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Abstract

Dynamic response of an infinite beam resting on a layered poroelastic half-space subjected to moving loads is

investigated in this study. The equivalent stiffness of the layered poroelastic half-space is obtained via the transmission and

reflection matrices (TRM) method in the frequency wavenumber domain. Based on the obtained equivalent stiffness, the

frequency wavenumber domain solution of the beam–half-space system is obtained by the compatibility condition between

the beam and the half-space. The time domain solution for the beam and the layered half-space is obtained by means of the

inverse Fourier transform method. Also, the influences of the load speed and material parameters of the poroelastic half-

space on the responses of the beam as well as the layered half-space are investigated. In order to demonstrate the proposed

method, some time–space domain examples and corresponding analysis are presented in the paper.

r 2007 Published by Elsevier Ltd.
1. Introduction

Dynamic response of an infinite beam resting on a half-space under moving loads has been a topic for
engineering society for a long time, as the model can be used to simulate the railway subjected to moving train
loads or various pavements subjected to moving vehicle loads. Majority of the papers addressing the dynamic
response of an infinite beam on a half-space to moving loads treat the half-space as an elastic or a visco-elastic
medium. For example, the steady-state vibration of a beam supported on an elastic half-space under a moving
load has been studied in Refs. [1–5]. The dynamic response of beams on the generalized Pasternak visco-elastic
foundations subjected to an arbitrary distributed harmonic moving load was analyzed in Ref. [6]. The
response of an elastic beam on a viscoelastic layer to a uniformly moving constant load is investigated in
Refs. [7,8].

Recently some researchers have realized that high-speed trains will generate larger response for the rail and
the ground especially for saturated soils, which may further cause noticeable structure-borne noise and
vibration in the nearby buildings [9–11]. It is well known that the saturated soil is a two-phase material
consisting of the soil skeleton and the pore water. Consequently, for a saturated soil, a saturated poroelastic
ee front matter r 2007 Published by Elsevier Ltd.
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model is more realistic than the linear elastic or the visco-elastic one. Biot [12–14] pioneered the development
of the theory for the saturated porous medium. Biot’s theory has been widely applied in geomechanics to
analyze consolidation effects due to quasi-static loads and wave propagation problems for dynamic loads.

It has been found that most foundations consist of several layers. Thus, a layered half-space is an
appropriate model for inhomogeneous soils. It is worth pointing out that the dynamic response of a layered
half-space to external loads has been investigated for a very long time. A review of the literature about the
treatment of a layered half-space is given in Ref. [15]. It should be noticed that the transmission and reflection
matrix (TRM) method established by Luco and Apsel [16,17] is a very important method for solving dynamic
problems of a layered half-space. The advantage of the method is that the mismatched exponential terms are
eliminated in all the terms of the TRM. As a result, the TRM method is valid even for high frequency and
large layer thickness cases, which are difficult to solve by the typical propagator matrix method. Consequently,
the TRM method has been used widely in solving layered structure problems [15–19]. To date, the research
concerning a layered half-space has been mainly restricted to the elastic case, while the investigation about the
layered porous medium is in a preliminary stage. Moreover, to the best of the authors’ knowledge, study
addressing the dynamic response of an infinite beam on a layered poroelastic half-space to moving loads is still
unavailable in the literature.

In this paper the response of an infinite beam on a layered poroelastic half-space to a moving load is studied.
The speed of the moving load is assumed to be a constant. Euler–Bernoulli beam theory is used to describe the
beam, while Biot’s theory is used to characterize the layered poroelastic half-space. The general solutions for
the displacements, the stresses and the pore pressure of the layered half-space are established by solving Biot’s
dynamic equations via the Fourier transform method. Based on the continuity condition between the beam
and the layered half-space as well as the continuity conditions at each layer interface, the TRM method is
formulated to obtain the equivalent stiffness of the layered porous half-space. Using the expression for the
equivalent stiffness of the layered porous half-space, the solutions for the beam and the layered poroelastic
half-space are derived in the frequency-wavenumber domain. By means of the inverse Fourier transform, the
time domain solutions for the beam and the poroelastic half-space are retrieved from the frequency-
wavenumber solutions. When reduced to special cases, our solutions agree very well with some known results.
The effects of load velocity, parameters of the poroelastic half-space on the deflection, the bending moment
and the shear force of the beam as well as the response of the layered half-space are discussed.

2. Biot’s theory and the corresponding general solution

The constitutive relations for the porous medium have the form [14]

sij ¼ ldijyþ 2m�ij � adijp, (1)

p ¼ �aMyþMe, (2)

e ¼ �wi;i; y ¼ ui;i, (3)

where ui and wi (i ¼ 1, 2, 3) are the displacement of the solid skeleton and the infiltration displacement of the
pore fluid, respectively; sij is the stress of the bulk material; p is the pore pressure; eij and y are the strain tensor
and the dilatation of the solid skeleton, respectively; e is the volume of fluid injected into a unit volume bulk
material; dij is the Kronecher delta; l and m are Lame constants; a and M are Biot’s parameters accounting for
compressibility of the porous medium.

The equations of motion for the bulk porous medium and the pore fluid have the form

mui;jj þ ðlþ a2M þ mÞuj;ji � aMwj;ji ¼ r €ui þ rf €wi, (4a)

aMuj;ji þMwj;ji ¼ rf €ui þm €wi þ bpKðtÞn _wi, (4b)

where r and rf are mass densities of the bulk material and the pore fluid, r ¼ (1�f)rs+frf, rs is the density
of the solid skeleton and f is the porosity of the porous medium; m ¼ aNrf/f and aN is tortuosity; bp accounts
for the viscosity of the pore fluid and the permeability of the porous medium, respectively and K(t) is
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a time-dependent viscosity correction factor which describes the transition behavior from viscosity dominated
flow in the low frequency range towards inertia dominated flow at high-frequency range [20]; the dot over a
variable denotes the time derivative and a star (�) between the two variables denotes the time convolution.

