacements & velocities

Max. force in springs (N)

Max. control force (N)

Control
efficiency (%)

X1max X2max X3max X4max X5max X6max 1 2 3 Uimax Uzmax U3max
(m) (m) (m) (m/s) (m/s) (m/s)
Uncontrolled 0.0938 0.1587 0.1772 0.5786 0.8576 0.9198 92.88 72.75 41.60 - - - -
(0.0089) (0.0124) (0.0180) (0.0349) (0.0724) (0.0888) (6.78) (3.55) (2.68)
Case 1 Controlled 0.0233 0.0316 0.0330 0.4036 0.4730 0.3658 40.01 28.51 34.05 - - 37.03 45.2
(0.0007) (0.0009) (0.0016) (0.0102) (0.0111) (0.0069) (0.55) (1.02) (0.50) (0.58)
% Reduction 75.2 80.1 81.4 30.24 44 .84 60.23 56.9 60.8 18.1 - - -
Case 2 Controlled 0.0122 0.0210 0.0259 0.1994 0.2941 0.3203 31.63 26.42 18.69 18.08 26.65 28.66 64.0
(0.0005) (0.0008) (0.001) (0.0089) (0.0069) (0.0056) (0. 40) (0.71) (0.54) (0.58) (0.69) (0.73)
% Reduction 87.0 86.8 85.4 65.5 65.7 61.2 65.9 63.7 55.1

Note: Values written in parenthesis represent the associated standard deviation.
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Fig. 16. The mean, over 100 Monte Carlo simulations, of the estimate of the displacement and velocity components of the 3-dof system at
t = 2.5s. for control case 1, for different particle sizes (solid lines show the mean and dotted lines show the 95% probability bounds).

process equations, are discretized using an explicit form of the Ito—Taylor expansion. This exercise leads to
discrete maps of displacements and velocities to a high formal order of accuracy provided that the vector
field is adequately differentiable. The control design is done by the SDRE method, which has gained
considerable attention in recent years among the researchers working in control of nonlinear systems. To
demonstrate the effectiveness of particle filters in control of nonlinear structures, we have considered two sdof
systems, viz., the Duffing and VDP oscillators and, a 3-dof nonlinear oscillator with bilinear springs. Based on
the simulations, the performance of particle filters in control of nonlinear structures is observed to be excellent.
Also, the SDRE method is found to be very attractive for designing control laws for nonlinear structural
systems.

Only a numerical route is presently chosen to demonstrate the use of particle filters in structural control
applications. However, with high speed processors and suitable actuating devices, the proposed strategy can
potentially be used for practical implementations. To account for inherent time delays of actuators, one can
use a suitable extrapolation strategy to predict the actuator displacement so that it can be commanded in
advance to generate the required control force accurately. It must be understood that real-time control
applications of nonlinear structures, especially those with large dimensions, require that the computations
proceed as fast as possible. Though different versions of EKFs, which could handle nonlinearity, are available,
particle filters are far more versatile in their ability to handle system nonlinearity and can even account for the
non-Gaussian nature of the response and noise processes. However, given that Monte Carlo simulations,
based on numerical integrations of mathematical models of structures, are computationally too demanding,
alternative semi-analytical routes (such as the ones based on linearizations of the governing SDEs) must be
explored for speeding up the simulations. In this context, the issue of variance reduction of the estimated states
also assumes importance as this may potentially reduce the ensemble size drastically. Investigations on these
lines constitute interesting elements of future research.



R. Sajeeb et al. | Journal of Sound and Vibration 306 (2007) 111-135 133
Appendix. The stochastic Taylor expansion

Consider the vector stochastic process x(1):={x?(¢)|i € [1,n]} € K" governed by the system of SDEs:

q
dx(1) = a(t,x)dr+ > 6,(1,x)dB(0). (A.1)
r=1
where B(f)={B.(1)} € % is a g dimensional vector Wiener (Brownian motion) process, a(t, x):={a"(t,x)|i €
[1,n]} : M x R" — N is the drift vector and o,(z, x) : R x R" — R" is the rth column of the diffusion matrix
[0], x4 Let f(z,x) : R x R" — N be a sufficiently smooth scalar function. Then, by Ito’s formula [56], one can
write

0 n 0 ; 1 n 62 . )
df (1, x) = 5 7(t,x)dt + §’ e (2, x)dx" + 3 2 IWf(z, x) dx® dx¥. (A.2)
= 1j=

Note that dx'” dx"” needs be calculated according to the rule: drds = drdB, = dB,dr = 0 and dB,dB, = dr.
Now, from Eq. (A.2), one can write for fo<t<s:

q s s

Ss.x() =60+ / Af (s1,x(51)) dBy(s1) + / Lf (s1, x(s1)) dsi, (A3)
=1 V1 t
where the operators A, and L are, respectively, given by
4 0
— () p
A, Zo— 0 (A 4a)
(D g

+ Z a9, x) +3 Z Z gV ax(’) R (A.4D)

Now, applying Eq. (A.3) repeatedly to f(s;, x(s;)) one gets
q t+h t+h
f(t+ hx(t+h) =f(t,x) + Z Af / dB,(s) + Lf / ds
q t+h
ZA A,f/ / dB,(s1) dBi(s)
q t+h
Z A A / / / dB;(s2) dBi(s1) dB(s)
t+h t+h
f/ / dB, (sl)ds+ZL/1rf/
t+h
+ZZLAA,}‘/+ / / dBi(s>)dB.(s)ds

r=1

£y > aLas / v / | / " dBi(s2) sy dB,(s)

r=1

+

/ ds; dB.(s)

< HMQ ||M'Q \TMQ

t+h K
+ L*f / / ds; ds + p, (A.5)
t t

where p is the set of remainder terms. One can still expand the remainder terms using Eq. (A.3) to get higher
order terms in the expansion. The integrals, in this expression, involving increments of Wiener components
dB,(t) are referred to as multiple stochastic integrals (MSIs).
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