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Abstract

The characterization of uncertainty in the damping forces in a vibrating structure is of significant interest in structural

dynamics. The most common approach is to use a viscous damping matrix with uncertain coefficients. The viscous

damping is not the only damping model within the scope of linear analysis. Any model which makes the energy dissipation

functional non-negative is a possible candidate for a valid damping model. There are many functional forms which can be

used as damping models. In this paper, two approaches are proposed to quantify such ‘model-form uncertainty’ associated

with the use of the viscous damping model (not only the model parameters). The first approach is based on an ensemble of

equivalent damping functions and the second approach is based on the random matrix theory. The results obtained from

the two methods are compared using numerical examples. It was observed that the random matrix theory can be used to

quantify damping model uncertainty in some cases.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainties are unavoidable in the description of real-life engineering systems. The quantification of
uncertainties plays a crucial role in establishing the credibility of a numerical model. Uncertainties can be
broadly divided into two categories. The first type is due to the inherent variability in the system parameters.
This type of uncertainty is often referred to as aleatoric uncertainty. If enough samples are present, it is
possible to characterize the variability using well-established statistical methods and consequently the
probability density functions (pdf) of the parameters can be obtained. The second type of uncertainty is due to
the lack of knowledge regarding a system, often referred to as epistemic uncertainty or model uncertainty. This
kind of uncertainty generally arises in the modelling of complex physical phenomenon such as damping.
Quantification of uncertainties associated with the damping forces is difficult because, unlike inertia and
stiffness forces, it is not in general clear what are the state variables that govern the damping forces. The most
common approach is to use the ‘viscous damping’ where the instantaneous generalized velocities are the only
relevant state variables. Several studies exist where viscous damping coefficients are assumed to be random
variables. However, considering randomness in the viscous damping parameters would not address the
fundamental uncertainty that arises due to the use of viscous damping model itself. Viscous damping is by no
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

etrf�g expfTraceð�Þg
E½ð�Þ� mathematical expectation operator
fðtÞ forcing vector
FRF frequency response function
i unit imaginary number, i ¼

ffiffiffiffiffiffiffi
�1
p

Lfð�Þg Laplace transform of ð�Þ
M, C and K mass, damping and stiffness

matrices, respectively
m;W scalar and matrix parameters of the

inverted Wishart distribution
n number of degrees of freedom
p;R scalar and matrix parameters of the

Wishart distribution
pð�ÞðXÞ probability density function of ð�Þ in

(matrix) variable X

pdf probability density function
R space of real numbers
Rþn space n� n real positive definite matrices
Rn space n� 1 real vector
Rn�m space n�m real matrices
RMT random matrix theory
Traceð�Þ sum of the diagonal elements of a

matrix
uðtÞ response vector
Z a n� n symmetric complex matrix
fð�Þ characteristic function of ð�Þ
GnðaÞ multivariate gamma function
o excitation frequency
� Kronecker product (see Ref. [1])
� distributed as
ð�Þ

T matrix transposition
j � j determinant of a matrix
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means the only damping model within the scope of a linear analysis. Any model which makes the energy
dissipation functional non-negative is a possible candidate for a valid damping model. Therefore, to avoid any
‘model biases’, in this study we have used possibly the most general linear damping model expressed by the
following convolution integral

FdðtÞ ¼

Z t

�1

Gðt� tÞ _uðtÞdt, (1)

where uðtÞ 2 Rn is the vector of generalized coordinates with t 2 Rþ denotes time, Gðt̂Þ 2 Rn�n is the kernel
function matrix and t̂ is a generalized time. This model was used by Biot [2] in the context of viscoelastic
materials and later used by several authors [3–10] in structural dynamics applications. In the special case when
Gðt� tÞ ¼ C dðt� tÞ, where dðtÞ is the Dirac-delta function, Eq. (1) reduces to the case of viscous damping.

The most common method to model damping in multiple-degree-of-freedom linear systems is to assume the
so-called viscous damping. Many researches have proposed methods to identify a viscous damping matrix from
experimental measurements (see Ref. [11] for a survey). Although these methods allow one to obtain the
viscous damping matrix with a reasonable degree of confidence, they do not address the fundamental question
whether the viscous damping model itself is the correct damping model to be used for a given system. This
paper is devoted to quantify such ‘model-form uncertainty’ associated with the use of the viscous damping
model.

The equation of motion of lumped parameter linear systems with n-degrees-of-freedom with general
damping of the form (1) can be expressed as

M€uðtÞ þ

Z t

0

Gðt� tÞ _uðtÞdtþ KuðtÞ ¼ fðtÞ. (2)

Here fðtÞ 2 Rn is the vector of applied forcing, M 2 Rn�n is the mass matrix, K 2 Rn�n is the stiffness matrix.
The mass and the stiffness matrices are symmetric and positive definite matrices and can be obtained using the
finite element method [12]. It is in general difficult to obtain the matrix of the damping kernel functions from
experimental measurements. Therefore, the uncertainty in damping arises from the functional form of the
elements of Gðt̂Þ and not only in the parameters of a particular function.

