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Abstract

A system consisting of a linear power amplifier driving a piezoelectric actuator pair attached to a long viscoelastic bar is

analysed. Coupled piezoelectric theory is used, and allowance is made for the dynamics of the amplifier and of the

actuators. Formulae are derived for the relation between the input voltage to the amplifier and the normal force associated

with extensional waves generated in the bar and for the load impedance constituted by the actuator-bar assembly. It is

established that the mechanical work performed on the external parts of the bar at the actuator/bar interfaces is at most

equal to the electrical energy supplied by the amplifier. The results are applied to a three-parameter viscoelastic bar and to

an elastic bar, and the effects of the cut-off frequency, without load, and the output impedance of the amplifier are

examined. For the elastic bar, sharp response minima occur at frequencies that are integral multiples of the inverse transit

time through the actuator region. For the viscoelastic bar, the corresponding minima are less sharp and deep. The input

voltage to the amplifier required to produce a desired output wave at the actuator/bar interfaces can be determined

provided that the spectrum of this wave is not too broad.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric elements in the form of thin plates are increasingly used as sensors, e.g. Refs. [1,2], and
actuators, e.g. Refs. [3,4], in structural, space, medical and other applications. Their fundamentally important
feature in this context is that they give electrical response when subjected to mechanical stimuli, and vice versa.
This dual property is described by two coupled constitutive equations [5], often referred to as the actuator
equation and the sensor equation, that relate the mechanical and electrical fields in the piezoelectric material.
Such piezoelectric elements have large bandwidth and are suitable for integration into structures.

An analysis of the interaction of a piezoelectric actuator, driven by a linear power amplifier, and a host
structure generally involves consideration of the two constitutive equations, the dynamics of the amplifier and
associated electric circuits, the dynamics of the actuator, and the dynamics of the host structure. Under special
circumstances, one or several of these considerations may be insignificant.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area
c wave speed
C capacitance
d piezoelectric constant
D electric displacement
e strain
E complex modulus, Young’s modulus
f frequency
F frequency-dependent part of transfer

function H

G voltage gain of amplifier
h height
H transfer function, voltage to normal force
i current
k square root of piezoelectric coupling

coefficient
l length
N normal force
Q charge
R resistance
t time
U voltage
v particle velocity
w width
W energy, work
x axial coordinate
y transverse coordinate (horizontal)
z transverse coordinate (vertical)
Z impedance, characteristic impedance

Greek

g wave propagation coefficient
e permittivity
z impedance ratio
r density
o angular frequency

Superscripts

0 ideal amplifier
av spatial average
c creep
e elastic
emf electromotive force
E electrical
M mechanical
r relaxation

Subscripts

0 actuator region
a actuator
b bond
c core
cut cut-off (3 dB reduction)
L loaded amplifier
n propagation in direction of decreasing x

out amplifier output
p propagation in direction of increasing x

ref reference value
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The sensor equation and the dynamics of the amplifier can be neglected if the actuator is driven directly
from an amplifier with sufficiently low-output impedance and of sufficiently large bandwidth. Furthermore,
the actuator may be considered as quasi-static if it is sufficiently small. Such simplifications were made in the
early work by Crawly and de Luis [6] on the interaction of piezoelectric actuators and an Euler–Bernoulli
beam.

The dynamics of the actuator was taken into account, e.g., by Pan et al. [7], who studied an Euler–Bernoulli
beam with attached piezoelectric actuators. Allowance for the interaction of structure and electrical circuits,
and for the two coupled constitutive equations, was made, e.g., by Hagood et al. [8], Thornburgh and
Chattopadhyay [9], and Thornburgh et al. [10]. Similar considerations were made also in studies of passive
electrical damping systems [11]. Studies of power requirements, with consideration of the dynamics of the
amplifier, were carried out, e.g., by Niezrecki and Cudney [12] and Leo [13].

In control applications involving waves, a problem of fundamental interest is that of generating waves of
prescribed shapes that can be used to cancel disturbing waves. Yet, little related work seems to have been
done. In particular, no such work has been found that involves viscoelastic structures or structural members.
Therefore, the problem to be considered in this paper is that of generating extensional waves in a linearly
viscoelastic bar by means of a linear power amplifier driving an in-phase symmetric piezoelectric actuator pair.
As a special case, the bar may be linearly elastic.
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Both the problem of finding the wave output produced by a given voltage input to the amplifier and the
converse problem of finding the voltage input to the amplifier required to generate a desired wave output will
be considered. The consistency of the model used will be confirmed by establishing that the mechanical work
performed by the actuators on the external parts of the bar is at most equal to the electrical energy supplied by
the amplifier. An associated problem to be considered is that of determining the electrical impedance that
constitutes the load of the amplifier.

