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Abstract

This paper is concerned with the vibration analysis of a rectangular plate with a rectangular hole or a circular hole. In
the previous researches, the effect of the hole is taken into account by subtracting the energies of the hole domain from the
total energies of the whole plate. In doing so, the integrals of the functions consisting of the admissible functions based on
the plate domain over hole domain lead to complex numerical computations. In this paper, a new methodology called
Independent Coordinate Coupling Method (ICCM) was developed, in which the energies corresponding to the rectangular
plate domain and the hole domain were derived independently and the two independent coordinates were coupled by
imposing kinematic relations. By matching the deflection condition imposed on the expressions, the relationship between
the global axes and the local axes can be easily derived and then used to construct the mass and stiffness matrices. The
numerical results show the efficacy of the proposed method.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

A rectangular plate with a rectangular or a circular hole has been widely used as a substructure for ship,
airplane, and plant. The vibration characteristics of a rectangular plate with a hole can be solved by either the
Rayleigh—Ritz method (RRM) or the finite-element method. The RRM is an effective method when the
rectangular plate has a rectangular hole. However, it cannot be easily applied to the case of a rectangular plate
with a circular hole since the admissible functions for the rectangular hole domain do not permit closed-form
integrals. The finite element method is a versatile tool for structural vibration analysis and therefore, can be
applied to any of the cases mentioned above. But it does not permit qualitative analysis and requires enormous
computational time.

Monahan et al. [1] applied the finite-clement method to a clamped rectangular plate with a rectangular hole
and verified the numerical results by experiments. Paramasivam [2] used the finite difference method for a
simply-supported and clamped rectangular plate with a rectangular hole. Aksu and Ali [3] also used the finite
difference method to analyze a rectangular plate with more than two holes. Rajamani and Prabhakaran [4]
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assumed that the effect of a hole is equivalent to an externally applied loading and carried out a numerical
analysis based on this assumption for a composite plate. Rajamani and Prabhakaran [5] investigated the effect
of a hole on the natural vibration characteristics of isotropic and orthotropic plates with simply-supported
and clamped boundary conditions. Ali and Atwal [6] applied the RRM to a simply-supported rectangular
plate with a rectangular hole, using the static deflection curves for a uniform loading as admissible functions.
Lam et al. [7] divided the rectangular plate with a hole into several subareas and applied the modified RRM.
Lam and Hung [8] applied the same method to a stiffened plate. The admissible functions used in Refs. [7,8]
are the orthogonal polynomial functions proposed by Bhat [9—11]. Laura et al. [12] calculated the natural
vibration characteristics of a simply-supported rectangular plate with a rectangular hole by the classical RRM.
Sakiyama et al. [13] analyzed the natural vibration characteristics of an orthotropic plate with a square hole by
means of the Green function assuming the hole as an extremely thin plate.

The vibration analysis of a rectangular plate with a circular hole does not lend an easy approach since the
geometry of the hole is not the same as the geometry of the rectangular plate. Takahashi [14] used the classical
RRM after deriving the total energy by subtracting the energy of the hole from the energy of the whole plate.
He employed the eigenfunctions of a uniform beam as admissible functions. Joga-Rao and Pickett [15]
proposed the use of algebraic polynomial functions and biharmonic singular functions. Kumai [16], Hegarty
and Ariman [17], Eastep and Hemmig [18], and Nagaya [19] used the point-matching method for the analysis
of a rectangular plate with a circular hole. The point-matching method employed the polar coordinate system
based on the circular hole and the boundary conditions were satisfied along the points located on the sides of
the rectangular plate. Lee and Kim [20] carried out vibration experiments on the rectangular plates with a hole
in air and water. Kim et al. [21] performed the theoretical analysis on a stiffened rectangular plate with a hole.