In this paper we are primarily interested in the frequency response function (FRF) of system (2). The
previous study by Adhikari and Woodhouse [13,14] shows that even when the non-viscous effect is strong, a
viscous damping matrix with proper parameters may represent the FRF well provided the overall damping is
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light. Because in majority of aircraft and automotive structures the damping is light (typically less than 5%), in
this paper we consider the possibility of quantifying the uncertainty arising due to damping model-form using
a random viscous damping matrix. More precisely, the idea is to quantify uncertainty arising due to different
functional form in Gðt̂Þ by a constant random matrix C 2 Rn�n. That is, we want to ‘replace’ equation (2) with
uncertain functional forms in Gðt̂Þ by a viscously damped system

M€uðtÞ þ C_uðtÞ þ KuðtÞ ¼ fðtÞ (3)

with a random C 2 Rn�n matrix. If a random viscous damping matrix C can indeed capture the damping
model-form uncertainty, then it would significantly help the damping modelling process. This paper is
specifically focused on the uncertainty in damping. But it should be remembered that there can be signi-
ficant uncertainty in the elements of the mass and stiffness matrices also. The uncertainty in the mass
and stiffness matrices can be usually treated independently from the damping and a complete discussion is
beyond the scope of this paper. Readers are instead referred to the review papers [15–17] for further
discussions.

Two approaches are proposed and compared in this paper. The first approach is based on an ensemble of
equivalent damping functions and the second approach is based on random matrix theory. In the first
approach in Section 2, different equivalent functional forms of Gðt̂Þ are derived and their parameters are
selected. The collection of these different equivalent functional forms are then assumed to form the random
sample space. Under these settings, the selection of any one model (such as the viscous model) can be regarded
as a random event in the sample space of the admissible functions. In the second approach in Section 3, the
viscous damping matrix C is considered to be a random matrix whose distribution is obtained using the
maximum entropy principle [18,19]. The results obtained from the two methods are compared using numerical
examples.

2. Sample space of damping models

It is well recognized that in general a physically realistic model of damping will not be viscous. Damping
models in which the dissipative forces depend on any quantity other than the instantaneous generalized
velocities are non-viscous damping models. Mathematically, any causal model which makes the energy
dissipation functional non-negative is a possible candidate for a non-viscous damping model. Clearly a wide
range of choice is possible, either based on the physics of the problem, or by a priori selecting a model and
fitting its parameters from experiments.

Eq. (1) is very general and for any engineering applications some specific form of Gðt̂Þ have to be assumed.
A wide variety of mathematical expressions could be used for the kernel functions Gðt̂Þ. A physically realistic
damping kernel function must model dissipation of (vibration) energy in the system. This fact restricts the
possible forms of the kernel functions which may be used. This condition implies that the rate of energy
dissipation given by

DðtÞ ¼
1

2
_uðtÞT

Z t

�1

Gðt� tÞ_uðtÞdt, (4)

should be non-negative. We consider the simple case in which just one damping kernel function is used. In that
case the general form of the kernel function in Eq. (1) reduces to

Gðt̂Þ ¼ C gðt̂Þ, (5)

where gðt̂Þ is some damping function and C is a non-negative definite coefficient matrix. The admissible form
of gðt̂Þ is restricted by the condition of non-negative energy loss given in Eq. (4). The damping model in Eq. (5)
is physically realistic if the real part of the Fourier transform of the kernel function is non-negative within the
driving frequency range, that is Re½GðioÞ�X0;8o. This can be easily shown. Rewriting Eq. (4) in the frequency
domain and using Eq. (5), the rate of energy dissipation can be expressed as

DðioÞ ¼
o2

2
Refū�

T
CūGðioÞg, (6)
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where Reð�Þ represents the real part of ð�Þ, GðioÞ and ū are the Fourier transforms of gðtÞ and uðtÞ, respectively.
For a physically realistic model of damping we must have

DðioÞX0,

or
o2

2
Refū�

T
CūGðioÞgX0,

or RefGðioÞgX0 ð7Þ

since for a real value of driving frequency o2
X0 and Refū�

T
CūgX0 as C is a non-negative definite matrix.

Some of the damping functions used in the literature are shown in Table 1. If multiple kernel functions are
used, then we may have

Gðt̂Þ ¼
Xn

j¼1

CðjÞ gðjÞðt̂Þ, (8)

where n denotes the number of different kernel functions used in the study. Rewriting Eq. (8) in the frequency
domain we have

GðioÞ ¼
Xn

k¼1

CðjÞGðjÞðioÞ, (9)

where GðioÞ and GðjÞðioÞ are the Fourier transforms of Gðt̂Þ and gðjÞðt̂Þ respectively. Extending the analysis
proposed here we can say that a sufficient condition for Eq. (8) to be a valid damping model is
RefGðjÞðioÞgX0;8j. From this discussion we therefore have the following general condition:

Condition. A sufficient condition for a physically realistic damping model is that the real part of the Fourier
transform of the damping kernel function matrix is non-negative definite within the driving frequency range,
that is Re½GðioÞ�X0;8o.

2.1. First-order equivalent damping models

The condition derived in the previous subsection completely defines the sample space of the damping
matrices in linear structural dynamics. Clearly many (possibly uncountable in number) functions would satisfy
this condition. Here, we consider following eight types of kernel functions which belong to the sample space of
the admissible damping functions:
Table 1

A summary of non-viscous damping functions in the Laplace domain where the Laplace variable s ¼ io

Model number Damping function Author and year of publication

1 GðsÞ ¼
Pn

k¼1

aks

sþ bk

Biot [20]—1955

2
GðsÞ ¼

E1sa � E0bsb

1þ bsb
ð0oa;bo1Þ

Bagley and Torvik [21]—1983

3
sGðsÞ ¼ G1 1þ

P
k ak

s2 þ 2xkoks

s2 þ 2xkoksþ o2
k

� �
Golla and Hughes [22]—1985

and McTavish and Hughes [23]—1993

4
GðsÞ ¼ 1þ

Pn
k¼1

Dks

sþ bk

Lesieutre and Mingori [24]—1990

5
GðsÞ ¼ c

1� e�st0

st0

Adhikari [25]—1998

6
GðsÞ ¼

c

st0

1þ 2ðst0=pÞ2 � e�st0

1þ 2ðst0=pÞ2
Adhikari [25]—1998

7
GðsÞ ¼ c es2=4m 1� erf

s

2
ffiffiffi
m
p

� �� �
Adhikari and Woodhouse [13]—2001
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MODEL 1: Exponential model

gð1Þðt̂Þ ¼ m1 exp½�m1t̂�; Gð1ÞðsÞ ¼
m1

sþ m1
. (10)