In Section 2, the interaction of amplifier, actuators and bar will be studied for a general linear amplifier and
for a general linearly viscoelastic material. Coupled piezoelectric theory will be used, and full allowance will be
made for the dynamics of the amplifier. The dynamics of the actuators and the bar will be taken into account
in a one-dimensional context. In Section 3, the theoretical results obtained will be applied to a specific
amplifier model and to a three-parameter viscoelastic material as well as to a linearly elastic material.
Numerical results will be presented and discussed together with other results in Section 4, and conclusions will
be stated in Section 5.
2. Theory

2.1. Model description

Consider a long viscoelastic bar with an attached symmetrical pair of piezoelectric actuators of length
l0 ¼ 2x0 in the actuator region �x0oxox0, where x is an axial coordinate as shown in Fig. 1. The actuators
are attached to the bar by bonding layers of finite thickness. The cross-sections of the bar, the actuators and
the bonding layers are rectangular, and the full cross-sections are symmetric with respect to the y and z axes.

Outside the actuator region, the bar has height h, width w and cross-sectional area A ¼ hw. In the core of
the actuator region, it has height hc, width wc and cross-sectional area Ac ¼ hcwc. Each bonding layer has
height hb, width wb and cross-sectional area Ab ¼ hbwb, and each actuator has height ha, width wa and cross-
sectional area Aa ¼ hawa. Therefore, within the actuator region, the total cross-sectional area is
A0 ¼ 2Aa þ 2Ab þ Ac.

Generally, the materials of the bar and the bonding layers are assumed to be viscoelastic with complex
moduli E(o), Eb(o), respectively, where o is the angular frequency, while the material of the actuators is
assumed to be elastic with short-circuited Young’s modulus Ea. As important special cases, one or both of the
materials of the bar and the bonding layers may be considered elastic by taking the moduli E and/or Eb as real-
valued and constant. This is the normal choice of E, e.g., if the bar is metallic.

It is further assumed that initially plane cross-sections remain plane and that the stress is uniaxial in the x

direction. Within the actuator region, therefore, the effective complex modulus is E0 ¼ ð2AaEa þ 2AbEbþ

AcEÞ=A0. Similarly, the effective density within this region is r0 ¼ ð2Aara þ 2Abrb þ AcrÞ=A0, where r, rb and
ra are the densities of the materials of the bar, the bonding layers and the actuators, respectively.
Fig. 1. Linear power amplifier, actuators and bar.
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The piezoelectric material is assumed to be polarized in the z direction and to have a linear
electromechanical response. In addition to the short-circuited Young’s modulus Ea, this response is
characterised by the permittivity ea and the piezoelectric constant da ¼ �d31. The electrical fields between the
conducting layers on the upper and lower faces of the actuators are assumed to be parallel to the z-axis. The
electric displacement field is assumed to depend on x and o, while the electric field strength is assumed to
depend on o only. The effects of strains in the y and z directions are neglected.

The actuators are driven in parallel and in phase by the output voltage and current of a linear power
amplifier. The amplifier is characterised by its voltage gain G(o), when unloaded, and its output impedance
ZE

outðoÞ. As a result of the mechanical response of the actuators, extensional waves are generated which
propagate symmetrically in opposite directions through the bar away from the actuator region.

2.2. Amplifier and actuators

The amplifier, represented by its assumed equivalent circuit, and the two piezoelectric actuators in parallel

are shown in Fig. 2. The output voltage Û0ðoÞ is related to the input voltage ÛðoÞ and the output current î0ðoÞ
by the relation

Û0 ¼ GÛ � ZE
out î0. (1)

Here and in what follows, the notation F̂ðoÞ is used for the Fourier transform of a function F(t), which is
assumed to be piecewise differentiable and absolutely integrable.

Under the conditions assumed, the coupled constitutive equations [5] of the piezoelectric material can be
written

ê ¼
1

Ea

N̂a

Aa

� da

Û0

ha

, (2)

D̂a ¼ �da

N̂a

Aa

þ �a

Û0

ha

, (3)

where êðx;oÞ is the normal strain and N̂aðx;oÞ the normal force in the x direction, D̂aðx;oÞ the electric
displacement and Û0ðoÞ the voltage across the actuators in the z direction.

In terms of the electric displacement field, the charge on each actuator becomes

Q̂a oð Þ ¼
Z x0

�x0

D̂a x;oð Þwa dx. (4)

The output current from the amplifier to the two actuators in parallel is related to this charge through

î0 ¼ 2ioQ̂a, (5)

where i is the imaginary unit. By the use of Eqs. (3) and (4), this relation can be turned into the form

î0 ¼
1

ZE
0

Û0 � Û
emf

a

� �
; Û

emf

a ¼
daha

�aAa

N̂
av

a , (6a,b)
Fig. 2. Equivalent circuit of linear power amplifier driving piezoelectric actuator pair.
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where ZE
0 ¼ ZE

a =2 with ZE
a ðoÞ ¼ 1=ioCa and Ca ¼ �al0wa=ha. Here, Û

emf

a is an electromotive force directly

proportional to the spatial average N̂
av

a ðoÞ ¼ ð1=l0Þ
R x0

�x0
N̂aðx;oÞdx of the normal force N̂aðx;oÞ in each

actuator. Thus, Ca can be interpreted as the capacitance of an unloaded actuator, ZE
a ðoÞ as the corresponding

electrical impedance, and ZE
0 as the electrical impedance of two such actuators in parallel.