In this study, we proposed a new method that can be effectively used for the analysis of a rectangular plate
with either a circular or a rectangular hole. The new method is based on the classical RRM but utilizes
different coordinate systems for the plate and the hole. In the RRM, the effect of the hole can be considered by
the subtraction of the energy for the hole domain in deriving the total energy. In doing so, the previous
researches considered only the global coordinate system for the integration. We proposed the use of the global
coordinate system for the plate and the local coordinate system for the hole, separately. In this case, both the
energy for the whole plate and the energy for the hole to be subtracted can be easily derived. Since different
coordinate systems are used for the plate and the hole, we need a matching condition. The matching condition
of deflections inside the hole domain provides the kinematic relation between the independent coordinate
systems, and enables us to unify the two independent energies. We named this method the Independent
Coordinate Coupling Method (ICCM). The advantage of the ICCM is that we do not need a complex
integration process to obtain the total energy. In this paper, the ICCM was applied to the rectangular plate
with a rectangular hole and the rectangular plate with a circular hole. The numerical results for the rectangular
plates with the two types of holes, respectively, are compared to the numerical results of the classical
approach, the finite-element method, and the experimental results. The numerical results show the efficacy of
the proposed method.

2. RRM for free vibration analysis of rectangular plate

Let us consider a rectangular plate with side lengths a in the X direction and b in the Y direction as shown in
Fig. 1. The kinetic and potential energies of the rectangular plate can be expressed as

a b
. =1ph/ / W2 dxdy, (1)
2 0o Jo
62w o*w : *w O*w 62

where w = w(x, y, f) represents the deflection of the plate, p the mass density, / the thickness, D = Eh’/
12(1—v?), E the Young’s modulus, and v the Poisson’s ratio.
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Fig. 1. Rectangular plate with a rectangular hole.

By using the non-dimensional variables, £ = x/a, n = y/b and the assumed mode method, the deflection of
the plate can be expressed as

w(&,n, 1) = P&, mq(2), (©)

where @(&,1) = [@1P5 ... D,,]is a 1 x m matrix consisting of the admissible functions and ¢(7) = [¢1¢>...¢m] " is
am x 1 vector consisting of generalized coordinates, in which m is the number of admissible functions used for
the approximation of the deflection. Inserting Eq. (3) into Eqgs. (1) and (2) results in Eq. (4):

1o 1
TP = EqTMqa VP = 5 qTan (4a9b)
where
3 Db
= phab M, K = 5 K. (5a,b)
In which
1 1
M =/ / oTPpdédn, (6a)
0 0
/ / {azdﬂ o’e 0% D0 N (azdﬂ a2¢ o*oT O’ )
+ o - o
o0& o on* on? o> on? 611 o&?
o’ o
2(1 — v)o? 6b
20 =0 S O (o)

M, K represent the non-dimensionalized mass and stiffness matrices, respectively, and « = a/b represents
the aspect ratio of the plate. The equation of motion can be derived by inserting Eq. (4) into the Lagrange’s
equation and the eigenvalue problem can be expressed as

[K — w*M]A = 0. (7

If we use the non-dimensionalized mass and stiffness matrices introduced in Eq. (5), the eigenvalue problem
given by Eq. (7) can be also non-dimensionalized

[K — &*M]A =0, (®)

where @ is the non-dimensionalized natural frequency, which has the relationship with the natural frequency
as follows:

pha*
= )

To calculate the mass and stiffness matrices given by Eq. (6) easily, the admissible function matrix given by
Eq. (3) needs to be expressed in terms of admissible function matrices in each direction.

Cbi(éo 17) = ¢1(6)W1(17)9 = 19 2: s, m (10)

o =
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Then, the non-dimensionalized mass and stiffness matrices given by Eq. (6) can be expressed as

Klj=)A(U'Y,‘j+OC4XU)>U'+OCZV(X]'Z'Y/U+XUY]'[)+OC2(1—V)X/U'Y,‘j, i,j=1,2,...,m, (11b)
where
1 _ 1 . 1 . 1
Yo= [Codde Xy= [ dgea Xi= [ sepaa Xo= [ edde (12a=d)
0 0 0 0

1 1 1 1
m=/%%m m=/w%m n:/wwm m=/mww,w=qun
0 0 ’ 0 0 ’
(12e—h)