MODEL 2: Gaussian model

gð2Þðt̂Þ ¼ 2

ffiffiffiffiffi
m2
p

r
exp½�m2t̂

2
�; Gð2ÞðsÞ ¼ es2=4m2 1� erf

s

2
ffiffiffiffiffi
m2
p

� �� �
. (11)

MODEL 3: Step function model

gð3Þðt̂Þ ¼
1=m3 ð0ot̂om3Þ;

0 ðt̂4m3Þ;

(
Gð3ÞðsÞ ¼

1� e�sm3

sm3
. (12)

MODEL 4: Cosine model

gð4Þðt̂Þ ¼

1

m4
1þ cos

pt̂

m4

� �� �
; ð0ot̂om4Þ;

0; ðt̂4m4Þ;

8><>: (13)

Gð4ÞðsÞ ¼
1

sm4

1þ 2ðsm4=pÞ
2
� e�sm4

1þ 2ðsm4=pÞ
2

.

MODELS 5–8: Multiple exponential models

gð5;...;8Þðt̂Þ ¼
Xm

j¼1

emj exp½�emj t̂�; Gð5;...;8ÞðsÞ ¼
Xm

j¼1

emj

sþ emj

; m ¼ 2; 4; 8; 16. (14)

Here mi and emii ¼ 1; . . . ; 4 are real and positive constants. All the functions have already been scaled
so that they have unit area when integrated to infinity, that is

R1
0 gðjÞðt̂Þdt̂ ¼ 1. This makes them

directly comparable with the viscous model, in which the corresponding damping function would
be a unit delta function, that is, gð0Þðt̂Þ ¼ dðt̂Þ. For this case the coefficient matrix C̄ would be
the usual damping matrix. However, this normalization still does not provide a convenient equivalence
between the different damping models. In order to make the damping models ‘nominally identical’ we
further normalize the damping functions to make any probabilistic equivalence between the models
meaningful.

We define the characteristic time constant yj for each damping function, via the first moment of gðjÞðt̂Þ as

yj ¼

Z 1
0

t̂ gðjÞðt̂Þdt̂. (15)

The characterization of non-viscous damping using the moments of the damping kernel function was
proposed by Adhikari and Woodhouse [26]. For the eight damping models considered here, the evaluation of
the integral in Eq. (15) results

y1 ¼
1

m1
; y2 ¼

1ffiffiffiffiffiffiffiffi
pm2
p ; y3 ¼

m3
2
; y4 ¼

ðp2 � 4Þm4
2p

and y5;...8 ¼
Xm

j¼1

1emj

; m ¼ 2; 4; 8; 16. ð16Þ

We call these damping models as the ‘first-order equivalent damping models’ because their first-order
moments are equal. For the viscous damping clearly y0 ¼ 0. Therefore, the characteristic time constant of a
damping function gives a convenient measure of ‘width’: if it is close to zero the damping behaviour will be
near-viscous, and vice versa. To establish an equivalence between the eight damping models, we can choose
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the parameters so that they have the same time constant. Equating all yj in Eq. (16) one has

1

m1
¼

1ffiffiffiffiffiffiffiffi
pm2
p ¼

m3
2
¼
ðp2 � 4Þm4

2p2
¼
Xm

j¼1

1emj

. (17)

Because the first four models have only one parameter, this equation is sufficient to obtain the parameters
uniquely. For multiple exponential models 5–8, we assume that the constants are random positive numbers
such that Eq. (17) is satisfied. These eight models are plotted in Fig. 1 for two values of yj. The damping kernel
functions in Fig. 1(a) is closer to the viscous damping than the ones in Fig. 1(b). Here these eight damping
models are assumed to form the compete sample space of damping models. Clearly eight models are not
enough to draw reliable statistical conclusions. The purpose of this paper is to introduce the concept of
damping model sample space—should more damping models be envisaged, they can be included to expand the
size of the sample space.
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Fig. 1. Eight models for the damping kernel functions; (a) yj ¼ 0:1; (b) yj ¼ 1:0; –.–.– model 1; – – model 2; – model 3; 	 	 	 model 4; –.–.–

models 5–8.
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3. Random damping matrix

The main difficulty in the quantification of model-form uncertainty is that it is not possible to consider any
uncertain parameters. This is because of the fact that there is no ‘fixed function’ and consequently no
parameters to fit a pdf. In this situation the non-parametric approach

3.1. A brief review of matrix variate distributions

Random matrices were introduced by Wishart [27] during the late 1920s in the context of multivariate
statistics. However, Random Matrix Theory (RMT) was not used in other branches until 1950s when
Wigner [28] published his works on the eigenvalues of random matrices arising in high-energy physics.
Using an asymptotic theory for large dimensional matrices, Wigner was able to bypass the Schrödinger
equation and explain the statistics of measured atomic energy levels in terms of the limiting
eigenvalues of these random matrices. Since then, the research on random matrices has continued
to attract interests in multivariate statistics, physics, number theory and more recently in mechanical
and electrical engineering. We refer the readers to the books by Mezzadri and Snaith [29], Tulino and
Verdú [30], Eaton [31], Muirhead [32] and Mehta [33] for the history and applications of the random matrix
theory.

