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Abstract

Coupling adjacent structures with supplemental control devices appears to be a useful method to mitigate structural

response. In this work, a reduced order model for optimal design of two multi-degree-of-freedom (2-mdof) structures

connected by hysteretic dampers is studied. The seismic input is modeled as a Gaussian white-noise stationary stochastic

process. Since the passive connection is modeled as a nonlinear hysteretic element, represented by the differential

Bouc–Wen law, a stochastic linearization technique is applied in order to simplify the problem. The design procedure is

based on replacing the 2-mdof system, with a generalized two single-degree-of-freedom (2-sdof) system, by using the

principle of virtual displacements; here, each structure is represented by an elementary oscillator interconnected by a

hysteretic device. Once the equivalent structural parameters of the generalized 2-sdof system is known, it is possible to

carry out the optimal design of the connection by using simple spectra obtained by the authors in a previous work, where

the optimal design of a horizontal hysteretic link connecting a 2-sdof system has been studied and solved. Illustrative

examples confirm the entire methodology and also verify the effectiveness of hysteretic connection on seismic response.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Interconnecting two adjacent structures with special devices which are passively, semi-actively or actively
controlled, represents a valid approach for preventing damage due to general dynamic inputs. Such
applications can be found in many fields, from aerospace, to mechanical, industrial, and civil engineering.
A good way to improve response reduction in the system is to create properly located special links for
enhancing damping, stiffness, or strength [1]. The simplest as well as most effective devices applicable to this
objective appear to be based on passive energy dissipation [2]. The mechanical behavior of passive devices may
be linear and nonlinear: the linear behavior is typically modeled as Voigt or Maxwell model, while the non-
linear behavior is generally modeled as Bouc–Wen model [3].

The optimal design of linear passive connection (PC) devices coupling two adjacent single-degree-of-
freedom (sdof) [4,5] and multi-degree-of-freedom (mdof) systems [6] is treated in literature. In particular, the
paper by Aida et al. [7] proposes: in order to increase the structural damping performance, a simple procedure
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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should be administered that entails interconnecting two adjacent mdof structures with a member consisting of
a spring and a damper (Voigt model). By using only the first vibration mode of each structure in the modal
dynamic equations, the resulting equations of motion correspond to those of an equivalent 2-sdof system, and
the optimum parameters of the connection are calculated by using a tuning method. This procedure furnishes
synthetic indications about the optimal values of spring and damping coefficients, and yields a simple relation
between the optimal design of 2-mdof and 2-sdof model of adjacent structures.

The analogous problem regarding optimal design of two adjacent structures interconnected by nonlinear
hysteretic devices has also been treated in literature [8–12]. In this case, simple and general information about
the optimal design of nonlinear connecting hysteretic devices is given, though only for two adjacent sdof
structures [9]. Whereas, for 2-mdof systems, only a small amount of synthetic and general information about
number and position of devices is evidenced.

This paper thus aims to give a simple methodology to perform an optimal design for nonlinear hysteretic
devices interconnecting two adjacent structures described by a 2-mdof system excited by seismic input, where
the input is modeled as a Gaussian white-noise stationary stochastic process. As the entire system is nonlinear,
a stochastic linearization technique is applied in order to simplify the problem. Since the optimal design of
such devices generally implies that a large number of equations must be solved iteratively, a procedure based
on a simplified structural model is thus proposed within this paper. The 2-mdof system connected by nonlinear
hysteretic devices, is replaced with a reduced order model represented by a generalized 2-sdof system. Here
each structure is represented by an elementary oscillator interconnected by a hysteretic device through the
principle of virtual displacements [13]. Once the equivalent structural parameters of the generalized 2-sdof
system are known, the optimal design is carried out through simple spectra obtained by the authors in a
previous work [9]: here, the optimal design of horizontal hysteretic links connecting a 2-sdof system has been
studied and solved. Finally, the proposed methodology and the effectiveness of hysteretic connection on
seismic response are evaluated performing the analysis on the 2-mdof system through three different
illustrative numerical examples.

2. Problem definition

2.1. Equations of motion for 2-mdof systems

The structural problem of interconnecting 2-mdof plane structures (Fig. 1), having N1 and N2 degrees of
freedom (N1XN2), by Nu horizontal hysteretic passive devices (NupN2), can be expressed by the following
Fig. 1. The 2-mdof structural model.
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Fig. 2. u-Dy graph for Ā ¼ 1, b̄ ¼ 0:5, ḡ ¼ 0:5, n ¼ 1.
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system representing the equations of motion:

M1
€Y1ðtÞ þ C1

_Y1ðtÞ þ K1Y1ðtÞ ¼ BT
u1uðtÞ �M1s1 €ygðtÞ;

M2
€Y2ðtÞ þ C2

_Y2ðtÞ þ K2Y2ðtÞ ¼ �B
T
u2uðtÞ �M2s2 €ygðtÞ;

8<
: (1)

where (i ¼ 1, 2): Mi, Ci, and Ki are, respectively, the Ni�Ni dimensional mass, damping and stiffness matrices;
Yi is the Ni dimensional lateral displacement vector; u(t) the Nu dimensional device force vector and Bui the
Nu�Ni dimensional allocation matrix; finally, €ygðtÞ the ground acceleration, (which represents the seismic
excitation), while si is the Ni dimensional unit vector.