If n admissible functions are used in the X and Y directions and the combination of admissible functions are
used, a total of n* admissible functions can be obtained, which yields m = n”. If each type of admissible
functions are considered as y(i=1, 2,..., n) and y(i=1, 2,..., n), then the relationship of between the
sequence of the admissible function introduced in Eq. (10) and those of separated admissible functions can be
expressed as

n I1<k<n Vi 1<k<n
1 n+1<k<2n Vi—n n+1<k<2n

¢k: 13 2n+ 1<k<3n , sz Yk—2n 2n+1<k<3n X (13a,b)
XAn (” - 1)” + 1<k<n2 Yk—(n—1n (I’l - 1)" + 1<k<n2

Therefore, instead of integrating m* = n* elements in Eq. (12), n” integrations and matrix rearrangement will
suffice. First, let us calculate the following:

1 1 1 1
Xy = / Lidj dé, 2= / 7:71/ dé, 2= / X:'/X]/'/ dé, 2= / Xin/'/ dé (14a—d)
0 0 0 0

1 1 1 1
= / yivydn, Ty= / viidn, Ty = / vividn,  Ty= / vy dn, ij=12,....n (14e—h)
0 0 0 0

And then the matrices given by Eq. (12) can be derived as follows:

(0T Tl o Zd Sal Sl - S
Il Ipl - Xl ) Sl Il - 21

X=1. . . ) s X =1, . ) ) s (15a,b)
Z:an Z:1127 e Z:nnT Z_:1117 Z_:}127 Z'_‘nnT
_2117 i‘127 ZA"InT_ _EIIT S‘IZT e E‘lni_

n i‘217 i‘227 2‘2;17 - i‘217 E‘227 S‘2)17

X = s X =, , (15¢,d)
Snlf i‘7127 e i‘nnT 2,117 21127 T SnnT
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r r r Ir r r r r I I r I
r r r ) I r r R I r I R I r r
Y = , Y= , Y= , Y= ,
rr ... r rr ... r r r .. T r r ... T
(15e—h)

where I is an n x n matrix full of ones.
Let us consider the simply-supported case in the X direction. In this case, the eigenfunction of the uniform
beam can be used as an admissible function.

7 =~2sininé, i=12...n. (16)
Inserting Eq. (16) into Eq. (14) yields

Loi=j (in), i=j (n)', i=j . —(in)’, i=],
2= L, 2= s Xy= s Xy= . 17a—d
v {0, i#j / {0, i#j / 0, i#j Y 0, i#]J. (17a=d)
In the case of the clamped condition in the X direction, the eigenfunction of a clamped—clamped uniform
beam can be used:
1; = cosh A;& —cos A;& — oi(sinh ;& —sin 4;¢), i=1,2,...,n, (18)

where A; = 4.730, 7.853, 10.996, 14.137,... and o; = (cosh 4,—cos 4,)/(sinh /;—sin 4;). Inserting Eq. (18) into
Eq. (14) yields

I, i=}],
2= { i#],
) cili(oili ), 1=/,
e {‘”2) Moy — ol + (I /GE = 28, i), (192,5)
5= { i#],
X 0:i4i(2 — 6ils), =],
> (19¢,d)

TN 422000 — ol + (=) = 28, i

In the case of a free-edge condition in the X direction, we can use the eigenfunction of a free—free uniform
beam:

1
Xl = 13 XZ = m(é - E) s (20a5b)
Liza = cosh 4;¢ 4 cos A;& — o;(sinh A;& +sin 4;8), i=1,2,...n—2, (20c)

where 4; and o; are the same as the ones for the clamped—clamped beam, and the first and the second modes
represent the rigid-body modes. Inserting Eq. (20) into Eq. (14) yields Eq. (21).