The pdf of a random matrix can be defined in a manner similar to that of a random variable or random
vector. If A is a n�m real random matrix, the matrix variate pdf of A 2 Rn�m, denoted as pAðAÞ, is a mapping
from the space of n�m real matrices to the real line, i.e., pAðAÞ :R

n�m ! R. Here we define four types of
random matrices which are relevant to probabilistic structural dynamics.
Definition 1. Gaussian random matrix: The random matrix X 2 Rn;p is said to have a matrix variate Gaussian
distribution with a mean matrix M 2 Rn;p and a covariance matrix R�W, where R 2 Rþn and W 2 Rþp
provided the pdf of X is given by

pXðXÞ ¼ ð2pÞ
�np=2
jRj�p=2jWj�n=2 etrf�

1

2
R�1ðX�MÞW�1ðX�MÞTg. (18)

This distribution is usually denoted as X�Nn;pðM;R�WÞ.

Definition 2. Wishart matrix: A n� n symmetric positive definite random matrix S is said to have a Wishart
distribution with parameters pXn and R 2 Rþn , if its pdf is given by

pSðSÞ ¼ f2
ð1=2Þnp Gnð

1
2
pÞjRjð1=2Þpg�1jSjð1=2Þðp�n�1Þ etrf�

1

2
R�1Sg. (19)

This distribution is usually denoted as S�W nðp;RÞ.

Definition 3. Matrix variate gamma distribution: A n� n symmetric positive definite random matrix W is said
to have a matrix variate gamma distribution with parameters a and W 2 Rþn , if its pdf is given by

pWðWÞ ¼ fGnðaÞjWj
�ag�1jWja�ð1=2Þðnþ1Þetrf�WWg; ReðaÞ41

2
ðn� 1Þ. (20)

This distribution is usually denoted as W�Gnða;WÞ. The matrix variate gamma distribution was used by Soize
[18,19] for the random system matrices of linear dynamical systems.

Definition 4. Inverted Wishart matrix: A n� n symmetric positive definite random matrix V is said to have an
inverted Wishart distribution with parameters m and W 2 Rþn , if its pdf is given by

pVðVÞ ¼
2�ð1=2Þðm�n�1ÞnjWjð1=2Þðm�n�1Þ

Gnð
1
2
ðm� n� 1ÞÞjVjm=2

etrf�V�1Wg; m42n; W40. (21)

This distribution is usually denoted as V�IW nðm;WÞ.
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In Eqs. (19)–(21), the function GnðaÞ is the multivariate gamma function, which can be expressed in terms of
products of the univariate gamma functions as

GnðaÞ ¼ pð1=4Þnðn�1Þ
Yn

k¼1

G a�
1

2
ðk � 1Þ

� �
for ReðaÞ4

1

2
ðn� 1Þ. (22)

The multivariate gamma function plays a key role in the random matrix method proposed in this paper. See
Appendix A for a proof of Eq. (22) and related mathematical methods. For more details on the matrix variate
distributions we refer to the books by Tulino and Verdú [30], Gupta and Nagar [34], Eaton [31], Muirhead [32]
and references therein. Among the four types of random matrices introduced above, the distributions given by
Eqs. (19)–(21), always result in symmetric and non-negative definite matrices. Therefore, they can be possible
candidates to model the random system matrices arising in probabilistic structural mechanics.

3.2. Wishart model for the random damping matrix

In this section an information theoretic approach is taken to obtain the matrix variate distribution of the
random viscous damping matrix C. First we look at the information available to us and then consider the
constraints the matrix variate distribution must satisfy in order to be physically realistic. Once these steps are
completed, the matrix variate distribution will be obtained using the maximum entropy method. In a series of
papers Soize [18,19] used this approach to obtain the pdf of the system matrices.

Suppose that the mean of C is given by C̄. This information is likely to be available, for example, using the
deterministic finite element method or experimental modal identification method. However, there are
uncertainties associated with the damping model so that C is actually a random matrix. The distribution of C
should be such that it is (a) symmetric, and (b) non-negative definite. Suppose the matrix variate density
function of C 2 Rn�n is given by pCðCÞ :R

n�n ! R. We therefore have the following information and
constrains to obtain pCðCÞ: Z

C40

pCðCÞdC ¼ 1 ðnormalizationÞ (23)

E½C� ¼

Z
C40

CpCðCÞdC ¼ C̄ ðthe mean matrixÞ. (24)

The mean matrix C̄ is symmetric and non-negative definite and the integrals appearing in these equations are
nðnþ 1Þ=2 dimensional. The maximum entropy method [35] can be used to obtain the pdf of the random
system matrices. Udwadia [36,37] used an entropy-based method to obtain the pdfs of the mass, stiffness and
damping constants of a single-degree-of-freedom oscillator. For multiple-degree-of-freedom systems, using the
maximum entropy method Soize [18] obtained the matrix variate gamma distribution for the system matrices
given by Eq. (20). Note that the damping matrix needs to be positive definite only. There is no need for it to be
invertible as long as the moments of the FRF matrix

HðioÞ ¼ D�1ðoÞ ¼ ½�o2Mþ ioCþ K��1 (25)

exist.
In order to extend the maximum entropy method to random matrices, first note that the entropy associated

with the matrix variate pdf pCðCÞ can be expressed as

SðpCÞ ¼ �

Z
C40

pCðCÞ lnfpCðCÞgdC. (26)

Using this, together with the constrains in Eqs. (23) and (24) we construct the Lagrangian [35]