The PC is modeled as a nonlinear hysteretic element [3]; the jth device, with zero post-yield stiffness, has the
following constitutive law:

ujðtÞ ¼ FyjzjðtÞ j ¼ 1; 2; . . . ; Nu, (2)

where Fyj is a force parameter and zj is the auxiliary argument, expressed in nondimensional form, and defined
by the Bouc–Wen model through the nonlinear first-order differential equation:

_zj ¼ �ḡjðzj ;D _yjÞD _yj=uyj , (3)

with

ḡjðzj ; ðD _yjÞÞ ¼ �ḡj sgnðzj ; ðD _yjÞÞzjjzjj
nj�1 � b̄jjzjj

nj þ Āj , (4)

where D _yj ¼ _y2j � _y1j is the relative velocity between the two structures, where the jth device is located; uyj is a
displacement parameter; Āj ¼ Ajuyj , b̄j ¼ bjuyj , ḡj ¼ gjuyj and nj are parameters which model the shape of the
hysteresis loops.

By assuming that b̄j þ ḡj ¼ 1 and Āj ¼ 1, the parameters Fyj and uyj, respectively, correspond to yield force
and yield displacement (Fig. 2).
2.2. Solution of equations of motion

The seismic input is here modeled as a Gaussian white-noise stationary stochastic process, which is
characterized by the power spectral density S0. The white-noise process is chosen in the analysis for its
simplicity; however, the procedure proposed to find the solution to the equation of motion holds for general
inputs [9,10].
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By using the stochastic linearization technique, as discussed in a previous work [9], the hysteretic
constitutive relation (Eq. (3)) can be replaced by the following linearized equation:

_zj þ C̄ejD _yj þ K̄ejzj ¼ 0, (5)

where for nj ¼ 1:

C̄ej ¼

ffiffiffi
2

p

r
b̄j

ffiffiffiffiffiffiffiffiffiffiffi
E½z2j �

q
þ ḡj

E½D _yjzj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½D _y2

j �

q
2
64

3
75� Āj, (6)

and

K̄ej ¼

ffiffiffi
2

p

r
ḡj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½D _y2

j �

q
þ b̄j

E½D _yjzj�ffiffiffiffiffiffiffiffiffiffiffi
E½z2j �

q
2
64

3
75, (7)

where the terms
ffiffiffiffiffiffiffiffiffiffi
E½z2j �

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½D _y2

j �

q
are, respectively, the standard deviations of variables zj and D _yj, while

E½D _yjzj� is the covariance of the mentioned variables. Different expressions for C̄ej and K̄ej for nj6¼1 are

reported in [14].
It is possible to rewrite Eqs. (1), (2) and (5) in the state space by using the following formulation:

_XðtÞ ¼ AXðtÞ þ BeðtÞ;

XeðtÞ ¼ CXðtÞ þDeðtÞ;

(
(8)

in which X(t) is the N� 1 state space vector (N ¼ 2N1+2N2+Nu); A the N�N matrix; B the N�Nu

allocation input matrix; Xe(t) the Ne� 1 output vector which depends on the number, Ne, of the selected
response quantities, C and D are, respectively, the Ne�N allocation matrix and the Ne� 1 direct-
transformation vector. The quantities are defined as follows, where ‘‘T’’ indicates the transpose:

XðtÞ ¼ YT
1 YT

2 zT _Y
T

1
_Y
T

2

h iT
, (9)

B ¼ 0 0 0 sT1 sT2
h iT

, (10)

eðtÞ ¼ � €ygðtÞ, (11)

A ¼

0 0 0 I1 0

0 0 0 0 I2

0 0 �Ke Cð1Þe �Cð2Þe

�M�11 K1 0 M�11 Fð1Þy �M�11 C1 0

0 �M�12 K2 �M
�1
2 Fð2Þy 0 �M�12 C2

2
66666664

3
77777775
, (12)

where (i ¼ 1, 2): Ii is the Ni�Ni identity matrix; Ce
(i) is an Nu�Ni matrix where the first Nu�Nu part is a

diagonal matrix Ce containing C̄ej terms and the other parts are zero elements; Fy
(i) is the Ni�Nu matrix

containing elements Fyj and zeros; Ke is an Nu�Nu diagonal matrix containing Kej terms.
Since the excitation is stationary, this problem can be solved through the Liapunov equation:

AGXX þGXXA
T
þ 2pS0BB

T ¼ 0, (13)

where GXX is the N�N covariance matrix of the state space vector [10]. Eq. (13) is nonlinear because A

depends on the response statistics trough Ce and Ke matrices; for this reason an iterative procedure is
necessary. Rewriting the symmetric covariance matrix GXX into the one-dimensional vector G, the solution is
obtained by solving Eq. (13) iteratively until the following quantity jjGkþ1

�Gk
jj=jjGk

jj ! 0.
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It is worthwhile to specify that each parameter contained in Eq. (1) has been normalized by the quantityffiffiffiffiffi
S0

p
. In particular, the force parameter in Eq. (2) is normalized as

F�yj ¼ Fyj=
ffiffiffiffiffi
S0

p
. (14)

2.3. Optimal design of hysteretic dampers

The aim of this study is the optimal design of nonlinear hysteretic devices interconnecting two adjacent
structures described by a 2-mdof system (Fig. 1).