In order to solve Biot’s governing equations, two kinds of Fourier transform are involved: the Fourier
transform with respect to time and frequency and the Fourier transform with respect to horizontal coordinates
and horizontal wavenumbers. In this paper, the Fourier transform for time and the two horizontal coordinates
are defined as follows:

f̂ ðoÞ ¼
Z 1
�1

f ðtÞe�iot dt; f ðtÞ ¼
1

2p

Z 1
�1

f̂ ðoÞeiot do,

f̄ ðxÞ ¼
Z 1
�1

f ðxÞe�ixx dx; f ðxÞ ¼
1

2p

Z 1
�1

f̄ ðxÞeixx dx,

~f ðZÞ ¼
Z 1
�1

f ðyÞe�iZy dy; f ðyÞ ¼
1

2p

Z 1
�1

~f ðZÞeiZy dZ, (5)

where the superimposed symbols ^, � and � above a variable denote the Fourier transform with respect to
time t, x and y coordinates, respectively.

Performing the Fourier transform with respect to time t on Eqs. (2) and (4b), the infiltration displacement of
the pore fluid has the form

ŵj ¼
p̂;j

mo2 � ibpK̂ðoÞo
� Wûj ðj ¼ 1; 2; 3Þ, (6)

where W ¼ rf o
2=½mo2 � ibpK̂ðoÞo�.

Substituting Eq. (6) into Eq. (4a), one has the following equation:

mûi;jj þ ðlþ mÞûj;ji þ o2ðr� rf WÞûi � ða� WÞp̂;i ¼ 0. (7)

Applying the divergence operator on Eq. (6) and substituting the resulting divergence and Eq. (3) into
Eq. (2), the following equation is obtained:

r2p̂þ
rf o

2

WM
p̂þ rf o

2ða� WÞ
ŷ
W
¼ 0. (8)

Likewise, applying the divergence operator on the frequency domain expression of Eq. (4a), the following
equation is obtained:

ðlþ a2M þ 2mÞr2ŷþ o2ðr� rf WÞŷ� ða� WÞr2p̂ ¼ 0. (9)

From Eq. (8), one has the following equation:

ŷ ¼ �
Wr2p̂

rf o2ða� WÞ
�

p̂

ða� WÞM
. (10)

Substitution of Eq. (10) into Eq. (9) yields the following equation:

r4p̂þ b1r
2p̂þ b2p̂ ¼ 0, (11)

where b1 ¼ ½ðmo2 � ibpK̂ðoÞoÞðlþ a2M þ 2mÞ þ ro2M � 2aMrf o
2�=½ðlþ 2mÞM�, b2 ¼ ½ðmo2 � ibpK̂ðoÞoÞ

ro2M � r2f o
4�=½ðlþ 2mÞM�.

Performing the double Fourier transform with respect to the two horizontal coordinates x and y on Eq. (11)
and solving the resulting ordinary differential equation lead to

~̄̂p ¼ Aeg1z þ Be�g1z þ Ceg2z þDe�g2z, (12)

where gj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ Z2 � ‘2j

q
, ‘21 ¼

1
2

b1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � 4b2

q� �
, ‘22 ¼

1
2

b1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � 4b2

q� �
(j ¼ 1, 2), ‘1 and ‘2 are the

complex wavenumbers for the first kind (fast wave) and the second kind (slow wave) dilatational wave,
respectively. Note that the radicals gi (i ¼ 1, 2) are selected such that Re(gi)X0.



ARTICLE IN PRESS
B. Xu et al. / Journal of Sound and Vibration 306 (2007) 91–11094
Performing the double Fourier integral transform with respect to the two horizontal coordinates x and y on
Eq. (10) and substituting Eq. (12) into the resulting equation yield

~̄̂y ¼ w1ðAeg1z þ Be�g1zÞ þ w2ðCeg2z þDe�g2zÞ, (13)

where wj ¼ ½WM‘2j � rf o
2�=½rf o

2ða� WÞM� (j ¼ 1, 2).

Substituting ~̄̂pðx; Z; z;oÞ and ~̄̂yðx; Z; z;oÞ into the transformed form of Eq. (4), one has

~̄̂uy ¼ �iZ a1ðAeg1z þ Be�g1zÞ þ a2ðCeg2z þDe�g2zÞ½ � þ Geg3z þHe�g3z,

~̄̂uz ¼ �g1a1ðAeg1z � Be�g1zÞ � g2a2ðCeg2z �De�g2zÞ þ Eeg3z þ Fe�g3z,

~̄̂wz ¼ g1ða1Wþ rf o
2=WÞðAeg1z � Be�g1zÞ þ g2ða2Wþ rf o

2=WÞðCeg2z �De�g2zÞ � WðEeg3z þ Fe�g3zÞ, (14)

where aj ¼ ½lðwj þ mÞ � aþ W�=½ðS2 � ‘2j Þm� (j ¼ 1, 2), S2 ¼ ðr� rf WÞo
2=m, g3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ Z2 � S2

q
, S is the

complex wavenumber for the shear wave and A, B, C,y,H are arbitrary constants. Note that the radical g3 is
selected such that Re(g3)X0.

Using the transformed expression for the dilatation of the solid

~̄̂y ¼ ix ~̄̂ux þ iZ ~̄̂uy þ q ~̄̂uz=qz, (15)

~̄̂ux is obtained as follows:

ix ~̄̂ux ¼ v1ðAeg1z þ Be�g1zÞ þ v2ðCeg2z þDe�g2zÞ � g3ðEeg3z � Fe�g3zÞ � iZðGeg3z þHe�g3zÞ. (16)

In terms of Eqs. (1) and (2), the following stresses are obtained:

ix ~̄̂sxz ¼ �g1ðAeg1z
� Be�g1zÞ � g2ðCe

g2z
�De�g2zÞ � ðx2 þ g23ÞðEe

g3z þ Fe�g3zÞ � ig3ZðGeg3z
�He�g3zÞ,

~̄̂syz ¼ �2iZg1a1ðAeg1z � Be�g1zÞ � 2iZg2a2ðCeg2z �De�g2zÞ þ iZðEeg3z þ Fe�g3zÞ þ g3ðGeg3z �He�g3zÞ,

~̄̂szz ¼ t1ðAeg1z þ Be�g1zÞ þ t2ðCeg2z þDe�g2zÞ þ 2mg3ðEeg3z � Fe�g3zÞ, (17)

where gj ¼ wj þ ajðg2j � Z2Þ, ti ¼ lðwj � 2majg2j Þ, vj ¼ �gj wj þ ajðg2j þ x2 � Z2Þ
h i

(j ¼ 1, 2).