LðpCÞ ¼ �

Z
C40

pCðCÞ lnfpCðCÞgdC� ðl0 � 1Þ

Z
C40

pCðCÞdC� 1

� �
� Trace K1

Z
C40

CpCðCÞdC� C̄

� �� �
. ð27Þ

S. Adhikari / Journal of Sound and Vibration 306 (2007) 153–171160
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The scalar l0 2 R and the symmetric matrix K1 2 Rn�n are the unknown Lagrange multiplies which
need to be determined. Using the variational calculus it can be shown that the optimal condition is
given by

qLðpCÞ

qpC

¼ 0 (28)

or � ð1þ lnfpCðCÞgÞ � ðl0 � 1Þ � TraceðK1CÞ ¼ 0 (29)

or � lnfpCðCÞg ¼ l0 þ TraceðK1CÞ (30)

or pCðCÞ ¼ expf�l0getrf�K1Cg. (31)

Using the matrix calculus [38–41], the Lagrange multipliers l0 and K1 can be obtained exactly by substituting
pCðCÞ from Eq. (31) into the constraint equations (23) and (24). After some algebra (see Appendix B for the
details) it can be shown that

pCðCÞ ¼
rnrjC̄j�r

GnðrÞ
etrf�rC̄

�1
Cg; where r ¼

1

2
ðnþ 1Þ. (32)

This distribution can be viewed as the matrix variate generalization of the single-degree-of-freedom case [36].
If we consider the special case when C is an one-dimensional ðn ¼ 1Þ matrix (that is a scalar, say C), then from
Eq. (32) we obtain pCðCÞ ¼ expð�C=C̄Þ=C̄. This implies that C becomes an exponentially distributed random
variable—which is well known [35] that if we know only the mean of a random variable, then the maximum
entropy distribution of that random variable becomes exponential. Therefore, the distribution in Eq. (32) can
be viewed as the matrix generalization of the familiar exponential distribution.

Comparing Eq. (32) with the Wishart distribution in Eq. (19) it can be shown (see Eqs. (B.11) and (B.12) for
the details) that C has the Wishart distribution with parameters p ¼ nþ 1 and R ¼ C̄=ðnþ 1Þ. Therefore, we
have the following fundamental result regarding the damping modelling of linear structural dynamic systems:

Theorem 1. If only the mean of the damping matrix is available, say C̄, then the maximum-entropy pdf of C

follows the Wishart distribution with parameters ðnþ 1Þ and C̄=ðnþ 1Þ, that is C�W nðnþ 1; C̄=ðnþ 1ÞÞ.

This distribution is the maximally uncertain distribution of the damping matrix. Next we investigate
whether the Wishart distribution can be used quantify damping model uncertainty.

4. Numerical example

There is a major difference in emphasis between this study and other related studies on uncertainty in
damping reported in the literature. Most of the reported analysis assume from the outset that the system is
viscously damped and then characterize the uncertainty in the dynamic response due to the uncertainty in the
viscous damping parameters. Here, we wish to investigate how much one can achieve by considering a Wishart
random matrix model for the viscous damping matrix when the actual system is non-viscously damped, as one
must expect to be the case for most practical systems. It is far from clear in practice what kind of non-viscous
damping behaviour a system might exhibit. We defer that question for the moment, and instead study by
simulation a system which can have eight different non-viscous damping models as introduced in Section 2.1.
These damping models are considered to form a sample space as in any random event. It is true that eight
samples are far from satisfactory for a reliable statistical ensemble. However, the aim of this study is to get an
initial estimation of the uncertainty arising due to random damping models. If the approach gives promising
results, it can be extended to include more damping models to obtain further realistic results.

A system consisting of a linear array of spring-mass oscillators and dampers. This simple system gives us a
useful basis to carry out numerical investigations. Fig. 2 shows the model systems with n masses, each of mass
mu, are connected by springs of stiffness ku. Certain of the masses of the system shown in Fig. 2(a) have
dissipative elements connecting them to the ground. In this case the damping force depends only on the
absolute motion of the individual masses. Such damping will be described as ‘locally reacting’. For the system
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Fig. 2. Linear array of n spring-mass oscillators, n ¼ 35, mu ¼ 1kg, ku ¼ 4� 103 N=m; (a) locally reacting damping and (b) non-locally

reacting damping.
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shown in Fig. 2(b), by contrast, dissipative elements are connected between certain adjacent pairs of masses. In
this case the damping force depends on the relative motion of the two adjacent masses, and will be called ‘non-
locally reacting’.

For the system with locally reacting damping shown in Fig. 2(a), C̄ ¼ cĪ where c is a constant and Ī is a
block identity matrix which is non-zero only between the sth and ðsþ lÞth entries along the diagonal, so that ‘s’
denotes the first damped mass and ðsþ lÞ the last one. For the system with non-locally reacting damping
shown in Fig. 2(b), C̄ has a similar pattern to the stiffness matrix, but non-zero only for terms relating to the
block between s and ðsþ lÞ. For the numerical calculations considered here, we have taken n ¼ 35, s ¼ 6 and
ðsþ lÞ ¼ 28. For the purpose of numerical examples, the values mu ¼ 1 kg, ku ¼ 4� 105 N=m have been used.
The resulting undamped natural frequencies then range from near zero to approximately 200Hz. For damping
models, the value c ¼ 27N s=m has been used, and various values of the time constant yj have been tested.
These are conveniently expressed as a fraction of the period of the highest undamped natural frequency:

y ¼ gTmin. (33)

When g is small compared with unity the damping behaviour can be expected to be essentially viscous, but
when g is of the order unity non-viscous effects should become significant.