1, i=j .
Z,;,-:{O, it i=12,....,n, j=12,...,n (21a)
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Slj=09 j=1,2,...,n,
O, j = 19
Sy= 12, j=2, 21b,0)
“2J12[l + (1Y%, j=3,4,...,n,

_ 0i2i(0iki +6), i=],
2G04 = 45,00 (0,00 — G+ (=DM =2, i#),

i=1,2,...,n—=2, j=12,...,n—=2, (21d)
3,=0, i=12 j=12,..,n (2le)
E(,-H)UH):{)“?’ i -2 =12 -2 Q1)
0, i#j

=0, j=1,2, Zagia =204 (=], j=1,2,....n-2, (21g)
$=0, j=1,2, Zoin =Vl +I2—-0/l), j=1,2,...,n—2, (21h)
Sy =0, i=12,...,n-2, j=12, (21i)

0i4i(2 — ki), i=j,

2,‘ i = L
DTN 43 ik — ol + ()G = 2, i),
i=1,2,...,n—=2, j=12...,n—2. (21j)

For the admissible functions in the y direction, 7y; the same method can be applied. The combination of
different admissible functions can yield various boundary conditions.

3. Free vibration of circular plates

Let us consider a uniform circular plate with radius, R, and thickness, /. In this case, the kinetic and
potential energies can be expressed as follows:

1 2n R
Tc==ph / / Wwlrdrdo, (22a)
2 o Jo
1 RN, 10w 1 o*w : o*w 1 ow 1 o*w
- .p e 2OWe L OWeN 5y (e (L9 L OWe
Ve 2 /0 /0{<6r2+r o TR 692) (=) (6r2><r or TR ae2>
1w, 1w, :

Unlike the uniform rectangular plate, simply-supported, clamped, and free-edge uniform circular plates
have eigenfunctions. Hence, the deflection of the circular plate can be expressed as the combination of
eigenfunctions and generalized coordinates

W1, 0,0) = 3 B, 0)g(1) = Bolr. 0)g, (1), (23)
i=1
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Table 1
Characteristic values for free-edge circular plate

k Ty Ak A Cr Ji(0)
1 2 2.3148 3.6459 0.2134 cos(20)
2 2 2.3148 3.6459 0.2134 sin(260)
3 0 3.0005 2.1979 —0.0857 1
4 3 3.5269 4.5155 0.0911 cos(30)
5 3 3.5269 4.5155 0.0911 sin(36)
6 1 4.5249 3.8349 —0.0192 cos(0)
7 1 4.5249 3.8349 —0.0193 sin(6)
8 2 5.9380 4.4258 —0.0056 cos(20)
9 2 5.9380 4.4258 —0.0056 sin(26)
10 0 6.2003 3.1390 0.0032 1

where @.(r, 0) represents the eigenfunction of the uniform circular plate and ¢.(f) represents the generalized
coordinate. Inserting Eq. (23) into Eq. (22) results in the following:

1, . 1
TC = quM(TQC: VC = 5 q;rKqu (24a,b)
where
5 nD
ML’ = phTER I, KC = F AC, (25a,b)

in which 7 is an n, x n, identity matrix, A, is an n, x n, diagonal matrix whose diagonals are /,*. The eigenvalue
has the expression, 1* = w?phr*/D.

Since our study is concerned with either a rectangular or a circular hole, we consider only a free-edge
circular plate [22]. If the eigenfunctions are rearranged in ascending order, we can have

D=1, D,H= % cos 0, @3 = % sin 0, (26a—c)

Doss) = Ar [J,,k (Ak %) + Cily, (zk %) } £0), k=1,2,..., (26d)

where J,, and [, are the Bessel functions of the first kind and the modified Bessel functions of order ny,
respectively. The first three modes represent the rigid-body modes and other modes represent the elastic
vibration modes. The characteristic values obtained from Eq. (26d) are tabulated in Table 1, and are listed by

rearranging the values given in Ref. [22]. In this case, A4, has the following form:
A.=diag0 0 0 27 25 25 ... 2 .. (27)

n.—3

4. Free vibration analysis of a rectangular plate with a hole by use of global coordinates

Let us consider a rectangular plate with a rectangular hole, as shown in Fig. 1. In this case, the total kinetic
and potential energies can be obtained by subtracting the energies belonging to the hole domain from the total
energies for the global domain