By Eqs. (1), (2) and (6), the normal force N̂aðx;oÞ in each actuator is related to the strain êðx;oÞ and the
input voltage ÛðoÞ to the amplifier by the integral equation

N̂a �
z

1þ z
k2N̂

av

a ¼ AaEaêþ AaEa

da

ha

1

1þ z
GÛ , (7)

where

z ¼
ZE

out

ZE
0

; k2
¼

d2
aEa

�a

(8a,b)

are the amplifier output to unloaded actuator pair electrical impedance ratio and the piezoelectric coupling
coefficient [5], respectively.

2.3. Actuators and bar

In the actuator region �x0oxox0, the equation of motion

qN̂

qx
¼ r0A0iov̂ (9)

and the condition of compatibility

ê ¼
1

io
qv̂

qx
(10)

relate the normal force

N̂ ¼ 2N̂a þ 2N̂b þ N̂c, (11)

the particle velocity v̂ðx;oÞ and the strain êðx;oÞ. The contribution to the normal force N̂ðx;oÞ from each
actuator N̂aðx;oÞ is given by Eq. (7), while those from each bonding layer N̂bðx;oÞ and the bar N̂cðx;oÞ are
given by the constitutive relationships

N̂b ¼ AbEbê; N̂c ¼ AcEê. (12a,b)

Because of symmetry, N̂ðx;oÞ and v̂ðx;oÞ are even and odd functions, respectively, of x.
Eqs. (7) and (9)–(12) provide one integral equation, two differential equations and three algebraic equations

for the six unknown functions N̂ðx;oÞ, N̂aðx;oÞ, N̂bðx;oÞ, N̂cðx;oÞ, v̂ðx;oÞ and êðx;oÞ in the actuator region.
Therefore, the general solution for N̂ðx;oÞ and v̂ðx;oÞ can be derived from these equations. By Eqs. (7) and
(10)–(12), the normal force can be expressed as

N̂ ¼ A0E0
1

io
qv̂

qx
þ

2z
1þ z

k2N̂
av

a þ 2AaEa

da

ha

GÛ

1þ z
. (13)

Here, the average normal force N̂
av

a is obtained by substituting Eq. (10) into Eq. (7) and forming the spatial
average of each term. This gives

N̂
av

a ¼
1þ z

1þ z 1� k2
� �ZM

a v̂ x0;oð Þ � v̂ �x0;oð Þ½ � þ AaEa

da

ha

GÛ

1þ z 1� k2
� � , (14)

where ZM
a ¼ AaEa=iol0. Substitution of this result into Eq. (13) gives the normal force in the actuator region

N̂ ¼ A0E0
1

io
qv̂

qx
þ

2zk2

1þ z 1� k2
� �ZM

a v̂ x0;oð Þ � v̂ �x0;oð Þ½ � þ 2AaEa

da

ha

GÛ

1þ z 1� k2
� � , (15)
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which, when substituted into the equation of motion (9), gives the Fourier transformed wave equation

q2v̂
qx2
� g20v̂ ¼ 0 (16)

in terms of particle velocity.
The most general solution of Eqs. (15) and (16), which satisfies the symmetry requirements N̂ð�x;oÞ ¼

N̂ðx;oÞ and v̂ð�x;oÞ ¼ �v̂ðx;oÞ can be expressed as

N̂ ¼ N̂0p e�g0x þ eg0x þ
4zk2

1þ z 1� k2
� �ZM

a

ZM
0

�e�g0x0 þ eg0x0ð Þ

" #
þ 2AaEa

da

ha

GÛ

1þ z 1� k2
� � , (17)

v̂ ¼
N̂0p

ZM
0

�e�g0x þ eg0xð Þ, (18)

where g0 ¼ io=c0 is the wave propagation coefficient and ZM
0 ¼ A0E0=c0, with c0 ¼ ðE0=r0Þ

1=2, is the
characteristic impedance in the actuator region. The function N̂0pðoÞ ¼ N̂0nðoÞ is arbitrary and represents the
normal force amplitudes at x ¼ 0 of waves N̂0pe�g0x and N̂0neg0x travelling within the actuator region
�x0oxox0 in the directions of increasing and decreasing x, respectively.