3. The model for a beam resting on a layered poroelastic half-space subjected to a moving load

Fig. 1 illustrates an infinite Euler–Bernoulli beam resting on a layered poroelastic half-space and subjected
to a moving load with a constant velocity. For simplicity, the following assumptions are made for the beam
and the load: (a) the beam is treated as an infinite Euler–Bernoulli elastic beam with a width 2a; (b) the
deformation of the beam is infinitesimal; (c) the shear deformation and the rotary inertia of the beam are
negligible; (d) both the moving load and the normal stresses between the beam and the half-space are
uniformly distributed over the width of the beam; (e) the contact between the beam and the half-space is
smooth.

According to the elastic beam theory, the equation of motion for the beam is as follows:

EIz

q4wbðx; tÞ

q4x
þmb

q2wbðx; tÞ

q2t
¼ F ðx; tÞ � qzðx; tÞ, (18)

where wb(x, t) is the deflection of the beam, E Young’s modulus of beam material, Iz the second moment of
area of the beam cross section about its neutral axis (Fig. 1), qz(x, t) is the interaction force between the beam
and the half-space, F(x, t) is the applied moving load which is uniformly distributed over the width. The
moving load F(x, t) is a line load moving with a constant velocity c and given by the following expression:

F ðx; tÞ ¼ Fzdðx� ctÞ, (19)

where Fz is the magnitude of the load, d(?) is the Dirac delta function.
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Fig. 1. An infinite beam overlying a layered poroelastic half-space subjected to moving loads.
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According to the assumptions concerning the beam, the stress boundary conditions for the surface of the
layered half-space are as follows:

2aszzðx; y; 0; tÞ ¼ qzðx; tÞHða� y
�� ��Þ,

sxzðx; y; 0; tÞ ¼ 0; syzðx; y; 0; tÞ ¼ 0, (20)

where H(?) is the unit step function. Moreover, the following ‘‘open pore’’ boundary conditions is assumed
for the surface of the poroelastic half-space [21]

pðx; y; 0; tÞ ¼ 0. (21)

Assuming that the centerline of the beam and the surface of the half-space are always in contact, then, the
following compatibility condition holds:

uzðx; 0; 0; tÞ ¼ wbðx; tÞ. (22)

To calculate the bending moment and the shear force for the beam, the following relations are used:

Mxðx; tÞ ¼ EIz

q2wbðx; tÞ

q2x
,

Qxðx; tÞ ¼ EIz

q3wbðx; tÞ

q3x
. (23)

Fourier transformation of Eqs. (19) and (23) with respect to the coordinate x and use of the shifting theorem
of the Fourier transform yield the following relations:

^̄F ðx;oÞ ¼ 2pF zdðoþ xcÞ, (24)

^̄Mxðx;oÞ ¼ �EIzx
2 ^̄wbðx;oÞ, (25a)

^̄Qxðx;oÞ ¼ �iEIzx
3 ^̄wbðx;oÞ. (25b)
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4. TRM method for a beam overlying a layered poroelastic half-space

The model for an infinite beam resting on n horizontal porous layers overlying a porous half-space is
illustrated in Fig. 1. The jth porous layer is denoted by the symbol Lj and the bottom layer is denoted by Ln+1.
The thickness of the jth layer is hj ¼ zj�zj�1 and zj�1, zj are the depth of the upper and lower boundary of the
jth layer. To solve the beam and the half-space system, the concept of the ‘‘equivalent stiffness’’ [7] is
introduced for the half-space. The equivalent stiffness method allows an exact reduction of an original 3-D
problem to a 1-D problem by introducing a frequency and wavenumber-dependent complex stiffness keq for
the layered half-space.

To determine the equivalent stiffness for the layered porous half-space, the TRM formulation for a layered
porous half-space is necessary. Extracting all the positive and negative exponential term e�gizði ¼ 1; 2; 3Þ from
general solution for the displacements, the pore pressure and the stresses (Eqs. (12), (14), (16), (17)) of the jth
porous layer Lj and combining them with the arbitrary functions A(x, Z, o),y,H(x, Z, o), which are replaced

by aðjÞðx; Z;oÞe�g1j zj ,bðjÞðx; Z;oÞeg1j zj�1 , cðjÞðx; Z;oÞe�g2j zj ,d ðjÞðx; Z;oÞeg2j zj�1 , eðjÞðx; Z;oÞe�g3j zj , f ðjÞðx; Z;oÞeg3j zj�1 ,

gðjÞðx; Z;oÞe�g3j zj , hðjÞðx; Z;oÞeg3j zj�1 , respectively, the expressions for the displacements, the stresses and the
pore pressure for the jth porous layer have the following form:

WðjÞðx; Z;o; zÞ8�1 ¼
D
ðjÞ
d ðx; Z;oÞ DðjÞu ðx; Z;oÞ

S
ðjÞ
d ðx; Z;oÞ SðjÞu ðx; Z;oÞ

2
4

3
5� W

ðjÞ
d ðx; Z;o; zÞ

TWðjÞu ðx; Z;o; zÞ
T

h iT
, (26a)

WðjÞðx; Z;o; zÞ8�1 ¼ ix ~̄̂u
ðjÞ

x
~̄̂u
ðjÞ

y
~̄̂u
ðjÞ

z
~̄̂w
ðjÞ

z ix ~̄̂s
ðjÞ

xz
~̄̂s
ðjÞ

yz
~̄̂s
ðjÞ

zz
~̄̂p
ðjÞ

� �T
, (26b)

W
ðjÞ
d ðx; Z;o; zÞ ¼ bðjÞe�g1jðz�zj�1Þ d ðjÞe�g2jðz�zj�1Þ

�
f ðjÞe�g3jðz�zj�1Þ hðjÞe�g3jðz�zj�1Þ

	T
, (26c)

WðjÞu ðx; Z;o; zÞ ¼ aðjÞe�g1jðzj�zÞ cðjÞe�g2jðzj�zÞ
�

eðjÞe�g3jðzj�zÞ gðjÞe�g3jðzj�zÞ
	T
, (26d)

where the superscript j denotes the jth porous layer and W(j)(x, Z, z, o)8� 1 is the vector for the displacements,

the stresses and the pore pressure in the frequency–wavenumber domain. Note that the vectors W
ðjÞ
d ðx; Z; z;oÞ,

WðjÞu ðx; Z; z;oÞ are termed as down-going and up-going wave vector.