1. .
T =Tp—Ty = 3 q" (M — My)q,

1

Viota = Vp—Vu = 5 qT(K - Kp)q, (28a,b)

My, Ky reflect the reductions in mass and stiffness matrices and can be also expressed by non-
dimensionalized mass and stiffness matrices, respectively,

MH = phabMH, KH = lz—f KH, (29a,b)
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where

_ Fxtdc  pitbe
My = / / TP dédy, (30a)
P 7y

7. 7 652 aéz 6772 anz aéz 6772 6772 852
,0°0T O’
0&on 0&on
in which 7 =r./a, 7, =r,/b, ad.=a./a, b. = b./b represent various aspect ratios. Hence, the non-
dimensionalized eigenvalue problem for the addressed problem can be expressed as

(K — Ky) — &*(M — My)]4 = 0. (31

To calculate the non-dimensionalized mass and stiffness matrices for the hole domain given by Eq. (30), we
generally resort to numerical integration. However, in the case of a simply-supported rectangular plate
with a rectangular hole, the exact expressions can be derived for the non-dimensionalized mass and stiffness
matrices for the hole. If the admissible functions given by Egs. (16) and (14) are used, the following
expression for the components can be obtained, which are necessary for the calculation of the mass and
stiffness matrices

+2(1 —v)a

} dédpy (30b)

b de=01, i=j o P+ o0, 1= 32a,b
Cii=\6 -0 izi, T iR+, i, )
) trha —on),  i=j —i'7(@ = o), =),

S = Suyy = ’

( H)U { i2j2n4(52 —383), i), ( H)l/ —j2ﬂ2(52 —03), i#j, (32c,d)
where
5y = sin 2in(Fy + a.c) —sin 2z7rrx’ 5 = sin(i — j)m(7y + ac? — sin(i _])ﬂl’x’ (33a.b)
2in (i—)m

55— sin(i + j)n(7x + a.) — sin(i + j)nr7 X (33¢)

i+ j)n

In the case of a clamped rectangular plate with a rectangular hole, the exact expressions can be derived for
the components as in the case of the simply-supported rectangular plate with a rectangular hole. But the
expressions are too complicated to be noted here. To avoid the lengthy expressions, we would rather resort to
a numerical integration technique. However, the computational time becomes a concern when numerical
integration is to be used. In the case of a circular hole, the exact expressions do not exist, so we must resort to
numerical integration. To reduce the computational time due to numerical integration and to simplify the
computation, a new method is developed in this study, which will be explained in the next section.

5. ICCM for a rectangular plate with a rectangular hole

Let us consider again the rectangular plate with a rectangular hole, as shown in Fig. 2. As can be seen from
Fig. 2, the local coordinates fixed to the hole domain is introduced. Considering the non-dimensionalized
coordinates, &, = x./a., n, = y./b., we can express the displacement inside the hole domain as

wi(Cn> 1) = Loy 1) (34)

where @,(&;, 1) = [Pni P2 - .. Pimy,] 18 the 1 x my, admissible function matrix, and ¢,(¢) = [¢,,19)5 - - - th,,]T is
the my;, x 1 generalized coordinate vector. If we apply the separation of variables to the admissible function as
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Fig. 2. Rectangular plate with a rectangular hole with local axes.

we did in Eq. (10), then we have

Ppi(Cps ) = P CWniCnp)s i = 1,2,y (3%5)
Using Egs. (34) and (35), we can express the kinetic and potential energies in the hole domain as
1. . 1
Th=5 QG Mgy, V= 3 0 Kndy- (36a,b)
Hence, the total kinetic and potential energies can be written as
1 1 ) 1 1
Ttotal = 2 (ITM(] - E qh thh’ Vtotal = E qTKq - E (I;thha (37a,b)
where
_ Db,
M, = phacbcMha K, = 613 Kh (38a>b)
in which
; 1l
L A (392)
0 Jo

w [

+2(1 — v)o

o’af o, L 000 Py, (PO Py, D@ Oy,
os, a& ¢ omp ong o0& oml oy od

, ool o,
©0¢,0n, 0;,0my,

and «. = a./b.. Note that the definite integrals in Eq. (39) has distinctive advantage compared to Eq. (30)
because it has an integral limit from 0 to 1 thus permitting closed-form expressions. Therefore, we can use the
same expression, Eq. (21), used for the free-edge rectangular plate.