In order to perform the optimal design of nonlinear dissipative control systems, different criteria may be
followed [1,16]. Among the large number of design methodologies, the criterion used in this work refers to an
energy-based approach. Such criterion is associated with the concept of optimal performance of the dissipative
connection. This concept means that the connection performs at its best if it is capable of dissipating the
maximum amount possible of the earthquake input energy.

The optimization procedure to select the optimal device consists of maximizing an objective function named
Energy Dissipation Index (EDI), proposed in [16]. The index is defined as the ratio of the maximum value of
the energy dissipated in the dissipation devices, to the corresponding maximum value of the energy input by
the earthquake, both evaluated over time. Maximizing the EDI index leads to a satisfactory optimal design for
a large class of applications of dissipative passive control [16]. The definition of EDI, rearranged in the
statistical representation [9], for one device (Nu ¼ 1), has the expression:

EDI ¼
E½DEdu�

E½DEI �
¼

�
K̄e

F�yC̄e

E½u2�Dt

ð
P

kmk þ
P

lmlÞpDt
, (15)

in which E½DEdu� represents the expected value of the increment of the energy dissipated by all the hysteretic
devices, and E½DEI � represents the expected value of the increment of the total input energy introduced to the
system by the seismic event, both normalized by

ffiffiffiffiffi
S0

p
. By making the two energy increments explicit, E½u2�

represents the expected value of the square of the control force u, obtained from the covariance matrix of the
output vector Xe, mk and ml (with k ¼ 1,2,y,N1 and l ¼ 1,2,y,N2) are the modal masses associated,
respectively, with the kth and lth mode, and Dt is the time increment. Details about how the energy increments
have been obtained are reported in [9].

Through this optimization procedure, the optimal design of passive control systems based on energy
dissipation can be carried out. According to this procedure, the design of hysteretic devices interconnecting
mdof structures implies the solution of a large number, ne, of equations (ne ¼ 2N1+2N2+Nu, Eq. (8));
moreover, equations must be solved iteratively. Finally, the increment of the energy dissipated by all the
hysteretic connections and the increment of the total input energy in the system must also be calculated. It
seems clear that the application of this methodology can be computationally wasteful.

Consequently, the next section proposes a simple procedure leading to the optimal design of the PCs by
means of a simplified structural model.

3. Reduced order model: generalized 2-sdof system

3.1. Brief review on optimal design for 2-sdof system

In a previous work by the authors [9], the optimal design of a horizontal hysteretic dissipative link
connecting two adjacent structures represented as a 2-sdof system was studied and solved.

Equations of motion for such 2-sdof systems (Fig. 3) excited by a base acceleration ag(t) were:

€y1 þ 2x1o1 _y1 þ o2
1y1 ¼ F̄ yz� agðtÞ:

€y2 þ 2x2
ffiffi
l
m

q
o1 _y2 þ

l
m o

2
1y2 ¼ �

F̄ y

m z� agðtÞ;

8<
: (16)
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Fig. 3. The 2-sdof structural model.

Fig. 4. Force design spectrum, l ¼ 1, l ¼ 2, l ¼ 5.
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where (i ¼ 1, 2): yi is the relative displacement; xi the damping ratio; o1 the natural frequency of the first
structure; F̄ y ¼ F y=m1 the force in the PC normalized with respect to the mass m1 of the first structure; l and m
are, respectively, the stiffness ratio, l ¼ k2/k1, and the mass ratio, m ¼ m2/m1; finally, z is described by the first-
order Bouc–Wen equation, Eqs. (3) and (4), by assuming j ¼ 1. The seismic input was modeled as a Gaussian
white-noise stationary stochastic process, characterized by the power spectral density G0.

In order to solve the nonlinear problem, the stochastic linearization technique explained in Section 2.2 was
applied and z was represented by Eq. (5), always with j ¼ 1. In this case, each parameter in Eq. (16) was
normalized by the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G0o1

p
. In particular, the force parameter was normalized as:

Zy ¼ F̄ y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G0o1

p
. (17)

The optimal device of the hysteretic connection was obtained by utilizing the energetic criterion explained in
Section 2.3, Eq. (15).