From Eqs. (26c) and (26d), one has the following equations:

W
ðjÞ
d ðx; Z; zj�1;oÞ ¼ bðjÞðx; Z;oÞ d ðjÞðx; Z;oÞ

�
f ðjÞðx; Z;oÞ hðjÞðx; Z;oÞ

	T
,

WðjÞu ðx; Z; zj ;oÞ ¼ aðjÞðx; Z;oÞ cðjÞðx; Z;oÞ
�

eðjÞðx; Z;oÞ gðjÞðx; Z;oÞ
	T
. (27)

In terms of Eqs. (26) and (27), the down-going and the up-going wave vectors are recast in the following
form:

W
ðjÞ
d ðx; Z; z;oÞ ¼ EðjÞðz� zj�1ÞW

ðjÞ
d ðx; Z; zj�1;oÞ,

WðjÞu ðx; Z; z;oÞ ¼ EðjÞðzj � zÞWðjÞu ðx; Z; zj ;oÞ, (28)

where

EðjÞð_Þ ¼

e�g1j_ 0 0 0

0 e�g2j_ 0 0

0 0 e�g3j_ 0

0 0 0 e�g3j_

2
6664

3
7775.

According to Deresiewicz and Skalak [21], displacements ux, uy, uz, wz and the pore pressure p,
stresses sxz, syz, szz should be continuous at the interfaces. Thus, the following eight continuity conditions
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hold at each interface:

~̄̂u
ðjÞ

x ðx; Z; zj ;oÞ ¼ ~̄̂u
ðjþ1Þ

x ðx; Z; zj ;oÞ; ~̄̂u
ðjÞ

y ðx; Z; zj ;oÞ ¼ ~̄̂u
ðjþ1Þ

y ðx; Z; zj ;oÞ,

~̄̂u
ðjÞ

z ðx; Z; zj ;oÞ ¼ ~̄̂u
ðjþ1Þ

z ðx; Z; zj ;oÞ; ~̄̂p
ðjÞ

ðx; Z; zj ;oÞ ¼ ~̄̂p
ðjþ1Þ
ðx; Z; zj ;oÞ,

~̄̂s
ðjÞ

xzðx; Z; zj ;oÞ ¼ ~̄̂s
ðjþ1Þ

xz ðx; Z; zj ;oÞ; ~̄̂s
ðjÞ

yzðx; Z; zj ;oÞ ¼ ~̄̂s
ðjþ1Þ

yz ðx; Z; zj ;oÞ,

~̄̂s
ðjÞ

zz ðx; Z; zj ;oÞ ¼ ~̄̂s
ðjþ1Þ

zz ðx; Z; zj ;oÞ; ~̄̂w
ðjÞ

z ðx; Z; zj ;oÞ ¼ ~̄̂w
ðjþ1Þ

z ðx; Z; zj ;oÞ ðj ¼ 1; 2; . . . ; nÞ. (29)

Besides, if the bottom layer (Ln+1 layer) is a half-space, the up-going wave should vanish. One, therefore, has
the following four radiation conditions:

Wðnþ1Þu ðx; Z; z;oÞ ¼ 0; z 2 Lnþ1. (30)

If the layered half-space consists of n porous layers overlying a rigid half-space with a completely
impermeable surface, then, the boundary condition for the nth layer at z ¼ zn has the following form:

~̄̂u
ðnÞ

x ðx; Z; zn;oÞ ¼ 0; ~̄̂u
ðnÞ

y x; Z; zn;oÞ ¼ 0,

~̄̂u
ðnÞ

z ðx; Z; zn;oÞ ¼ 0; ~̄̂w
ðnÞ

z ðx; Z; zn;oÞ ¼ 0. (31)

In terms of Eq. (26), the continuity condition (29) for the jth interface is recast as follows:

�D
ðjþ1Þ
d

�S
ðjþ1Þ
d

2
4 DðjÞu

SðjÞu

#
W
ðjþ1Þ
d ðx; Z;o; zjÞ

WðjÞu ðx; Z;o; zjÞ

" #
¼
�D

ðjÞ
d

�S
ðjÞ
d

2
4 Dðjþ1Þu

Sðjþ1Þu

#
W
ðjÞ
d ðx; Z;o; zjÞ

Wðjþ1Þu ðx; Z;o; zjÞ

" #
ðj ¼ 1; 2; . . . ; nÞ. (32)

Inversion of the matrix at the left-hand side of Eq. (32) gives

W
ðjþ1Þ
d ðx; Z;o; zjÞ

WðjÞu ðx; Z;o; zjÞ

" #
¼

T
ðjÞ
d

R
ðjÞ
d

2
4 RðjÞu

TðjÞu

#
W
ðjÞ
d ðx; Z;o; zjÞ

Wðjþ1Þu ðx; Z;o; zjÞ

" #
, (33)

where

T
ðjÞ
d

R
ðjÞ
d

2
4 RðjÞu

TðjÞu

#
¼
�D

ðjþ1Þ
d

�S
ðjþ1Þ
d

2
4 DðjÞu

SðjÞu

#�1
�D

ðjÞ
d

�S
ðjÞ
d

2
4 Dðjþ1Þu

Sðjþ1Þu

#
.

The 4� 4 matrix RðjÞu ðx; Z;oÞ and R
ðjÞ
d ðx; Z;oÞ in Eq. (33) represent reflection matrices for the up-going and

the down-going P1, P2, S waves incident on the jth interface, while TðjÞu ðx; Z;oÞ, T
ðjÞ
d ðx; Z;oÞ denote the

transmission matrices for the up-going and the down-going P1, P2, S waves incident on the jth interface.
For simplicity, the following matrix notations are introduced:

T
ðjÞ
de

R
ðjÞ
de

2
4 RðjÞue

TðjÞue

#
¼

T
ðjÞ
d

R
ðjÞ
d

2
4 RðjÞu

TðjÞu

#
EðjÞðhjÞ

0

"
0

Eðjþ1Þðhjþ1Þ

#
,

T
gðjÞ
de

R
gðjÞ
de

2
4 RgðjÞ

ue

TgðjÞ
ue

#
¼

T
gðjÞ
d

R
gðjÞ
d

2
4 RgðjÞ

u

TgðjÞ
u

#
EðjÞðhjÞ

0

"
0

Eðjþ1Þðhjþ1Þ

#
, (34)

where T
gðjÞ
de ðx; Z;oÞ, R

gðjÞ
de ðx; Z;oÞ, TgðjÞ

ue ðx; Z;oÞ,R
gðjÞ
ue ðx; Z;oÞ are the generalized transmission and reflection

matrices for the down-going and the up-going wave incident on the jth interface and their expressions will be
given below.