Since the local coordinate system is used for the hole domain, we do not have to carry out integration, as in
Eq. (30). However, the displacement matching condition between the global and local coordinates should be
satisfied inside the hole domain. The displacement matching condition inside the hole domain can be written as

1 dé, dn, (39b)

wi(&ns 1) = WS, 7). (40)
The relationship between the non-dimensionalized global and local coordinates can be written as
_ny be
== = 41
Considering Egs. (3), (10), (34) and (35), and 1nserting them into Eq. (40), we can derive

L mp

> ()0 = Z D CEWry iy (D) = Z S ROES Z DOV (2)- (42)
j=1
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Multiplying Eq. (42) by ¢,,;(E)¥ (1) and performing integration, we can derive

my,

1 1
3 /0 /0 D E D E 1) A1 diy 41, (1)
=T

= Z/o /0 GniCCW M) G (O () A dnyqr (), i=1,2,...,my. (43)
k=1

Using the orthogonal property of the eigenfunctions of the uniform beam, Eq. (43) can be rewritten as

m

1 1
TCEDS /0 Ou(E DO A&, /0 VW () A (0)

m
= (Twagi(t), i=12....m. (44)
k=1

If we express Eq. (44) in the matrix form, we can have

qn = Thqs (45)

where T, is the my, x m transformation matrix between two coordinates. Inserting Eq. (45) into Eq. (37), we can
derive

S .1 .
Ttotal = E qTMq - 5 qT T;{MhThq = E qTqu, (46&)
1 1 1
Viotal = E CITK(I - 5 qT T;{Kh Thq = E qTqua (46b)
where
M,=M—-T{M;T;, K.=K-—T,K;Th. (47a,b)

Eq. (47) can be expressed by means of non-dimensionalized parameters

M, = phabM,, K, = %31) K,, (48a,b)

where
M, =M — (@b )T, MyTy, K,=K—=T,KyTh. (49a,b)
a,

[&

Hence, the non-dimensionalized eigenvalue problem can be expressed as
K, — &*M,]A = 0. (50)

In deriving the mass and stiffness matrices, Eq. (49), for the eigenvalue problem, we only needed the
transformation matrix, 7},. M, K can be easily computed by Eq. (11) according to the edge boundary conditions
and M, K can be computed from the results of Eq. (11) for the all free-edge rectangular plate. Compared to the
approach based on the global coordinates, the numerical integration for the transformation matrix, 7}, is easy
because of the integral limits. The process represented by Eqs. (45) and (49) is referred to as the ICCM in this
study. The ICCM enables us to solve the free vibration problem of the rectangular plate with a rectangular hole
more easily than the previous approaches do. The advantage of the ICCM becomes more apparent when we deal
with a circular hole, as will be demonstrated in the next section.

6. ICCM for a rectangular plate with a circular hole

Let us consider a rectangular plate with a circular hole, as shown in Fig. 3. The total kinetic and potential
energies of the rectangular plate with a circular hole are obtained by subtracting the energies of the circular
hole domain from the energies of the whole plate, as we did for the case of a rectangular hole. Hence, the
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following equations can be obtained by using Egs. (4) and (24)

1. o1 . 1 1
T =5 q"Mg— 3 Q*M G, View = 3 q"Kq — 3 4 K.q,. (5la,b)

In order to apply the ICCM, the displacement matching condition should be satisfied. Hence, the following
condition should be satisfied inside the circular hole domain

we(r, 0) = w(,n). (52)
Considering Eqgs. (23), (3) and (10), we can obtain

k=1

i Di(r, 0)q,(1) = i D(E, mqy (1) = i PO (g (0). (53)
= =
Multiplying Eq. (53) by @.(r, 0) and performing integration over the circular hole domain result in
:”Z / : / . 001, Oy r g (1) = ; / : / 0. O W drdig (). i= 1.2 m. (54
Using the orthogonal property of @.4(r, 0), Eq. (54) can be rewritten as