The main results obtained in [9], performing a parametrical analysis for each couple of the structural
parameters m and l were: (i) the optimal behavior of hysteretic device was found to be rigid plastic (the elastic
stiffness of the connection kc ¼ F y=uy !1); (ii) a synthetic optimal design spectrum for Zy had been
obtained (Fig. 4); and (iii) the effectiveness of the connection on reducing vibrations has been demonstrated
(Fig. 5).

In particular, by using Fig. 4, once the m and l values are known, it is possible to design the optimal
hysteretic device by simply selecting the corresponding Zy parameter. The performance of the passive (optimal)
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Fig. 5. EDI index and response quantities vs. Zy, m ¼ 1, l ¼ 5.K responses for Zy ¼ 0.’ EDI for Zy ¼ 0. Y1, Y2,

A1, A2, DY, EDI.
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control is then evaluated in terms of response reduction. For example, for m ¼ 1 and l ¼ 5, Fig. 5 shows the
following response quantities vs. Zy: Yi, Ai, (i ¼ 1, 2) and DY represent, respectively, the root mean square of
the relative displacements, the absolute accelerations and the relative displacement between the structures,
each normalized with respect to the case of no connection (NC). Moreover, the EDI index defined in Eq. (15)
is also shown. The graph includes two limit situations: NC when Zy-0, and rigid connection when Zy reaches
high values. Within these limit cases, the device works as a dissipative connection. It can be observed how the
maximum EDI value selects the optimal parameter for the device (Zyffi2.2) and all the response quantities are
significantly reduced, with respect to both limit cases.

The results discussed here may be applied to the optimal design of nonlinear hysteretic devices
interconnecting 2-mdof adjacent structures. This objective is reached by utilizing a reduced order model, a
generalized 2-sdof system, for the 2-mdof systems. The procedure will be explained in the following section.
3.2. Generalized 2-sdof system

It is worthwhile to study the 2-mdof system (Fig. 1), connected by hysteretic passive devices, by employing a
generalized 2-sdof system, where each structure is represented by an elementary oscillator interconnected by
a hysteretic device (Fig. 3).

In order to obtain a generalized 2-sdof system the principle of virtual displacement has been used [13]. By
considering a model of 2-mdof structures interconnected by only one control device, Nu ¼ 1, Eq. (1) may be
rewritten in the form:

K1Y1ðtÞ þ C1
_Y1ðtÞ ¼ BT

u1uðtÞ �M1
€Y1ðtÞ �M1s1 €ygðtÞ,

K2Y2ðtÞ þ C2
_Y2ðtÞ ¼ �B

T
u2uðtÞ �M2

€Y2ðtÞ �M2s2 €ygðtÞ. ð18Þ

It is reasonable to consider only one device, as it has been demonstrated by numerical analysis that a small
number of devices, one at least, is sufficient to obtain a good reduction of the seismic response. This result is
already underlined in other works [10,12]. Moreover, as reminded by Section 3.1, and in order to simplify the
explanation of the used procedure, a rigid plastic model described by the only yield force parameter Fy has
been used for the device. In this case, Eq. (2) becomes:

uðtÞ ¼ Fyzr, (19)
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with

_zr ¼ ½�ḡ sgnðD _yrÞzrjzrj
n�1 � b̄jzrj

n þ Ā�D _yr=uy, (20)

r being the rth degree of freedom where the device is placed.
In order to obtain the generalized 2-sdof system the displacements of the structures are approximately given

as follows:

YiðtÞ ¼ wiqiðtÞ; i ¼ 1; 2, (21)

where wi are predefined vectors which give the displacement shapes along the structures, whereas qi(t) are the
generalized displacements, depending on time. The shape function wi must satisfy the displacement boundary
conditions.

The principle states that if the equilibrate system is subject to virtual displacements dYi, (i ¼ 1, 2) the
external virtual work, dWE, is equal to the internal virtual work, dWI:

dW E ¼ dW I . (22)

By using Eq. (21), the increments of virtual displacements have the following expression:

dYi ¼ wi dqi; i ¼ 1; 2. (23)

By applying Eq. (22) and considering Eq. (18), (21), and (23) we obtain:

dq1 wT
1M1w1 €q1 þ wT

1C1w1 _q1 þ wT
1K1w1q1 � wT

1B
T
u1Fyzr þ wT

1M1s1 €ygðtÞ
h i
þ dq2 wT

2M2w2 €q2 þ wT
2C2w2 _q2 þ wT

2K2w2q2 þ wT
2B

T
u2Fyzr þ wT

2M2s2 €ygðtÞ
� �

¼ 0. ð24Þ

Eq. (24) is satisfied when the two quantities within brackets are identically equal to zero for every virtual
displacement dqi 6¼0. Developing and rearranging Eq. (24), the following system of equations is obtained:

m1 €q1 þ c1 _q1 þ k1q1 ¼ c1rF yzr � p1 €ygðtÞ;

m2 €q2 þ c2 _q2 þ k2q2 ¼ �c2rFyzr � p2 €ygðtÞ;