ARTICLE IN PRESS
B. Xu et al. / Journal of Sound and Vibration 306 (2007) 91–11098
According to Lu and Hanyga [15], the following equations connecting the downward wave vector

W
ð1Þ
d ðx; Z; 0;oÞ in the first layer with the up-going and the down-going wave vectors WðjÞu ðx; Z; zj ;oÞ,

W
ðjÞ
d ðx; Z; zj�1;oÞ in the Lj (j ¼ 1, 2,y, n) hold

W
ðjÞ
d ðx; Z; zj�1;oÞ ¼ T

gðj�1Þ
de T

gðj�2Þ
de . . .Tgð2Þ

de T
gð1Þ
d W

ð1Þ
d ðx; Z; z1;oÞ, (35a)

WðjÞu ðx; Z; zj ;oÞ ¼ R
gðjÞ
d W

ðjÞ
d ðx; Z; zj ;oÞ, (35b)

R
gðjÞ
d ¼ R

ðjÞ
d þ TðjÞueR

ðjþ1Þ
de T

gðjÞ
d , (35c)

T
gðjÞ
de ¼ ðI� RðjÞueR

gðjþ1Þ
de Þ

�1T
ðjÞ
de ; j ¼ 1; 2; . . . ; n. (35d)

If the bottom layer has the radiation condition (30), the following relation is obtained from Eq. (33):

R
gðnþ1Þ
de ¼ 0. (36)

On the other hand, if the bottom layer is a rigid half-space, in terms of Eq. (26), one has the following
equation:

D
ðnÞ
d W

ðnÞ
d ðx; Z;o; znÞ þDðnÞu WðnÞu ðx; Z;o; znÞ ¼ 0. (37)

From Eq. (37), one has the following equation:

WðnÞu ðx; Z; zn;oÞ ¼ R
gðnÞ
de W

ðnÞ
d ðx; Z; zn�1;oÞ, (38)

where R
gðnÞ
de ¼ � DðnÞu

� 	�1
D
ðnÞ
d EðhnÞ.

Note that in terms of the known R
gðnþ1Þ
de or R

gðnÞ
de , T

gðjÞ
d and R

gðjÞ
d are available for each layer via Eq. (35). In

terms of the surface boundary conditions Eqs. (20), (21) and (26), the following relation is obtained:

S
ð1Þ
d W

ð1Þ
d ðx; Z; 0;oÞ þ Sð1Þu Wð1Þu ðx; Z; 0;oÞ ¼

~̄̂Qðx; Z;oÞ, (39)

where ~̄̂Qðx; Z;oÞ ¼ 0 0� sin ðZaÞ=ðZaÞ ^̄qzðx;oÞ 0
� 	T

.
According to Eq. (35b), the following equation is obtained:

Wð1Þu ðx; Z; z1;oÞ ¼ R
gð1Þ
de W

ð1Þ
d ðx; Z; 0;oÞ, (40)

where R
gð1Þ
de can be obtained by Eq. (35). Substitutions of Eq. (40) into Eq. (39), the down-going wave vector

for the first layer is obtained

W
ð1Þ
d ðx; Z; 0;oÞ ¼ ½S

ð1Þ
d þ Sð1Þu Eð1Þðh1ÞR

gð1Þ
de �
�1 ~̄̂Qðx; Z;oÞ. (41)

Substitution of the wave vectors Wð1Þu ðx; Z; z1;oÞ and W
ð1Þ
d ðx; Z; 0;oÞ for the first layer into Eq. (26a), the

vertical displacement of the first layer is obtained as follows:

~̄̂uzðx; Z; 0;oÞ ¼ �
sin ðZaÞ

Za
fðx; Z; 0;oÞ ^̄qzðx;oÞ, (42)

where f(x, Z, 0, o) can be obtained by Eqs. (26), (40) and (41).
Performing the inverse Fourier transform with respect to Z-y on Eq. (42), one has the following equation:

^̄uzðx; 0; 0;oÞ ¼
^̄qzðx;oÞ
2p

Z 1
�1

sin ðZaÞ

Za
fðx; Z; 0;oÞdZ. (43)

Substituting Eq. (43), the compatibility condition (22) into Eq. (18) in the x, o domain, one has the
following equations for the beam in the Fourier transformed domain:

^̄wbðx;oÞ ¼
2pF zdðoþ xcÞ

�mbo2 þ EIzx
4
þ keqðx;oÞ

� 	 , (44)

keqðx;oÞ ¼
2pR1

�1
fðx; Z; 0;oÞ½sin ðZaÞ=ðZaÞ�dZ

, (45)
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where keq(x, o) is the equivalent stiffness of the layered half-space. As mentioned above, the equivalent
stiffness of the layered half-space is a function of the frequency o and the wavenumber x.

5. Solution of the beam and the half-space system

Applying the two-dimensional inverse Fourier transformation for x-x and o-t on Eq. (44) and using the
property of the Dirac’s delta function, the following equation is obtained:

wbðx; tÞ ¼
F z

2p

Z 1
�1

eixx

EIx4 �mbðxcÞ2 þ keqðx;�xcÞ
dx. (46)

The expressions for the bending moment and the shear force of the beam have the following form:

Mxðx; tÞ ¼ �
F z

2p

Z 1
�1

EIzx
2eixx

EIx4 �mbðxcÞ2 þ keqðx;�xcÞ
dx,

Qxðx; tÞ ¼ �
iF z

2p

Z 1
�1

EIzx
3eixx

EIzx
4
�mbðxcÞ2 þ keqðx;�xcÞ

dx. (47)

After determining the deflection of the beam via Eq. (44), the wave vectors for the first layer can be
calculated by Eqs. (22), (40), (41) and (43). Based on the obtained wave vectors for the first layer, the up-going
and the down-going wave vectorsWðjÞu ðx; Z; zj ;oÞ,W

ðjÞ
d ðx; Z; zj�1;oÞ for Lj (j ¼ 2, 3,y, n) can be obtained using

Eq. (35). After determining the wave vectors for an arbitrary layer via Eq. (35), the displacements, the stresses
and the pore pressure can be evaluated by Eq. (26).