We are principally interested in the mean and standard deviation of the amplitude of the FRF. For
numerical calculations frequency-range up to 160Hz is selected in this study. Two vales of g, one small and the
other relatively large, are selected. The values of the real part of GðioÞ within the frequency range considered
are shown in Fig. 3. Note that when g ¼ 1:0, model 4 become physically unrealistic between 60 and 80Hz and
model 3 become physically unrealistic between 50 and 100Hz as Re½GðioÞ� become negative. We still keep
these models in our ensemble as they represent ‘modelling errors’. By taking the Fourier transform of Eq. (2)
and recalling that GðioÞ ¼ C̄GðioÞ, the matrix of the FRF can be obtained as

HðioÞ ¼ ½�o2Mþ ioC̄GðioÞ þ K��1. (34)

In the numerical simulation, we generate the samples of the model-forms by choosing the eight different
expressions of GðioÞ in the above equation. The set of HðioÞ matrices obtained in this way is used as the
ensemble for statistical calculations in the next two subsections.

4.1. Results for small g

When g ¼ 0:1 all damping models show near-viscous behaviour. First consider the system shown in Fig. 2(a)
with locally reacting damping. Fig. 4 shows the mean and standard deviation of the amplitude of the FRF
obtained using the eight damping models. Both the driving-point-FRF at mass location 11 and cross-FRF
between masses 11 and 24 are shown in the figure. In the same figures, the mean and the standard deviation of the
amplitude of the FRF obtained using the proposed Wishart damping matrix are also shown. The mean obtained
from both the approaches agree well with each other. Because all the eight damping models show near-viscous
behaviour, the standard deviation obtained from the ensemble of the damping models is quite small, especially in
the low-frequency range. As a result, the standard deviation obtained from the Wishart damping matrix do not
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agree very well to that obtained from the ensemble of the damping models in the low-frequency range. However,
there is a good agreement in the high-frequency range.

Now we consider the system shown in Fig. 2(b) with the alternative non-locally reacting damping. Fig. 5
shows the mean and the standard deviation of the amplitude of the FRF obtained using the eight damping
models. Both the driving-point-FRF and the cross-FRF are shown in the figure. In the same figures, the mean
and the standard deviation of the amplitude of the FRFs obtained using the proposed Wishart damping
matrix are also shown. Like the previous case, the mean obtained from both the approaches agree well with
each other. The standard deviation obtained from the Wishart damping matrix agree well to that obtained
from the ensemble of damping models in the low-frequency range.

4.2. Results for larger g

When g is larger the non-viscous damping models depart from the viscous damping model, each in its
own way. However, the average RMT results do not change with g. We again consider the system shown in
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Fig. 4. Comparison of the mean and standard deviation of the amplitude of the FRF obtained using eight damping models and proposed

Wishart damping matrix; locally reacting damping, g ¼ 0:1. – Ensemble average: Damping Models; – – Ensemble average: RMT; –.–.–

Standard deviation: Damping Models; 	 	 	 Standard deviation: RMT; (a) driving-point-FRF; (b) cross-FRF.
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Fig. 2(a) with locally reacting damping. Fig. 6 shows the mean and the standard deviation of the amplitude of
the FRF obtained using eight damping models. Both the driving-point-FRF at mass 11 and cross-FRF
between masses 11 and 24 are shown in the figure. In the same figures, the mean and the standard deviation of
the amplitude of the FRFs obtained using the proposed Wishart damping matrix are also shown. Unlike the
case in the previous subsection, the mean obtained from both the approaches do not agree well in the high-
frequency range. The discrepancies are especially noticeable around the resonance frequencies. This is
expected as damping affects a FRF only around the resonant frequencies. Because all the damping models
depart from the viscous behaviour, the standard deviation obtained from the ensemble of the damping models
is relatively higher, especially in the high-frequency range. The standard deviation obtained from the Wishart
damping matrix agree well to that obtained from the ensemble of damping models across the frequency range.

Finally, we consider the system shown in Fig. 2(b) with the alternative non-locally reacting damping. Fig. 7
shows the mean and the standard deviation of the amplitude of the FRF obtained using the eight damping
models. Both the driving-point-FRF and the cross-FRF are shown in the figure. In the same figures, the mean
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Fig. 5. Comparison of the mean and standard deviation of the amplitude of the FRF obtained using eight damping models and proposed

Wishart damping matrix; non-locally reacting damping, g ¼ 0:1. – Ensemble average: Damping Models; – – Ensemble average: RMT;

–.–.– Standard deviation: Damping Models; 	 	 	 Standard deviation: RMT; (a) driving-point-FRF; (b) cross-FRF.
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and the standard deviation of the amplitude of the FRFs obtained using the proposed Wishart damping
matrix are also shown. Unlike the case in the previous subsection, the mean obtained from both the
approaches do not agree well in the high-frequency range. However, the standard deviation obtained from the
Wishart damping matrix agree well to that obtained from the ensemble of damping models in the low-
frequency range. The agreement is acceptable in the high-frequency range also.

4.3. Summary of results
�
 If the damping functions are strongly non-viscous then the proposed Wishart random damping matrix can
predict the model-form uncertainty reasonably well, especially in the low-frequency range. The
discrepancies in the high-frequency range may be attributed to the fact that two out of eight damping
models become non-physical in the higher-frequency range.
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Fig. 6. Comparison of the mean and standard deviation of the amplitude of the FRF obtained using eight damping models and proposed

Wishart damping matrix; locally reacting damping, g ¼ 1:0. – Ensemble average: Damping Models; – – Ensemble average: RMT; –.–.–

Standard deviation: Damping Models; 	 	 	 Standard deviation: RMT; (a) driving-point-FRF; (b) cross-FRF.