In the bar region xXx0, where waves are travelling only in the direction of increasing x, the general solution

N̂ ¼ N̂pe�gðx�x0Þ, (19)

v̂ ¼ �
1

ZM
N̂pe�gðx�x0Þ (20)

for the normal force N̂ðx;oÞ and the particle velocity v̂ðx;oÞ can be obtained by reinterpreting the first terms
of Eqs. (17) and (18). Here, g ¼ io=c is the wave propagation coefficient and ZM ¼ AE=c, with c ¼ ðE=rÞ1=2,
is the characteristic impedance of the bar. The function N̂pðoÞ is arbitrary and represents the normal force
amplitude at x ¼ x0 of a wave N̂pe�gðx�x0Þ travelling in the bar region xXx0 in the direction of increasing x.

The two functions N̂0p and N̂p, representing the waves in the actuator and bar regions, can be determined by
the conditions of continuity of normal force N̂ðx0�;oÞ ¼ N̂ðx0þ;oÞ and particle velocity v̂ðx0�;oÞ ¼
v̂ðx0þ;oÞ at x ¼ x0. Substituting Eqs. (17)–(20) into these conditions and solving for N̂p gives

N̂p ¼ HGÛ , (21)

where

H ¼ 2AaEa

da

ha

F ; F ¼
eg0x0 � e�g0x0

peg0x0 � qe�g0x0
, (22a,b)

p ¼ 1þ
ZM

0

ZM

� �
1þ 1� k2

� �ZE
out

ZE
0

� 	
þ 4k2 ZM

a

ZM

ZE
out

ZE
0

, (22c)

q ¼ 1�
ZM

0

ZM

� �
1þ 1� k2

� �ZE
out

ZE
0

� 	
þ 4k2 ZM

a

ZM

ZE
out

ZE
0

. (22d)

Substitution of Eq. (21) into Eq. (19) gives the normal force in the bar at xXx0

N̂ ¼ HGÛe�g x�x0ð Þ (23)

in terms of the input voltage to the amplifier.

2.4. Energy considerations

The process of wave generation in the two external parts of the bar involves partial conversion of the
electrical energy

W E ¼

Z 1
�1

U0 tð Þi0 tð Þdt ¼
1

2p

Z 1
�1

Û0 oð Þî0 oð Þdo (24)
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supplied to the actuators into the mechanical work

W M ¼ �2

Z 1
�1

N0ðtÞv0 tð Þdt ¼ �
1

p

Z 1
�1

N̂0 oð Þv̂0 oð Þdo (25)

performed by the actuators on the external parts of the bar at the actuator/bar interfaces x ¼7x0, where the
notation F̄ is used for the complex conjugate of F. In the last members of these relations, use has been made of
Parseval’s relation. The minus sign in the last relation is due to the different positive directions of the normal
force N0ðtÞ ¼ Nðx0; tÞ and the particle velocity v0ðtÞ ¼ vðx0; tÞ.

The electric impedance ZE loading the amplifier is defined by the relation

Û0 ¼ ZEî0. (26)

A convenient way to derive this impedance from results obtained makes use of its independence of the output
impedance of the amplifier, which can therefore be taken as zero. Thus, Eqs. (1), (6), (8), (14), (20), (21) with
ZE

out ¼ 0, and symmetry considerations, give

ZE ¼
ZE

0

1� k2
ð1� 4F 0ZM

a =ZM Þ
, (27)

where F0ðoÞ is obtained from F(o) by putting ZE
out ¼ 0 in Eqs. (22b)–(22d). Substitution of î0 from Eq. (26)

into Eq. (24) gives

W E ¼
1

2p

Z 1
�1

1

ZE
Û0



 

2 do. (28)

By Eqs. (19) and (20), the normal force N̂0ðoÞ and the particle velocity v̂0ðoÞ produced at the actuator/bar
interface x ¼ x0 are related as

N̂0 ¼ �ZMv̂0. (29)

Substitution of v̂0 from Eq. (29) into (25) gives

W M ¼
1

p

Z 1
�1

1

ZM
N̂0



 

2 do. (30)

From Eqs. (28) and (30) and results of Sections 2.1–2.3, and by use of the result obtained by Christensen [14]
that the complex modulus is located in the first quadrant of the complex plane for o40, it can be shown that

0oW MpW E (31)

with equality if and only if the effective complex modulus E0 in the actuator region is real.

3. Applications

It will be illustrated how the relation between the normal force N(x, t) in the bar and the input voltage to the
amplifier U(t) depends on the cut-off frequency ocut ¼ 2pf cut and the output impedance ZE

out of the amplifier.
In the frequency domain, these dependencies are related to the voltage gain G(o) and the function H(o),
respectively. The dependence on frequency o ¼ 2pf of the electrical impedance ZE(o), which constitutes the
load of the amplifier, will also be illustrated.