(
(25)

where (i ¼ 1, 2)

mi ¼ wT
i Miwi; ci ¼ wT

i Ciwi; ki ¼ wT
i Kiwi,

cir ¼ wT
i B

T
ui; pi ¼ wT

i Misi. ð26Þ

By assuming, q1 ¼ c2ry1 and q2 ¼ c1ry2, with c2
1r ¼ ðp2=p1Þðm1=m2Þ and c2

2r ¼ ðp1=p2Þðm2=m1Þ, Eq. (25) is
rewritten as:

€y1 þ
c1

m1

_y1 þ
k1

m1
y1 ¼

p2

p1

F y

m2
zr � a €ygðtÞ;

€y2 þ
c2

m2

_y2 þ
k2

m2
y2 ¼ �

p1

p2

Fy

m1
zr � a €ygðtÞ;

8>>><
>>>:

(27)

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1p2Þ=m1m2

p
; note that in Eq. (20) the relative velocity D _yr at the rth degree of freedom is

expressed as

D _yr ¼ Bu2
_Y2 � Bu1

_Y1 ¼ c2r _q2 � c1r _q1 ¼ c1rc2rð _y2 � _y1Þ ¼ _y2 � _y1 ¼ D _y. (28)

Eq. (27) represents the expected generalized 2-sdof system. In fact, by comparing these equations and
Eq. (16), the parameters of a generalized system may be identified and evaluated by using expressions shown in
Table 1. Such equations are also formally equivalent, Eq. (28), for the parameters zr, Eq. (20), and z. This
means that it is possible to design the nonlinear hysteretic connection of 2-mdof adjacent structures by
defining a generalized equivalent 2-sdof system, with dynamic features shown in Table 1, and by using the
optimal design procedure discussed in Section 3.1, as will be explained below.
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Table 1

Reduced order model parameters

Generalized 2-sdof system 2-sdof system

k1

m1

o1
2

c1

m1

2x1o1

p2
p1

F y

m2

F̄ y

zr z

a €yg ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
p1p2

m1m2

r
€yg

ag

k2

m2

l
m
o2

1

c2

m2
2x2

ffiffiffi
l
m

r
o1

p2
p1

� �2
m1

m2

m

k2

k1

p2

p1

m1

m2

� �2 l
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3.3. Optimal design of hysteretic damper

The key step of the procedure is the evaluation of all parameters of generalized 2-sdof system through Table 1,
such that, by taking into account Eq. (17), it is possible to evaluate the optimal force value for the device inter-
connecting 2-mdof adjacent structures, being G0 ¼ a2S0 and by using the spectrum of Fig. 4, in the following way:

F y ¼
p1

c1r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2S0o1

p
Zy. (29)

Finally, taking into account Eq. (14), the normalized optimal force is computed as

F�y ¼
Fyffiffiffiffiffi
S0

p ¼
p1

ffiffiffiffiffiffiffiffi
2o1

p

c1r

Zy. (30)

4. Illustrative examples

In order to verify the developed methodology, three different numerical examples are considered. In the
following, a detailed description of these cases is reported:

Case A: Two 10-story structures (N1 ¼ N2 ¼ 10) interconnected at their roof level by one hysteretic damper
(Nu ¼ 1 and r ¼ 10). The mass of each floor for the structure ‘‘1’’ is 1.6� 106 kg, for the structure ‘‘2’’ is
0.8� 106 kg; the interstory stiffness for first structure is 0.6� 1010N/m, for the second structure it is
1.2� 1010N/m; finally, for both structures each mode has a damping ratio of 2%.

Case B: A flexible 20-story structure (N1 ¼ 20) interconnected to the roof of a stiff ten-story structure
(N2 ¼ 10) by one hysteretic damper (Nu ¼ 1, r ¼ 10) [10]. For both the structures the mass of each floor is
1.6� 106 kg, the interstory stiffness is 1.2� 1010N/m, and each mode has a damping ratio of 2%.

Case C: A four-story structure (N1 ¼ 4) interconnected to the roof of a stiff two-story structure (N2 ¼ 2) by
one hysteretic damper (Nu ¼ 1, r ¼ 2). The mass of each floor for both structures is 125 kg, the stiffness
matrices for structures 1 and 2 are:

K1 ¼ 106 �

7:23 �3:53 0:22 0:16

�3:53 6:12 �3:45 0:15

0:22 �3:45 6:9 �3:5

0:16 0:15 �3:5 3:13

2
6664

3
7775 ½N=m�; K2 ¼ 106 �

8:09 �3:82

�3:82 3:42

� �
½N=m�,
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the modal damping ratios of structures 1 and 2 are, respectively, x1 ¼ 6.46, 2.21, 1.61, 1.75, and x2 ¼ 1.23, 0.8.
Such values are used to obtain the damping matrices C1 and C2. This example refers to a physical model used
in an experimental campaign [17].

In all the applications hysteresis model parameters for the connecting dampers are taken as Ā ¼ 1, b̄ ¼ 0:5,
ḡ ¼ 0:5, and n ¼ 1.