Table 2

A summary of the prediction of the model-form uncertainty using Wishart random damping matrix

g-values Locally reacting dampers Non-locally reacting dampers

Low: g ¼ 0:1 Good in the high-frequency range Good in the low-frequency range

(see Fig. 4) (see Fig. 5)

High: g ¼ 1:0 Acceptable across the low-frequency range Good across the low-frequency range

(see Fig. 6) (see Fig. 7)
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�
 When the damping functions are near viscous then the proposed Wishart random damping matrix can
predict the model-form uncertainty reasonably well, especially in the high-frequency range. This is due to
the fact that for the near-viscous functions, the standard deviation of the amplitude of the FRF is very
small in the low-frequency region.
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Fig. 7. Comparison of the mean and standard deviation of the amplitude of the FRF obtained using eight damping models and proposed

Wishart damping matrix; non-locally reacting damping, g ¼ 1:0. – Ensemble average: Damping Models; – – Ensemble average: RMT;
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�
 The Wishart random matrix prediction of the model-form uncertainty is better for the non-locally damped
system. The results for the four cases considered here are summarized in Table 2.

5. Conclusions and outlook

The aim of this paper is to quantify uncertainty in damping modeling in linear dynamical systems. It is
considered that in general the damping models are non-viscous and can be expressed by convolution integrals
over some kernel functions. The condition the kernel functions must satisfy for the damping to be physically
realistic has been derived. Two novel approaches to quantify uncertainty arising due to the possibility of
different damping models have been proposed. The first approach is based on an ensemble of equivalent
damping functions and the second approach is based on the random matrix theory. In the first approach,
different equivalent functional forms of damping are derived and their parameters are selected using the new
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concept of ‘the first-order equivalent damping models’. The collection of these different equivalent functional
forms are then considered to constitute the random sample space so that the selection of any one the models
(such as the viscous model) can be regarded as a random event in the space of these admissible functions. In
the second approach, the viscous damping matrix is considered to be a random Wishart matrix. The results
obtained from the two methods are compared using numerical examples.

Numerical experiments have been carried out with a wide range of parameter values and different damping
models. The main features of the results have been illustrated by two representative parameter values. It was
observed that If the damping functions are strongly non-viscous then the proposed Wishart random damping
matrix can be used to predict the model-form uncertainty reasonably well in the low-frequency region. Further
research is needed to verify the applicability of these results to more complex systems.

Appendix A. The multivariate gamma function and matrix variate Laplace transforms

The multivariate gamma function GnðaÞ is defined as

GnðaÞ ¼

Z
X40

etrf�XgjXja�ð1=2Þðnþ1Þ dX. (A.1)

Here ReðaÞ41
2
ðn� 1Þ and the integral in Eq. (A.1) is over the space of n� n symmetric positive definite

matrices. Therefore, Eq. (A.1) represents a nðnþ 1Þ=2-dimensional integral. Fortunately this integral can be
evaluated exactly in a closed-form [34]. This forms the basis of the analytical results given in the paper.
Because X is a symmetric positive definite matrix, we can factorize it as

X ¼ TTT, (A.2)

where T is a lower triangular matrix with tii40, 8i. The Jacobian of the matrix transformation in Eq. (A.2) can
be obtained from Theorem 1.28 in Mathai [38] as

dX ¼ 2n
Yn

i¼1

tn�iþ1
ii dT. (A.3)

Due to the factorization in Eq. (A.2), we also have

TraceðXÞ ¼ TraceðTTTÞ ¼
Xn

jpi

t2ij (A.4)

and

jXj ¼ jTTTj ¼ jT2j ¼
Yn

i¼1

t2ii. (A.5)

Substituting Eqs. (A.3)–(A.5) in the integral (A.1) one has

GnðaÞ ¼ 2n

Z Z
�1otijo1

tii40

	 	 	

Z
nðnþ1Þ terms

exp �
Xn

jpi

t2ij

 !Yn

i¼1

ðt2iiÞ
a�ð1=2Þðnþ1Þ

Yn

i¼1

tn�iþ1
ii dtij

¼ 2n

Z Z
�1otijo1

tii40

	 	 	

Z
nðnþ1Þ terms

Yn

jpi

expð�t2ijÞ
Yn

i¼1

ðt2iiÞ
a�ð1=2ÞðiÞ dtij . ðA:6Þ

Separating the integrals involving the diagonal and off-diagonal terms and breaking 2n into products of n

two’s, Eq. (A.6) can be rewritten as

GnðaÞ ¼
Yn

jpi

Z
�1otijo1

	 	 	

Z
nðn�1Þ terms

expð�t2ijÞdtij

" #

�
Yn

i¼1

2

Z
tii40

	 	 	

Z
n terms

expð�t2iiÞðt
2
iiÞ

a�ð1=2ÞðiÞ dtii

" #
. ðA:7Þ



ARTICLE IN PRESS
S. Adhikari / Journal of Sound and Vibration 306 (2007) 153–171 169
Eq. (A.7) is now products of simple one-dimensional integrals which can be evaluated easily [42] to obtain

GnðaÞ ¼ pð1=4Þnðn�1Þ
Yn

i¼1

G a�
1

2
ði � 1Þ

� �
. (A.8)

The second term directly follows from the definition of the univariate gamma function [43]. Next we introduce
the concept of the matrix variate Laplace transform [34] below:

Definition 5. Matrix variate Laplace transform: Let f ðXÞ be a function of a n� n symmetric positive definite
matrix X and Z ¼ Zr þ iZi, be a n� n symmetric complex matrix. Then the matrix variate Laplace transform
FðZÞ of f ðXÞ is defined as

FðZÞ ¼ Lff ðXÞg ¼

Z
X40

etrf�ZXgf ðXÞdX (A.9)

where the integral is assumed to absolutely convergent in the right half-plane ReðZÞ ¼ Zr40.