An amplifier with voltage gain

G ¼
G0

1þ io=ocut
(32)

is considered. Here, ocut ¼ 2pf cut is the cut-off angular frequency at which |G(o)| is 3 dB below its real low-
frequency limit G0, i.e., jGðocutÞj ¼ G0=

ffiffiffi
2
p

. The output impedance ZE
out ¼ R is assumed to be real and

constant. The amplifier is considered to be ideal if ocut ¼N and ZE
out ¼ 0 so that G(o)�G0 and H(o)�H0(o),

respectively.
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Two bars, one elastic with Young’s modulus E ¼ Ee and one viscoelastic with complex modulus

E ¼ Ee tr

tc

1þ iotc

1þ iotr
(33)

are considered. Thus, the Young’s modulus of the elastic material is the same as the high-frequency limit of the
complex modulus which represents the initial elastic response of the viscoelastic material. The parameters tr

and tc are relaxation and creep time constants, respectively, with trotc according the three-parameter
viscoelastic solid model [15]. As the density r of the two bar materials is assumed to be the same, the
viscoelastic material approaches the elastic material when the relaxation and creep time constants assume
increasingly large values. It is also assumed that the bonding layers are so thin, that their effects on axial
stiffness and inertia as well as shear deformation can be neglected.

Eqs. (22), (23), (27) and (32) can be made dimensionless as follows. A reference voltage Uref is taken as a
voltage, which characterizes the input voltage U to the amplifier, e.g., the amplitude, and a reference force is
defined as Nref ¼ 2ðAaEada=haÞG

0U ref . This relation is obtained from Eq. (2) by letting Na ¼ Nref=2, U0 ¼

G0U ref and e ¼ 0. Thus, the reference force is exerted by the two actuators if, with clamped ends, they are
driven by the amplifier with the reference voltage as DC input (jZEð0Þj ¼ 1, î0ð0Þ ¼ 0). References for the
function H and the gain G (although G is dimensionless) are taken as Href ¼ 2ðAaEada=haÞ and Gref ¼ G0,
respectively, so that there is the relation Nref ¼ HrefGrefU ref in analogy with Eq. (23). A reference length and a
reference time are defined as xref ¼ l0 and tref ¼ l0=ce

0, respectively, where ce
0 ¼ ½ð2AaEa þ AcEeÞ=ð2Aara þ

AcrÞ�1=2 is the common speed of the elastic and viscoelastic wave fronts in the actuator region.
Correspondingly, a reference wave propagation coefficient and reference frequencies are defined as gref ¼
1=xref and oref ¼ f ref ¼ 1=tref , respectively. Finally, a reference electrical impedance is defined as
ZE

ref ¼ jZ
E
0 ðoref Þj ¼ 1=2orefCa.

With the dimensionless quantities ~N ¼ N=Nref , ~̂N ¼ N̂=ðNref tref Þ,y inserted, Eqs. (23) and (32) become

~̂N ¼ ~H ~G ~̂Ue�~g ~x�1=2ð Þ, (34)

~G ¼
1

1þ i ~o= ~ocut
, (35)

respectively. Here, the transfer function ~Hð ~oÞ ¼ HðoÞ=Href ¼ F ðoÞ is given by Eqs. (22) with

g0x0 ¼
i ~o
2

2
AaEa

AEe þ
Ac

A

� ��
2

AaEa

AEe þ
Ac

A

~tr

~tc

1þ i ~o~tc

1þ i ~o~tr

� �� 	1=2
, (36a)

ZM
0

ZM
¼ 2

Aara

Ar
þ

Ac

A

� �
2

AaEa

AEe

~tc

~tr

1þ i ~o~tr

1þ i ~o~tc þ
Ac

A

� �� 	1=2
, (36b)

ZM
a

ZM
¼

1

i ~o
AaEa

AEe

~tc

~tr

1þ i ~o~tr

1þ i ~o~tc 2
Aara

Ar
þ

Ac

A

� ��
2

AaEa

AEe þ
Ac

A

� �� 	1=2
, (36c)

ZE
out

ZE
0

¼ i ~o ~Z
E

out. (36d)

Eq. (27), finally, becomes

~Z
E
¼

~Z
E

0

1� k2
ð1� 4 ~F

0
ZM

a =ZM Þ
, (37)

where

~Z
E

0 ¼
1

i ~o
(38)

and ~F
0
ð ~oÞ ¼ F0ðoÞ.
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The same parameter values AaEa=AEe ¼ 3, Aara=Ar ¼ 1:7, Ac=A ¼ 1 and k2
¼ 0.15 are chosen for the

elastic and viscoelastic bars. For the viscoelastic bar, the relaxation and creep time constants are taken as
~tr
¼ 0:25 and ~tc

¼ 0:50, respectively. The cut-off frequency ~f cut and the output impedance ~Z
E

out are varied in
the broad intervals 0:01p ~f cutp1 and 0p ~Z

E

outp10, respectively. In this way the influence of these parameters
can be demonstrated, and the limit case of an ideal amplifier with ~f cut ¼ 1 and ~Z

E

out ¼ 0 is included.