4l = ; [ [ atrom@monrarasg o - im)%qm), =12 me ()

Eq. (55) can be expressed in matrix form:
q.=Teq, (56)

where T, is a m.x m transformation matrix. We also need the relationship between the global and local
coordinates, which can be expressed as follows:

ézﬁ_'_rcos(?’ n:r_y_f_rsin(?. (57)
a a b b

Inserting Eqs. (51) and (56), we can express the total kinetic and potential energies as

L. 1, .1 )
Tiotal = 5 qTMq - E qTTZMcT(?q = E qTMchIa (583)
1 1 1
Viow = 5 q"Kq— 3 ¢ T'K.T.q= 3 q"K g, (58b)
where
My=M-T'M.T, K,=K-TK.T.. (59a,b)
X
1 r
/!
0
1 >
b
r\' » rV
|
| ]
0] | "y

Fig. 3. Rectangular plate with a circular hole.



M.K. Kwak, S. Han | Journal of Sound and Vibration 306 (2007) 12-30 23

Eq. (59) can be non-dimensionalized using Egs. (5) and (25) as for the rectangular hole. Hence, we obtain

_ Db .
MCI‘ = Phachr, Kcr = ? Kcra (60asb)
where
Mo = 0 — (of)TTTe, K= R — (;f) AT, (61a.b)

in which = R/a.
Therefore, the non-dimensionalized eigenvalue problem for the rectangular plate with a circular hole can be
expressed as

[Kcr - -2Mcr]A =0. (62)

As shown in the process from Egs. (56), (59) and (61), it can be readily seen that the application of the
ICCM is very straightforward and the theoretical background is solid. The efficacy of the ICCM will be fully
demonstrated in the next numerical results.

7. Numerical results

For the numerical calculation, v = 0.3 was considered for all cases. First, the effect of the number of
admissible function on convergence was investigated by using the classical RRM for a simply-supported
square plate with a square hole. Two holes of sizes @ = 0.25and = 0.5 were considered. Errors were
calculated based on the reference case, in which the total number of admissible functions was 400, which
implies a combination of 20 admissible functions in each direction. Figs. 4 and 5 show that the errors of 5
natural frequencies converge to less than 5% if the number of admissible functions is greater than 100. The
reason why the error of 2nd and 3rd modes is larger than others seems that the 2nd and 3rd modes have a
diagonal nodal line so that admissible functions considered in this study do not render a good approximation
for the 2nd and 3rd modes. Based on the numerical results, all numerical calculations followed were carried
out by using 100 admissible functions, which implies 10 admissible functions in each direction. The next
question arose regarding the optimal number of admissible functions for a rectangular hole domain when
applying the ICCM. To this end, a simply-supported square plate with a square hole of dimension . = 0.25

Error (%)

No. of Adm. Fcn.

Fig. 4. Number of admissible functions vs. error for . = 0.25.
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Fig. 5. Number of admissible functions vs. error for @, = 0.5.
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Fig. 6. Number of admissible functions for hole vs. error for a. = 0.25.

was considered, and the errors were calculated based on the result obtained by the classical RRM with 100
admissible functions. As shown in Fig. 6, the number of admissible functions greater than 25 for a rectangular
hole domain can give less than 5% error. However, 100 admissible functions were used for the square hole
domain when applying the ICCM to the simply-supported square plate with a square hole. The ICCM gave
very good convergence. Figs. 7 and 8 show the non-dimensionalized frequencies for the simply-supported and
clamped square plates with a square hole calculated by the classical RRM and the ICCM. As can be seen from
Figs. 7 and 8, the results obtained by the ICCM are in good agreement with the results obtained by the
classical RRM; this agreement proves the efficacy of the ICCM. To prove the computational efficiency of the
ICCM, we computed the CPU times to complete the eigenvalue and eigenvector calculations and then
compared the CPU time of the ICCM to the CPU time of the classical RRM. The computations were carried
out on the AMD Athlon 64 x 2 dual core processor and the programs were written using Matlab. The Matlab
quad function was used for the numerical integration. Fig. 9 shows the CPU times versus the square hole size
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Fig. 7. Non-dimensionalized natural frequency vs. size of hole for simply-supported plate.
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Fig. 8. Non-dimensionalized natural frequency vs. size of hole for clamped plate.

in the case of clamped square plate. As the hole size increases, the computational time in the classical RRM
rapidly increases but the computational time in the ICCM stays in approximately 1s, which proves the
computational efficiency of the ICCM.