In order to investigate the influence of the shape of displacement vectors on the design problem, Eq. (21),
three different wi, (i ¼ 1, 2), are chosen: (i) the first represents the first modal shape for each structure in a no-
coupled case (NC); (ii) the second represents the first modal shape for each structure in a rigidly-coupled case
(RC); (iii) in the last shape vector displacements have been assumed to increase linearly with the height above
the base (linear deflection LD).

Note that in this work the optimal place of the device is not investigated. In all cases considered here, the
device is always installed at the top of the low structure, r ¼ N2, as suggested in Refs. [10,12].

Two objectives must be reached for such examples:
(i)
 The primary objective is the optimal design of the hysteretic device performed by applying the developed
method based on the reduced order model (see Section 3). In order to validate the proposed method, the
results obtained with this procedure will be compared with the ones obtained by performing the optimal
design on the 2-mdof adjacent structures (see Section 2.3). By summarizing the proposed procedure in few
steps, the problem for each case is formulated in the following way:
� to define the shape vectors wi, (i ¼ 1, 2);
� to estimate the parameters of generalized 2-sdof system (Table 1);
� to choose the optimal parameter Zy (Fig. 4);
� to estimate the optimal force Fy* for 2-mdof system, Eq. (30).
(ii)
 The second objective is the evaluation of the effectiveness of hysteretic connection on the seismic response.
Concerning this aspect, the response analysis is performed on the 2-mdof system. It is interesting to
compare the responses of the passive controlled structures by means of the hysteretic connection, PC, with
the situation of no-coupled structures, NC, and the situation of rigidly-coupled structures, RC, as already
done with reference to the 2-sdof system, (see Section 3.1, Fig. 5).
The response quantities chosen for comparison are the root mean square of the relative displacement, the
shear of the two structures, and the relative displacement between the two structures. It must be taken into
account that each quantity has been normalized with respect to

ffiffiffiffiffi
S0

p
.

4.1. Case A: 10-10 mdof systems

This first example has been chosen because it refers to two structures which have equivalent degrees of
freedom and the same floor elevation. In order to perform the optimal design of the hysteretic connection, the
parameters in the generalized 2-sdof system are evaluated by using Table 1; some reduced order model
parameters, computated for the assumed three shapes of the displacement vectors, are reported in Table 2.

By using Fig. 4 and with these values, it is possible to design the optimal force of hysteretic device Fy*,
interconnecting the two structures, Eq. (30), for the three different shape vectors previously defined, see Fig. 6;
these values are reported in Table 3.

Concerning the issue of choosing different shape displacement vectors, it appears that the structural
parameters of the generalized 2-sdof system do not significantly change—see Table 2; in fact, the values of
equivalent mass and stiffness ratios are similar. As a consequence, the force parameter Zy is equal; even o1,
and the ratio p1/c1r parameters are quite similar, thus the optimal force Fy* selected with the simplified
methodology is similar. Whatever shape vector is assumed, the optimal force selected has the same order of
magnitude—see Table 3.

In order to validate the simplified methodology, the general procedure for the optimal design of a hysteretic
connection in the 2-mdof system (introduced in Section 2), is also applied. For the two ten-story structures the
EDI index has been calculated and the parametric analysis performed in order to get the best value of Fy* is
carried out; the results are plotted in Fig. 7. The optimization leads to the optimal force value of
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Fig. 6. Different shape vectors. NC: no-coupled case, RC: rigidly-coupled case, LD: linear deflection, for (a)

structure 1, (b) structure 2.

Table 2

Case A: 10-10 mdof system, reduced order model parameters

Wi l m Zy o1 P1/c1r

NC 2 0.5 1.61 9.15 122.77� 105

RC 1.98 0.49 1.61 9.76 140.40� 105

LD 2 0.5 1.61 9.86 886� 104

Table 3

Case A: 10-10 mdof system, optimal parameter for different shape vectors

W F*
y (NS�3/2/m)

NC 7.4� 107

RC 9.3� 107

LD 6.3� 107
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Fy* ¼ 7.5� 107 [N s�3/2/m], that is quite similar to those obtained with the simplified method. This
demonstrates the validity of the simplified methodology proposed here. Furthermore, it appears that the
choice of the shape vector does not substantially modify the result in terms of optimal force.

At this point, it is useful to investigate how the control device, designed here, leads to the reduction of the
structural responses of the system. Figs. 8 and 9 show the displacement responses for the two structures. It can
be noted that for both structures, the case of PC always reduces the responses if compared with the case of
NC. In particular, for structure 1, the reduction of the top displacement with respect to NC is approximately
equal to 70%, while for structure 2 the reduction is almost equal to 50%. It is also interesting to point out how
the two rigidly connected structures behave. For structure 1, this link could guarantee a reduction of around
40% with respect to the case of NC, while for structure 2 an amplification of the response of approximately
42% is observed. In addition, better displacement reduction (for both structures) is obtained with the PC,
rather than with the rigid connection. Fig. 10 shows the relative displacement between the structures. The case
of PC results useful if compared with the case of NC; infact the roof reduction is around 70%. The rigid
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Fig. 7. Case A: 10-10 dof system, EDI index vs. Fy*.