If the displacements, the stresses and the pore pressure of the half-space are denoted by the symbol

~̄̂Oðx; Z; z;oÞ, then, in view of Eq. (44), all the variables can be expressed in the following form:

~̄̂Oðx; Z; z;oÞ ¼ dðoþ xcÞ ~̄̂O
�

ðx; Z; z;oÞ. (48)

Thus, the displacements, the stresses and the pore pressure of the half-space in the time–space domain have
the following uniform form:

Oðx; y; z; tÞ ¼
1

2p

� �3 Z þ1
�1

Z þ1
�1

Z þ1
�1

dðoþ xcÞ ~̄̂O
�

ðx; Z; z;oÞeiðotþxxþZyÞ dxdZdo. (49)

Due to the presence of Dirac’s delta function in the above integral, the inversion of the Fourier transform
with respect to o in Eq. (49) can be accomplished analytically by simply replacing o with �xc. As a result, the
original triple integral is reduced to the following double integral with respect to the wavenumbers x, Z:

Oðx; y; z; tÞ ¼
1

2p

� �3 Z þ1
�1

Z þ1
�1

~̄̂O
�

ðx; Z; z;�xcÞeixðx�ctÞeiZy dxdZ. (50)

It follows from Eq. (50) that the frequency composition of the response of the porous medium depends on
the velocity of the moving load. Thus, for high-velocity moving loads, high frequency component is involved.
Therefore, the low-frequency Biot’s theory is not appropriate for treating moving loads with high speeds.
To describe high-frequency drag force between the solid skeleton and the pore fluid, JKD model [20] is
incorporated with Biot’s theory in this study. According to JKD model, the frequency domain viscosity
correction function corresponding to the time domain K(t) in Eq. (4b) assumes the form:

K̂ðoÞ ¼ 1þ i
o
oc

ag

� �1=2

; oc ¼
bpf

rf a1
; (51)

where oc is transition frequency which separates viscous-force-dominated flow from inertial-force-dominated

flow and ag is the pore geometry term which assumes 1
2 for many porous media [20].

It also should be noted that the real x-axis and Z-axis is free of any singularities for a multi-layered
poroelastic medium if the parameter bp representing internal friction between the solid and the pore fluid does
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not vanish. Thus, the infinite integration in Eq. (50) with respect to the horizontal wavenumber x and Z are
free of any singularity in the path of integration. In this paper, the FFT method is used to conduct the inverse
Fourier transform [22]. To avoid aliasing and leakage when conducting the inverse transform, the integrals
with respect to wavenumber x and Z must be truncated at sufficiently large values, and the sample spacing in
wavenumber domain x and Z must fulfill the following requirement:

Dxo
1

Xmax
; DZo

1

Ymax
, (52)

where Xmax and Ymax specify the size of the domain over which the response of the half-space is non-vanishing.
In this paper, we found that a discrete grid of 2045� 2045 for the domain �16m�1px, Zp16m�1 satisfies
Eq. (52) and can ensure enough accuracy for the inversion of the Fourier transform.

6. Numerical results

6.1. Validation of the proposed method

When the material parameters for each layer are assumed the same values, the layered poroelastic half-space
will be reduced to a homogeneous poroelastic half-space. As the first test, the results for the reduced
homogeneous poroelastic half-space in this study will be compared with corresponding results in Ref. [11].
The half-space consists of three layers: two saturated porous layers and an underlying homogeneous

porous half-space. The material parameters for the three layers take the following values:

m(1) ¼ m(2) ¼ m(3) ¼ 2.0� 107N/m2, l(1) ¼ l(2) ¼ l(3) ¼ 4.0� 107N/m2, M(1)
¼M(2)

¼M(3)
¼ 2.4� 108N/m2,

rð1Þs ¼ rð2Þs ¼ rð3Þs ¼ 2:0� 103 kg=m3, rð1Þf ¼ rð2Þf ¼r
ð3Þ
f ¼1:0� 103 kg=m3, f (1)

¼ f (2)
¼ f (3)

¼ 0.125, a(1) ¼ a(2) ¼

a(3) ¼ 0.97, bð1Þp ¼ bðÞp ¼ bð3Þp ¼ 1:94� 106 kg=m3s, m(1)
¼ m(2)

¼ m(3)
¼ 1990 kg/m3. The moving line load F is

normal to the beam and its velocity assumes the values c ¼ 0.2vSH, c ¼ 0.88vSH, c ¼ 1.3vSH, respectively,

where vSH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1Þ=rð1Þs

q
. The magnitude of the load is Fz. The parameters for the beam are as follows:

EIz ¼ 1.28� 109Nm2, mb ¼ 7350 kg/m, a ¼ 2.0m.
Fig. 2 shows the vertical displacement for the beam versus the coordinate x0 (�60mpx0 ¼ x�ctp60m) for

the three cases: c ¼ 0.2vSH, c ¼ 0.88vSH, c ¼ 13vSH, where the vertical displacement for the beam is normalized
as w�b ¼ mRwbaR=F z. The reference shear modulus, length is mR ¼ 2.0� 107N/m2, aR ¼ 2.0m, respectively.
-60 30 60
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c=0.2 vSH (Ref. [11])
c=0.88 vSH (Ref. [11])
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c=0.2 vSH  ( Results of thispaper)
c=0.88 vSH (Results of this paper)
c=1.3 vSH   (Results of this paper)

x' (m)

w
* b

-30 0

Fig. 2. Comparison of present vertical deflections of a beam overlying a homogeneous poroelastic half-space with results of Ref. [11] for

different velocities: (a) c ¼ 0.2vSH, (b) c ¼ 0.88vSH and (c) c ¼ 1.3vSH.
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In order to validate our method, results of Jin [11] are also shown in Fig. 2. It follows from Fig. 2 that results
of the current paper are in a very good agreement with those of Jin [11].