4. Results and discussion

Closed-form results have been obtained for the transfer function H(o)G(o) from the input voltage ÛðoÞ of
the amplifier to the output normal force N̂0ðoÞ generated at the actuator/bar interfaces and for the impedance
ZE(o) that loads the amplifier. Here, G(o) is the voltage gain of the unloaded amplifier and H(o) is the transfer
function from the ideal voltage source GÛ in Fig. 2 to the normal force N̂0ðoÞ generated. This transfer
function can also be written as HL(o)GL(o), where

GL ¼
ZE

ZE þ ZE
out

G; HL ¼ H0 (39)

are the voltage gain of the loaded amplifier and the transfer function from the output voltage of the amplifier
to the normal force generated. Here, H0(o) is obtained from H(o) by putting ZE

out ¼ 0 in Eqs. (22). Both
relations are evident from the equivalent circuit of Fig. 2.
The consistency of the model used has been confirmed by establishing that the mechanical work performed by
the actuators on the external parts of the bar is at most equal to the electrical energy supplied to the actuators.
This work goes into the energy associated with the waves generated in the bar.

The assumption that initially plane cross-sections remain plane means that the effect of shear deformation
of the bonding layers is neglected. In turn, this means that the bonding layers are very thin, or the bonding
material is very stiff, or both. Sometimes, it may be consistent to neglect the effects of axial stiffness and inertia
together with that of shear deformation, which means that the bonding layers and all their effects are neglected
(as in the applications of Section 3). However, the effects of axial stiffness and inertia may be significant even if
that of shear deformation is not. If, e.g., the moduli in shear and extension of the bonding layers are increased,
the effect of shear deformation decreases while that of axial stiffness increases. At a stage where the shear
deformation of the bonding layers can be neglected, the importance of their axial stiffness and inertia is
decided by the relative sizes of the middle terms in the expressions E0 ¼ ð2AaEa þ 2AbEb þ AcEÞ=A0 for the
effective complex modulus and r0 ¼ ð2Aara þ 2Abrb þ AcrÞ=A0 for the effective density.

A necessary condition for the validity of the one-dimensional wave propagation model used is that the
significant wavelengths l associated with the waves generated must be long compared with a characteristic
transverse dimension of the bar [16]. If such a dimension is taken as d ¼ ðhwÞ1=2 ¼ A1=2, this condition can be
expressed as d=l51. In the case of the elastic bar, it becomes 1:26ðA1=2=l0Þ ~f51. If, e.g., A ¼ 10mm2 and
l0 ¼ 100mm one obtains the condition ~f525. In what follows, numerical results will be presented in the
frequency range 0:01p ~fp10.

The frequency dependence of the voltage gain j ~Gj of the unloaded amplifier for different cut-off frequencies

~f cut and that of the function j ~Hj for different output impedances ~Z
E

out are shown in Figs. 3(a) and (b) for the

elastic bar and in Figs. 4(a) and (b) for the viscoelastic bar. The frequency dependence of the impedance ~Z
E

that loads the amplifier is shown in Figs. 3(c) for the elastic bar and in Fig. 4(c) for the viscoelastic bar.

In the elastic case, anti-resonance occurs at the frequencies ~f n ¼ n, n ¼ 1, 2, 3,y, which are the zeroes of
~Hð2p ~f Þ in addition to the zero at ~f ¼ 0. These frequencies correspond to periods that are 1, 1/2, 1/3, y transit
times t ¼ 0 through the actuator region and wavelengths that are 1, 1/2, 1/3, y of the length l0 of this region.

At these frequencies, both the normal forces ~̂N0 and the particle velocities � ~̂v0 at the actuator/bar interfaces
are zero. This implies that no work is performed at these interfaces and no waves are generated in the external
parts of the bar. Therefore, there are no external losses associated with the vibrations in the actuator region. In
addition, there are no internal losses as the materials of the actuator region are elastic. This total absence of

losses explains the perfect sharpness and depth to zero of the minima of j ~Hj at the anti-resonance frequencies.



ARTICLE IN PRESS

Fig. 3. Dependence on frequency ~f of (a) the voltage gain j ~Gj for different cut-off frequencies ~f cut, (b) the function j ~Hj for different output
impedances ~Z

E

out, and (c) the load impedance ~Z
E
. Elastic bar.
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Between these frequencies, the function j ~Hj has local maxima. The maximum values are j ~Hjmax � 1 for an

ideal amplifier with ~Z
E

out ¼ 0, and they decrease with increasing output impedance ~Z
E

out. This decrease is larger

at higher than at lower frequencies.
It may seem abnormal that the actuator region can vibrate in modes such that both the normal force and the

particle velocity are zero at its ends. However, Eqs. (17)–(20) and (22a) show how this is possible. The last of
these equations show that at the anti-resonance frequencies e�g0x0 ¼ eg0x0 . Substitution into Eq. (18) shows

that v̂0 ¼ 0. This result, the conditions of continuity and Eqs. (19) and (20) show that also N̂0 ¼ 0. Eq. (17),

with x ¼ x0 and N̂ ¼ N̂0 ¼ 0, shows how the amplitudes N̂0pðoÞ ¼ N̂0nðoÞ of the waves N̂0pe�g0x and N̂0neg0x

within the actuator region depend on the input voltage Û of the amplifier. Conversely, this equation shows

that vibrations with both N̂0 ¼ 0 and v̂0 ¼ 0 would not be possible if either Û ¼ 0 (natural vibrations) or
da ¼ 0 (non-piezoelectric material).