Fig. 8. Case A: 10-10 dof system, first structure displacement PC, NC, RC.
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connection clearly acts in a manner which avoids the relative displacement at the roof level, but at lower levels
the response can also increase if compared with the situation of PC. However, both ways of interconnecting
the structures appear to be convenient for the reduction of relative displacement—of course this result was
predictable on its own.

Finally, Fig. 11(a) and (b) shows the shear forces of the two structures. For structure 1, the situation with
PC guarantees good reduction, both in comparison with the case of uncoupled structures than in rigidly
coupled structure cases. In particular, the reduction of the base shear with respect to NC case is almost equal
to 60%. Even for structure 2, good results are obtained by using the PC; the base shear appears reduced by
around 60% in comparison with results obtained for uncoupled structures. Concerning shear force reduction
by using the rigid connection, results are not as effective as for the passive case. In fact, structure 1 shows a
response reduction with reference to NC especially at the lower floors (base shear reduction of around 45%),
but in correspondence of the floor where the link is placed, an amplification is observed. Additionally, for
structure 2 an amplification of the shear along all the elevation is also observed.
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Fig. 9. Case A: 10-10 dof system, second structure displacement PC, NC, RC.

Fig. 10. Case A: 10-10 dof system, relative displacement between the structures PC, NC, RC.
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Taking into account the objectives to be reached throughout the applications, it is possible to summarize for
case A that:
(i)
 the simplified methodology is successful having conducted to the optimal force Fy* value in good
accordance with the general procedure. Concerning the choice of shape displacement vectors wi, it has
been verified that optimal force Fy* has low dependence on the assumed shape. This circumstance has also
been confirmed in the other examples and for this reason, in the following, only the results obtained with
linear deflection will be shown;
(ii)
 a good performance in terms of response reduction has been obtained through the PC, since an effective
suppression of the motion for the two structures has been observed, in comparison with both uncoupled
and rigidly coupled structures.
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Fig. 11. Case A: 10-10 dof system, shear PC, NC, RC for (a) structure 1, (b) structure 2.

Table 4

Case B: 20-10 mdof system, reduced order model parameters

l m Zy ol P1/c1r

0.97 0.26 1.13 7.22 495.8� 105
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4.2. Case B: 20-10 mdof systems

This second case has been studied because the two structures do not have identical numbers of degrees of
freedom. The aim is to demonstrate the validity of the simplified methodology in such situations, keeping in
mind that this case is representative of typical structures in several engineering fields.

Some parameters in the generalized 2-sdof system are evaluated by means of the expressions shown in
Table 1, and are summarized in Table 4. By using Eq. (30) the optimal force parameter obtained with the
reduced order model is Fy* ¼ 1.4� 108 [N s�3/2/m].

Fig. 12 shows EDI index vs. Fy*, in the 20 ten-story structures; the maximum value of EDI is attained for
the optimal force value of Fy* ¼ 1.3� 108 [N s�3/2/m]. Again, the simplified methodology and the general
procedure match well in selecting the optimal force value Fy*.

Figs. 13 and 14 show the displacement responses for the structures. As in the previous application, the case
of PC, always reduces displacements along the elevation if compared with the case of NC. The top
displacements of structures 1 and 2 are, respectively, reduced by approximately 50% and 60%, with respect to
the case of NC. As for case A, the rigid connection, if compared with NC, improves the response of structure
1, but it has a negative effect on protection of structure 2. As a consequence, better displacement reduction
(for both structures) is still obtained with the PC rather than with the rigid connection. Fig. 15 shows the
relative displacement between the structures. With the PC, the relative displacement reduction at the roof with
respect to the case of NC is more than 60%. For the particular characteristics of the two structures, (identical
floor mass and interstory stiffness) relative displacement is avoided with the rigid connection.

Fig. 16(a) and (b) shows the shear force of the two structures. On the elevation a good reduction is reached
through the hysteretic link, having the base of around 50% of reduction for both structures with respect to the
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Fig. 12. Case B: 20-10 dof system, EDI index vs. Fy*.

Fig. 13. Case B: 20-10 dof system, first structure displacement PC, NC, RC.
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case of NC. The solution obtained with a rigid connection compared with respect to case NC, contrarily,
furnishes reduction only for structure 1 and only for the first nine floors. From the 10th floor, where the link is
supposed to act, a large jump is noticed. Even observing the shear force on the elevation for the PC case, a
little increase at the 10th floor appears; however, the response preserves reduction in the upper floors.
Structure 2 shows large amplification in the RC case. Interconnecting with a rigid device does not appear to be
a convenient solution for such adjacent structures. Even in case B, the effectiveness of PC is demonstrated and
appears to be a good solution for response reduction among the different connections proposed here.