6.2. Dynamic response of an infinite beam resting on a two-layered poroelastic half-space

In this section, the layered half-space consists of an upper layer and an underlying homogeneous half-space.
The upper layer is a saturated poroelastic layer with depth h, while the lower half-space is a rigid bedrock with
0 2

-2

-1

0

1

2

k* eq

�=0.78 

real part

imaginary part

vPH / vSH

1 3

Fig. 3. The equivalent stiffness k�eq for a two-layer poroelastic half-space as a function of the phase velocity vPH for wavenumber

x ¼ 0.78m.
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h=39.0 m

w
* b

0.6

c/vSH

1.0 1.2

Fig. 4. The maximum vertical deflection of the beam w�b versus moving load velocity c for different depths of the overlying

layer: (a) h ¼ 1.3m, (b) h ¼ 13.0m, (c) h ¼ 26.0m and (d) h ¼ 39.0m.
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an impermeable surface. The line load F moves along the positive x-axis with a constant velocity c and the
load is normal to the beam. In this example, the equivalent stiffness of the two-layered half-space is calculated
first. Then, influences of the thickness of the upper layer on the vertical vibration and the internal forces of the
beam are discussed.

The parameters for the beam and the upper layer are given as follows: EIz ¼ 1.3� 109Nm2, mb ¼ 1770kg/m,
a ¼ 1.3m, m ¼ 3.8� 107N/m2, l ¼ 3.8� 107N/m2, M ¼ 2.4� 108N/m2, rs ¼ 2.0� 103 kg/m3, rf ¼ 1.0�
103 kg/m3, f ¼ 0.35, a ¼ 0.97, bp ¼ 1.94� 106 kg/m3s, m ¼ 1990 kg/m3.

To analyze keq the following variables are introduced: the phase velocity vPH ¼ o/x of waves in the beam

and a reference shear wave velocity which is defined as vSH ¼
ffiffiffiffiffiffiffiffiffiffi
m=rs

p
. The equivalent stiffness keq is

normalized as k�eq ¼ keq=m. Moreover, the vertical displacement, the bending moment and the shear force of

the beam are normalized as w�b ¼ mwba=Fz, M* ¼Mx/(Fza), Q*
¼ Qx/Fz, respectively.
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Fig. 5. The internal force for the infinite beam subjected to a moving load with a constant velocity c ¼ 0.7vSH at the observation point

P(0.0m) versus time t for two depths of the overlying layer, h ¼ 1.3 and 26.0m: (a) the bending moment versus time t; (b) the shear force

versus time t.
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6.2.1. The equivalent stiffness of the two-layered poroelastic half-space

The equivalent stiffness keq of the half-space is a function of the frequency o and the wavenumber x, which
can be obtained by performing integration with respect to the wavenumber Z. As the real Z axis is free of any
singularities for a layer poroelastic half-space due to the attenuation of the porous medium, thus, the integral
in Eq. (45) can be evaluated by a direct numerical integration. In calculation, the thickness of the upper porous
layer is h ¼ 10.4m.

Fig. 3 depicts the equivalent stiffness k�eq as a function of the phase velocity vPH for wavenumber x ¼ 0.78m.
It follows from Fig. 3 that for vPHovCR, the imaginary part of the equivalent stiffness is very small; however,
for vPH4vCR, the imaginary part of the stiffness increases considerably, where vCR is the critical velocity [7].
The significant increase of the imaginary part of the stiffness when vPH4vCR is due to the radiation of energy
into the half-space, which takes energy from the beam and entails substantial attenuation for the motion of the
beam. Besides, Fig. 3 suggests that the equivalent stiffness becomes rather small (both the real and the
imaginary part) for vPH ¼ vCR, which is mainly due to the resonance of the system [7]. Moreover, both the real
and the imaginary part of the equivalent stiffness has a set of minima when vPH4vCR. Therefore, for the beam
on a layered poroelastic half-space, there still exist critical velocities even when the load velocity is larger than
the shear wave speed of the medium. According to Metrikine and Popp [7], the critical (resonance) velocity of
the moving load can be determined from the curves of the lowest dispersion branch of the layer. In this
section, for the upper layer with depth h ¼ 10.4m, the critical velocity is vCR ¼ 0.97vSH, which is very close to
the Rayleigh wave velocity vR of the porous medium.

6.2.2. The influences of the thickness of the upper layer on the response of the beam

In the following calculation, thickness of the upper porous layer assumes the values h ¼ 1.3, 13.0, 26.0 and
39.0m. The maximum vertical deflection of the beam w�b versus the moving load velocity c/vSH is shown
in Fig. 4 for different depths. Fig. 4 shows that at first the maximum deflection of the beam increases as the
depth of the upper layer increases. However, when the depth reaches h ¼ 26.0m, the increment is very small.

Figs. 5(a) and (b) illustrate the bending moment and the shear force for the infinite beam at the observation
point P(0.0m, 0.0m) versus time t for two depths of the layer: h ¼ 1.3 and 26.0m. The velocity of the moving
load is c ¼ 0.7vSH. Time t ¼ 0.0 s corresponds to the instant at which the moving load is located at the origin.
Fig. 5 shows that the increasing thickness of the layer enhances the bending moment and the shear force of the
beam markedly.
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Fig. 6. The equivalent stiffness k�eq for a three-layer poroelastic half-space as a function of the phase velocity vPH for wavenumber

x ¼ 1.4m.
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6.3. Dynamic response of an infinite beam resting on a three-layered poroelastic half-space

In this example, the infinite beam is assumed to rest on a three-layer poroelastic half-space, which consists of
two saturated porous layers and an underlying homogeneous porous half-space. The line normal load F moves
along the positive x-axis direction with a constant velocity c. The thicknesses of the upper two layers are
h(1) ¼ h(2) ¼ 2.0m. The Lame constants of the three layers for cases A–C assume the following values:
(A) m(1):m(2):m(3) ¼ l(1):l(2):l(3) ¼ 1:1:1; (B) m(1):m(2):m(3) ¼ l(1):l(2):l(3) ¼ 1:0.2:1; (C) m(1):m(2):m(3) ¼ l(1):l(2):l(3) ¼
1:5:1, where m(3) ¼ 2.5� 107N/m2, l(3) ¼ 5.0� 107N/m2. The remaining parameters for each layer take the

following values: m(1)
¼ m(2)

¼ m(3)
¼ 1990 kg/m3, rð1Þs ¼ rð2Þs ¼ rð3Þs ¼ 2:0� 103 kg=m3, rð1Þf ¼ rð2Þf ¼ rð3Þf ¼
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Fig. 7. The deflection w�b versus coordinates �60.0mpx0 ¼ x�ctp60.0m for the beam subjected to a moving load: (a) velocity

c ¼ 0.2vSH; (b) velocity c ¼ 0.8vSH.
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1:0� 103 kg=m3, f (1)
¼ f (2)

¼ f (3)
¼ 0.3, a(1) ¼ a(2) ¼ a(3) ¼ 0.97, M(1)

¼M(2)
¼M(3)

¼ 5.0� 109N/m2,

bð1Þp ¼ bð2Þp ¼ bð3Þp ¼ 1:0� 1010 kg=m3 s. The parameters for the beam are as follows: EIz ¼ 1.2� 109Nm2,

mb ¼ 1790 kg/m, a ¼ 2.0m. The reference shear wave velocity is defined as vSH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð3Þ=rð3Þs

q
.