We carried out experiments on free-edge square aluminum plates with square and circular holes. Fig. 10
shows the theoretical results obtained by the ICCM and the experimental results. Fig. 10 shows that the results
obtained by the ICCM are in good agreement with the experimental results. Fig. 11 shows the mode shapes of
a simply-supported square plate with a square hole when a. = 0.2.

Figs. 12-14 show the non-dimensionalized frequencies of the simply-supported, clamped, and free-edge
square plate with a circular hole. Since the case of the rectangular plate with a circular hole cannot be easily
tackled by the classical RRM, we used a commercial finite element program such as ANSYS for comparison.
Fig. 12 shows the comparison of the ICCM results to ANSYS results. It can be readily seen from Fig. 12 that
the ICCM results are in good agreement with the ANSYS results. Fig. 14 shows that the results obtained by
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Fig. 9. CPU time comparison of classical Rayleigh—Ritz method and the independent coordinate coupling method.
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Fig. 10. Non-dimensionalized natural frequency vs. size of hole for free-edge plate.

the ICCM are in good agreement with the experimental results. It can be concluded from Figs. 12-14 that the
ICCM is very effective in dealing with a circular hole. Fig. 15 shows the mode shapes of a simply-supported
square plate with a circular hole when f = 0.25.

8. Discussion and conclusions

This study investigated different methods of free vibration analysis of a rectangular plate with a either
rectangular or circular hole. The classical Rayleigh—Ritz method (RRM) based on the global coordinate or the
finite-element method was presented. The procedure of the classical RRM was first explained in detail. Then, a
new method that simplifies the numerical calculations based on the global coordinates attached to the plate
and the local coordinates attached to the hole was developed. This method was called the independent
coordinate coupling method (ICCM). In applying the classical RRM based on the global coordinates only, the
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Fig. 11. Mode shapes of simply-supported square plate with a square hole (@, = 0.2).
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Fig. 12. Simply-supported square plate with a circular hole.

kinetic and potential energies of the rectangular plate with a hole were calculated by subtracting the hole
domain in the integrals. For a simply-supported rectangular plate, the exact expressions that reflect the effect
of the hole can be derived, although the derivation is very difficult for the clamped and free-edge rectangular
plates. Hence, numerical integrations should be used instead, which require considerable amount of
computational time. The ICCM developed in this paper employs the local coordinates attached to the hole
and the admissible functions expressed in terms of the local coordinates. The expressions for the kinetic and
potential energies for the hole domain are then derived. Since the plate inside the hole domain can be regarded
as a virtual free-edge plate, the energies, which are to be subtracted from the total energies, can be easily
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expressed in closed form. The resulting total energies are expressed in terms of generalized coordinates, which
belong to either global or local coordinates. Hence, we need to unify the generalized coordinates. To this end,
the relationship between the generalized coordinates belonging to the local coordinates and the generalized
coordinates belonging to the global coordinates was derived using the displacement matching condition inside
the hole domain and the orthogonal property of the admissible functions.

To verify results of the proposed ICCM, numerical calculations were carried out using the classical
RRM based on the global coordinates only and the commercial finite element program. Experiments
were also carried out for the free-edge square plate with a square and circular hole. Both numerical and
experimental results showed that good agreement exists between the results by the ICCM and the results
obtained by the different algorithms and experiments. Hence, it can be concluded that the proposed
ICCM can be effectively used for the free vibration analysis of a rectangular plate with either a rectangular or
circular hole.
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