4.3. Case C: 4-2 mdof systems

The third case deals with the physical model of two actual structures subject to dynamic tests on a shaking
table [17] (Fig. 17). Such structures are interconnected with a hysteretic steel-yielding device, designed for the
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Fig. 14. Case B: 20-10 dof system, second structure displacement PC, NC, RC.

Fig. 15. Case B: 20-10 dof system, relative displacement between the structures PC, NC, RC.
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experimental campaign by using the discussed method presented here. Even this example involves the response
of two structures having different degrees of freedom. As done for the previous examples, the structural
parameters, in the generalized 2-sdof system, are reported in Table 5.

The optimal force obtained with the reduced order model using Eq. (30) is Fy* ¼ 6937 [N s�3/2/m]. By
performing the optimal design on the 2-mdof system, the maximization of the EDI index vs. Fy* leads to the
value Fy* ¼ 6500 [N s�3/2/m], as shown in Fig. 18. Again the two methodologies yield quite similar results.

Figs. 19 and 20 show the displacement responses of the structures. For the particular characteristics of this
system, both solutions (PC and RC) of interconnecting the adjacent structures imply a reduction for the
displacements, if compared with the case of NC. In any case, the PC is better than the rigid connection. In fact,
with respect to the NC situation, the reduction of the top displacement for structure 1 is almost 30% for the
PC case, whereas the reduction is less than 10% for the RC case. For structure 2, reductions of approximately
60% for the PC case and 30% for RC case, are observed. Fig. 21 shows the relative displacement between the
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Fig. 16. Case B: 20-10 dof system, shear PC, NC, RC for (a) structure 1, (b) structure 2.

Fig. 17. Physical model of the 4-2 dof structures.
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Fig. 18. Case C: 4-2 dof system, EDI index vs. Fy*.

Table 5

Case C: 4-2 mdof system, reduced order model parameters

l m Zy ol P1/c1r

1.24 0.3 1.11 49.96 637.81

Fig. 19. Case C: 4-2 dof system, first structure displacement PC, NC, RC.
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structures. Also in this case a reduction of almost 60% of the response is observed by interconnecting
structures with the passive device, with respect to NC. In this case, the reduction obtained with a rigid
connection is greater than that obtained with a PC. Fig. 22(a) and (b) shows the shear force of the two
structures. The PC guarantees good and regular reductions of the shear force on the elevation for both
structures. The reduction at the base is around 30% for structure 1, and around 40% for structure 2. A rigid
link shows improvements in terms of displacements for structure 2 with respect to the case for NC, but, for
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Fig. 20. Case C: 4-2 dof system, second structure displacement PC, NC, RC.

Fig. 21. Case C: 4-2 dof system, relative displacement between the structures PC, NC, RC.
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structure 1, an amplification of the shear force is shown with a large jump at the last floors. In any case, the
best performance is obtained by using the hysteretic device.

In this example, the best advantages due to the presence of the interconnection are observed regarding
structure 2. In fact, all the response quantities attain the largest reduction.

5. Conclusions

A reduced order model for optimal design of 2-mdof structures, connected by hysteretic dampers, has been
studied. The seismic input has been modeled as a Gaussian white-noise stationary stochastic process, whereas
the passive nonlinear hysteretic connection has been modeled by the differential Bouc–Wen law. In order to
simplify the problem, a stochastic linearization technique has been applied. The design procedure is based on
replacing a 2-mdof system, with a generalized 2-sdof system, in which each structure is represented by an
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Fig. 22. Case C: 4-2 dof system, shear PC, NC, RC for (a) structure 1, (b) structure 2.
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elementary oscillator interconnected by a hysteretic device. Assuming predefined vectors which give the
displacement shape along the structures, it has been possible to obtain the expected reduced order model by
applying the principle of virtual displacements. Once the equivalent structural parameters of the generalized
2-sdof system have been discovered, the optimal design of the connection is carried out by using simple spectra
obtained by the authors in a previous work, where the optimal design of a horizontal hysteretic link
connecting 2-sdof systems has been studied and solved.

Illustrative examples have been treated in order to reach double objectives:
(i)
 performing the optimal design of the hysteretic device by applying the developed method based on the
reduced order model. In order to validate the proposed method, the results obtained with this procedure
have been compared with the results obtained by performing the optimal design on the 2-mdof adjacent
structures by using the energetic criterion;
(ii)
 the evaluation of the effectiveness of hysteretic connection on the seismic response by performing the
response analysis on the 2-mdof system.
Results confirm the proposed methodology as successful for the optimal design of the connection.
Concerning the choice of shape displacement vectors, it has been verified that optimal force parameter has low
dependence on the assumed shape; for this reason a linear deflection has been selected for the analysis.
Moreover, the PC led to good performances in terms of response reductions; this is directly due to an effective
suppression of the motion for the two structures, in comparison with both no-coupled and rigidly-coupled
structures, which have been observed.
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