6.3.1. The equivalent stiffness of the three-layered poroelastic half-space

To analyze the equivalent stiffness keq of the three-layered poroelastic half-space, the same phase velocity
vPH ¼ o/x as in Section 6.2 is also introduced. The equivalent stiffness is normalized as k�eq ¼ keq=mR, the
reference shear modulus is mR ¼ 2.5� 107N/m2.
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(a) velocity c ¼ 0.2vSH; (b) velocity c ¼ 0.8vSH.
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Fig. 6 depicts the equivalent stiffness of the three-layered poroelastic half-space for wavenumber x ¼ 1.4m.
According to the method outlined in Ref. [7], the critical velocities vCR for the three cases are obtained
as follows: vCR ¼ 0.94vSH for case A; vCR ¼ 0.85vSH for case B; vCR ¼ 1.09vSH for case C. Fig. 6
shows for vPHo0.85vSH, the real part of the equivalent stiffness of case C is larger than those for the other
two cases.

6.3.2. Dynamic response of the beam resting on the three-layered poroelastic half-space

In this part, results for the vertical displacements, the bending moment and the shear force for the beam are
given and are normalized as w�b ¼ mRwbaR=Fz, M�

x ¼Mx=ðFzaRÞ, Q�x ¼ Qx=Fz. The reference shear modulus
and the reference length are mR ¼ 2.5� 107N/m2 and aR ¼ 2.0m, respectively.
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Fig. 9. The shear force Q�x versus coordinates �60.0mpx0 ¼ x�ctp60.0m for the beam subjected to a moving load: (a) velocity

c ¼ 0.2vSH; (b) velocity c ¼ 0.8vSH.
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Figs. 7–9 show the vertical displacements, the bending moment and the shear force of the beam versus the
coordinate �60.0mpx0 ¼ x�ctp60.0m. In calculation, the moving load is located at point (x0 ¼ 0.0m) with
velocity c ¼ 0.2vSH, c ¼ 0.8vSH, respectively. For velocity c ¼ 0.2vSH, the vertical displacement, the bending
moment and the shear force of the beam are almost symmetrical with respect to the point x0 ¼ 0.0m; however,
for velocity c ¼ 0.8vSH, the symmetry with respect to the point x0 ¼ 0.0m is broken. Also, Figs. 7–9 illustrate
that the presence of a softer middle layer within the layered half-space leads to a considerable increment of the
vertical displacement, the bending moment and the shear force, which is more pronounced for the case
c ¼ 0.8vSH. Also, the softer middle layer makes the responses of the infinite beam oscillate dramatically.
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Fig. 10. The interaction force q* between the beam and a three-layered poroelastic half-space for coordinate�60.0mpx0 ¼ x�ctp60.0m:

(a) velocity c ¼ 0.2vSH; (b) velocity c ¼ 0.8vSH.
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6.4. Soil response due to moving loads

In this example, the parameters for the half-space and the beam take the same values as in Section 6.3. The
contact force between the beam and the half-space and pore pressure of the half-space due to moving load will
be calculated. The moving line load is located at point (x0 ¼ 0.0m) with the velocity c ¼ 0.2vSH, c ¼ 0.8vSH,
respectively. The contact force and the pore pressure are normalized as q* ¼ qaR/Fz, p� ¼ pa2

R=F z, respectively.
The reference length is chosen as aR ¼ 2.0m.

Fig. 10 illustrates the contact force between the beam and the half-space surface versus the coordinate
�60.0mpx0 ¼ x�ctp60.0m with y ¼ z ¼ 0.0m. For velocity c ¼ 0.2vSH, the contact force is almost
symmetrical with respect to the point x0 ¼ 0.0m; however, for velocity c ¼ 0.8vSH, the symmetry is lost.
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Fig. 11. The pore pressure p* at the observation point P(0.0m, 1.0m, 2.0m) due to a moving load applied on the beam overlying a three-

layered poroelastic half-space: (a) velocity c ¼ 0.2vSH; (b) velocity c ¼ 0.8vSH.
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Comparing Fig. 10 with Figs. 8 and 9, it is observed that the softer middle layer diminishes the contact force
between the half-space and the beam.

Fig. 11 plots the pore pressure for the soil at the point P(x ¼ 0.0, 1.0 and 2.0m) versus time t. Likewise, time
t ¼ 0.0 s corresponds to the instant at which the applied load passing through the origin. It follows from
Fig. 11 that for all the three cases, the pore pressure at the observation point increases with increasing velocity.
One can also see that the presence of a softer middle layer enhances the pore pressure for the case c ¼ 0.8vSH,
while it diminishes the pore pressure for the case c ¼ 0.2vSH. From Fig. 11(a), one can see that for lower
velocity (c ¼ 0.2vSH), the pore pressure is symmetrical with respect to time t ¼ 0.0 s. However, for larger
velocity (c ¼ 0.8vSH), the symmetry is missing (Fig. 11(b)). Furthermore, negative pore pressure occurs at time
around t ¼ 0.0 s.

7. Conclusions

Dynamic response of an infinite beam resting on a layered poroelastic half-space subjected to moving loads
is addressed in this study. The equivalent stiffness of the layered porous half-space is derived by means of the
TRMmethod. Based on the proposed methodology, the deflection, the bending moment and the shear force of
the beam are obtained. Response of the half-space due to moving loading is also calculated. The influences of
the load speed and parameters of the poroelastic half-space on the beam responses are investigated. It follows
from the numerical results that the presence of a softer middle layer inside the layered half-space leads to a
considerable increment of the vertical displacement, the bending moment and the shear force, in particular for
high velocity cases. Also, the middle softer layer makes the responses of the infinite beam oscillate
dramatically. The present investigation also shows that for a beam overlying a layered poroelastic half-space,
there still exist critical velocities even when the load velocity is larger than the shear wave velocity of the
medium.
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