We consider the following useful Laplace transform:

LfjXja�ðnþ1Þ=2g ¼

Z
X40

etrf�ZXgjXja�ðnþ1Þ=2 dX (A.10)

for ReðaÞ41
2
ðn� 1Þ. Suppose X ¼ Z�1=2YZ�1=2 so that dX ¼ jZj�ð1=2Þðnþ1Þ dY (see Chapter 1 in Ref. [38]).

Substituting X into Eq. (A.10) we have

LfjXja�ðnþ1Þ=2g ¼

Z
Y40

etrf�YgjZ�1=2YZ�1=2ja�ðnþ1Þ=2jZj�ð1=2Þðnþ1Þ dY.

¼ jZ�a

Z
Y40

etrf�YgjYja�ðnþ1Þ=2 dY. ðA:11Þ

Using the definition of the multivariate gamma function in Eq. (A.1), this equation can be written as

LfjXja�ðnþ1Þ=2g ¼

Z
X40

etrf�ZXgjXja�ðnþ1Þ=2 dX ¼ jZj�aGnðaÞ. (A.12)

This expression is simply the matrix generalization of the well-known scalar ðn ¼ 1Þ case (see Ref. [44] for
example) Lftm�1g ¼ GðmÞ=sm. Eq. (A.12) turns out to be very useful as can be seen in the following section.

Appendix B. Proof of Theorem 1

The main task is to obtain the expressions for the Lagrange multipliers l0 2 R and K1 2 Rn�n appearing in
Eq. (31). Substituting pCðCÞ from Eq. (31) into the normalization condition in Eq. (23) we haveZ

C40

expf�l0getrf�K1CgdC ¼ 1 or expfl0g ¼
Z
C40

etrf�K1CgdC. (B.1)

The last integral can be evaluated exactly in closed-form using the Laplace transform (A.12) by substituting
a ¼ 1

2
ðnþ 1Þ as

expfl0g ¼ jK1j
�ðnþ1Þ=2Gnð

1
2ðnþ 1ÞÞ ¼ jK1j

�rGnðrÞ, (B.2)

where r ¼ 1
2
ðnþ 1Þ as defined in Eq. (32). Substituting expfl0g from Eq. (B.2) in the expressions of the pdf in

Eq. (31) we have

pCðCÞ ¼ fGnðrÞg
�1jK1j

retrf�K1Cg. (B.3)

Now we need to obtain the matrix K1 from the second constraint equation (24). In order to avoid the direct
evaluation of this integral, we will obtain the mean corresponding to the distribution in Eq. (B.3) using the
characteristic function. The matrix variate characteristic function of C can be defined as

fCðXÞ ¼ E½etrfiXCg� ¼

Z
C40

etrfiXCgpCðCÞdC, (B.4)
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where X is a symmetric matrix. Substituting the expression of the pdf from Eq. (B.3) into the preceding
equation we have

fCðXÞ ¼ fGnðrÞg
�1jK1j

r

Z
C40

etrf�ðK1 � iXÞCgjCjr�ð1=2Þðnþ1Þ dC. (B.5)

Again, this integral can be evaluated exactly in closed-form using the Laplace transform (A.12) by substituting
Z ¼ K1 � iX and a ¼ r as

fCðXÞ ¼ jK1j
rjK1 � iXj�r ¼ jI� iXK�11 j

�r. (B.6)

Therefore, the cumulant generating function

ln fCðXÞ ¼ �r ln jI� iXK�11 j ¼ rðiXK�11 þ ½iXK�11 �
2 þ 	 	 	Þ. (B.7)

The mean of C can be obtained as

EC ¼
q ln fC

qðiXÞ

����
X¼O

¼ rK�11 . (B.8)

Comparing this with Eq. (24) we have

rK�11 ¼ C̄ or K1 ¼ rC̄
�1
. (B.9)

Eqs. (B.2) and (B.9) define both the unknown constants in the pdf of C. Substituting K1 in Eq. (B.3) we have

pCðCÞ ¼ fGnðrÞg
�1jrC̄

�1
jretrf�rC̄

�1
Cg ¼ rnrfGnðrÞg

�1jC̄j�retrf�rC̄
�1
Cg (B.10)

which proves the theorem.
To compare this pdf with the expression of the Wishart distribution in Eq. (19), substitute the expression of

r ¼ ðnþ 1=2Þ in Eq. (B.10) to obtain

pC ¼
nþ 1

2

� �nðnþ1=2Þ

Gn

nþ 1

2

� �� 	�1
jC̄j�ðnþ1=2Þetr �

nþ 1

2

� �
C̄
�1
C

� 	
. (B.11)

This expression can be rearranged as

pC ¼ ð2Þ
½�nðnþ1Þ=2� Gn

nþ 1

2

� �� 	�1
C̄

nþ 1

� ����� �����ðnþ1=2ÞjCjð1=2Þfðnþ1Þ�ðnþ1Þg
�etr �

1

2

C̄

nþ 1

� ��1
C

( )
. ðB:12Þ

Comparing Eq. (B.12) with the Wishart distribution in Eq. (19) it can be observed that C has the Wishart
distribution with parameters p ¼ nþ 1 and R ¼ C̄=ðnþ 1Þ.
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