Figs. 3 and 4(c) show that the load impedance ~Z
E
has a relatively small real part which is non-negative,

0pReð ~Z
E
Þ5j ~Z

E
j, and a relatively large imaginary part which is negative, 0o� Imð ~Z

E
Þ � j ~Z

E
j. For

maximum supply of power to the actuators, the load impedance should be the complex conjugate of the

output impedance of the amplifier [17], i.e., ~Z
E
¼ ~̄Z

E

out. As the output impedance has been taken as real,

~Z
E

out ¼
~R, this condition implies Reð ~Z

E
Þ ¼ ~R and Imð ~Z

E
Þ ¼ 0. The first of these matching conditions can be

satisfied at one or several discrete frequencies provided that ~Rp0:18. It can also be satisfied in an approximate
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Fig. 4. Dependence on frequency ~f of (a) the voltage gain j ~Gj for different cut-off frequencies ~f cut, (b) the function j ~Hj for different output
impedances ~Z

E

out, and (c) the load impedance ~Z
E
. Viscoelastic bar.
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sense within a limited range of frequencies. The second condition can be satisfied at a chosen frequency by
means of a matching inductance which is included in the load. It can also be satisfied in an approximate sense
within a limited range of frequencies.

In the elastic case, Reð ~Z
E
Þ has zeroes at the anti-resonance frequencies ~f n ¼ n, n ¼ 0, 1, 2,y, which are the

zeroes of ~Hð2p ~f Þ and ~H
0
ð2p ~f Þ. Eqs. (37) and (38) show that at these frequencies, the load impedance is

imaginary, ~Z
E
¼ 1=i ~oð1� k2

Þ. Consequently, the average power supplied by the amplifier to the actuators is
zero. This is consistent with the observation that no work is performed on the external parts of the bars at the anti-
resonance frequencies and with the absence of internal losses. Between the anti-resonance frequencies, the real part

Reð ~Z
E
Þ has local maxima, similarly as j ~Hj, and the maximum values decrease with increasing frequency.

In the cases considered, with 0pReð ~Z
E
Þ5j ~Z

E
j and 0o� Imð ~Z

E
Þ � j ~Z

E
j, the load impedance at the anti-

resonance frequencies can be used to approximate the imaginary part of the load impedance at all frequencies,

i.e., Imð ~Z
E
Þ � �1= ~oð1� k2

Þ. In dimensional terms ImðZEÞ � �1=o2ð1� k2
ÞCa, which shows that the

imaginary part of the load can be represented by a capacitance C � 2ð1� k2
ÞCa. This capacitance can be

regarded as the capacitance 2Ca in series with a capacitance 2Cað1� k2
Þ=k2, which is b2Ca if k2

51.

In the viscoelastic case, the behaviour of the load impedance ~Z
E
ðoÞ between antiresonance frequencies is

similar to that in the elastic case. However, the minima in Reð ~Z
E
Þ are less sharp and deep in the viscoelastic

case than in the elastic case. This is in accord with the behaviour of j ~Hj.
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The responses of the normal force ~N0ð~tÞ at the actuator/bar interfaces, for different combinations of the cut-
off frequency ~f cut and the output impedance ~Z

E

out, to a unit step input voltage ~Uð~tÞ ¼ yð~tÞ to the amplifier are
shown in Fig. 5 for the elastic bar and in Fig. 6 for the viscoelastic bar. In both cases, the responses have
damped oscillatory behaviour due to the repeated reflections of waves between the actuator/bar interfaces. For
infinite cut-off frequency and zero output impedance, the zeroes of ~N0ð~tÞ occur at ~t ¼0, 1, 2,y, i.e., at
distances from each other equal to the transit time t0 for an elastic or viscoelastic wave front through the
actuator region. These distances increase and the maximum amplitude decreases with decreasing cut-off
frequency and increasing output impedance. This is because an increase of output impedance, similarly as a
decrease of cut-off frequency, increases the slowness of the response of the loaded amplifier. In the
applications considered, a characteristic response time of the loaded amplifier may be taken as the product
tRC ¼ RC of the assumed resistive output impedance R of the amplifier and the approximate input capacitance
C � 2ð1� k2

ÞCa of the actuators, which gives ~tRC ¼ ð1� k2
Þ ~Z

E

out. Thus, in dimensionless terms, this response
time is directly proportional to the assumed resistive output impedance. It represents the time needed to
charge the capacitance C from zero to 63% of full DC voltage through the resistance R.

Conversely, the input voltages ~Uð~tÞ required to produce the normal force pulse ~N0ð~tÞ ¼ ½yð~tÞ � yð~t� ~TÞ�

sinð2p~t= ~TÞ with duration ~T ¼ 50, for amplifiers with cut-off frequency ~f cut ¼ 1 and the output impedances

~Z
E

out ¼ 0 and 10, are shown in Fig. 7 for the elastic bar and in Fig. 8 for the viscoelastic bar. The input voltage

amplitude required increases with increasing output impedance, and it is higher for the viscoelastic bar than
for the stiffer elastic bar.

The spectrum j ~̂N0ð2p ~f Þj is shown in Fig. 9, where it can be seen that frequencies ~f40:5 are not significant.

Furthermore, Figs. 3 and 4 show that the function ~H
�1 ~G

�1
is well-behaved for non-zero frequencies, which

are well below the lowest anti-resonance frequency f1 ¼ 1. Therefore, the maximum frequency for the DFT

inversion was taken as ~f max ¼
1
2
, which resulted in a sufficiently accurate discrete representation of ~N0ð~tÞ. If the

desired pulse would have a considerably broader spectrum, in particular with significant frequencies ~f41,

numerical problems are likely and it may not be possible to determine the required input ~Uð~tÞ.
Fig. 5. Normal force ~N0 versus time ~t at actuator/bar interfaces in response to a unit step amplifier input voltage for different cut-off

frequencies: (a) ~f cut ¼ 0:01, (b) ~f cut ¼ 0:1, (c) ~f cut ¼ 1 and (d) ~f cut ¼ 1. The amplitude in each diagram decreases with increasing

output impedance ~Z
E

out ¼ 0, 0.1, 1 and 10. Elastic bar.
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Fig. 6. Normal force ~N0 versus time ~t at actuator/bar interfaces in response to a unit step amplifier input voltage for different cut-off

frequencies: (a) ~f cut ¼ 0:01, (b) ~f cut ¼ 0:1, (c) ~f cut ¼ 1 and (d) ~f cut ¼ 1. The amplitude in each diagram decreases with increasing

output impedance ~Z
E

out ¼ 0, 0.1, 1 and 10. Viscoelastic bar.

Fig. 7. Amplifier input voltage ~U versus time ~t required to generate a single-period sine normal force with unit amplitude and duration 50

at actuator/bar interfaces. Cut-off frequency ~f cut ¼ 1. Amplitude increasing with increasing output impedance ~Z
E

out ¼ 0 and 10. Elastic

bar.
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5. Conclusions

The main conclusions of this study are as follows: (i) In the case of an elastic bar, anti-resonance occurs at
frequencies that are integer multiples of the inverse transit time through the actuator region. At these
frequencies, the actuator region vibrates without internal or external losses, and therefore the anti-resonance
minima have perfect sharpness and depth to zero. (ii) In the case of a viscoelastic bar, the behaviour between
the anti-resonance frequencies is similar as in that of an elastic bar, but the minima are less sharp and deep due
to internal as well as external losses. (iii) The impedance of the actuators, which constitutes the load of the
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Fig. 8. Amplifier input voltage ~U versus time ~t required to generate a single-period sine normal force with unit amplitude and duration 50

at actuator/bar interfaces. Cut-off frequency ~f cut ¼ 1. Amplitude increasing with increasing output impedance ~Z
E

out ¼ 0 and 10.

Viscoelastic bar.

Fig. 9. Spectrum j ~̂N0j versus frequency ~f of single-period sine normal force with unit amplitude and duration 50.
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amplifier, has a relatively small non-negative real part and a relatively large negative imaginary part.
(iv) Perfect matching of the actuator load impedance to the output impedance of the amplifier can be achieved
only at discrete frequencies and with the aid of a matching inductance. Within a limited range of frequencies,
approximate matching can be achieved similarly. (v) In the case of an elastic bar, the real part of the load
impedance has its zeroes at the anti-resonance frequencies. In an approximate sense, the imaginary part can be
represented by a capacitance at all frequencies. (vi) In the case of a viscoelastic bar, the behaviour of the load
impedance between the anti-resonance frequencies is similar as in that of an elastic bar, but the minima of the
real part are less sharp and deep. (vii) The normal force at the actuator/bar interfaces in response to a step
input voltage to the amplifier has a damped oscillatory behaviour due to repeated reflections of waves between
the actuator/bar interfaces. (viii) An increase of output impedance increases the slowness of the response of the
loaded amplifier due to the capacitive nature of the amplifier load. A decrease of cut-off frequency increases
the slowness of the response of the loaded amplifier similarly. (ix) The input voltage to the amplifier required
to produce a desired normal force pulse at the actuator/bar interfaces can be determined provided that the
spectrum of this pulse is not too broad.
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