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Abstract

Active magnetic bearings (AMBs) present a technology which has many advantages compared to traditional bearing

concepts. However, they require retainer bearings in order to prevent damages in the event of a system failure. In the drop-

down when the rotor falls from the magnetic field on the retainer bearings, the design of the retainer bearings has a

significant influence on the dynamic behavior of the rotor. In this study, the dynamics of an active magnetic bearing

supported rotor during the drop on retainer bearings is studied employing a detailed simulation model. The retainer

bearings are modeled using an accurate ball bearing model which takes into account damping and stiffness properties, oil

film, inertia of rolling elements and friction between races and rolling elements. The model of a flexible rotor system

accounts for unbalances as well as stiffness and damping properties of the support. In this study, the flexibility of the rotor

is described using the finite element approach with the component mode synthesis. This study sheds light on the effects of a

number of modes used in the component mode synthesis on the accuracy of simulated responses during the drop-down.

In addition, the effect of different friction models on the behavior of the rotor is examined.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The area of active magnetic bearings (AMBs) has been recently developed intensively because the non-
contact support provided by AMBs has several advantages compared to conventional bearings. The most
important advantages are non-existent friction and, consequently, little energy loss, the lack of need for
lubrication, and quiet operation. An AMB provides adjustable stiffness and damping, which makes accurate
rotor positioning possible. In addition, AMBs offer active control over the rotor that they support. Adjustable
stiffness and damping is beneficial particularly from the mechanical point of view. AMBs allow for the
controlling of the natural frequencies and damping properties of the rotor system during operation. As a
result, the vibration of the rotor can be controlled, and the rotor supported by AMBs can be operated at
supercritical speeds. Due to the active feedback control of AMBs, unbalance compensation during rotor
operation is also possible. In the unbalance compensation, the rotor does not rotate around its geometrical
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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center; instead, it rotates around its main inertia principal axis. It is important to note that the rotation
around the main inertia principal axis is not possible when using rolling element bearings. The most
important mechanical parts in AMBs are widely known, as well as the operation principle of bearings [1].
Compressors, generators, machine tools, and electric motors are the most general applications of AMBs. Due
to improved materials, strategies of control, and electric components, the performance and reliability
of AMBs are improving. However, additional bearings, the retainer bearings, still have a vital role in
AMB applications. The most crucial moment when the retainer bearings are needed is when the rotor drops
from the AMBs on retainer bearings caused by component or power failure [1–3]. Without appropriate
knowledge of retainer bearings, there is a chance that an AMB supported rotor system will be fatal in a drop-
down situation.

Retainer bearings can be categorized into three types. Bushing type retainer bearings are simple, and
consequently inexpensive and easy to repair when necessary. However, the friction properties of bushing type
retainer bearings can change during deceleration of a rotor due to the wearing of a sleeve. Wearing typically
increases the friction force, resulting in changes in the dynamic behavior of the rotor. Due to the high friction
caused by wearing, bushing type retainer bearings are often unable to dissipate the energy of the rotor without
the rotor becoming unstable. For this reason, bushing type retainer bearings are normally replaced after a low
number of high speed drop-downs. Retainer bearings based on a rolling element bearing are mechanically
more complicated, and therefore also more sensitive to impacts. The rolling element bearing stabilizes the
motion of the rotor after drop-down because the inner race rapidly achieves the angular velocity of the rotor.
This may prevent the whirling motion of the rotor. This is due to the fact that in a rolling condition, the
relative velocity between the rotor and the inner race of the bearing is virtually zero [4]. The third type of
retainer bearing is a combination of the two previously mentioned. However, this type of bearing suffers from
some drawbacks, such as a large moment of inertia of rotating parts. This can lead to slower acceleration to
the speed of the rotor when compared to traditional rolling element type retainer bearings. Investigations on
hybrid backup bearings [5] and zero clearance backup bearings [6] have also been carried out in order to
improve backup bearing technology. In addition, an active auxiliary bearing that is attached to the foundation
through unidirectional electromagnetic actuators is presented in the literature [7].

The most frequently examined characteristics of retainer bearings are stiffness, damping and friction
coefficients between the rotor and bearing. The effects of those coefficients are widely known, as reviewed by
Ecker [8], Zeng [9], Ishii and Kirk [2]. Cole et al. [10,11] examined the dynamic behavior of the rolling element
bearing after rotor impact. They pointed out that the inner race of the bearing should be allowed to accelerate
as rapidly as possible in order to minimize the energy dissipation in the bearing and consequently minimize the
likelihood of friction-induced whirling motion of the rotor. Raju et al. [12] performed a similar examination to
Cole et al. [10] using solid brass backup bearings. However, both of the results are useful in practical design
only when designing retainer bearings similar to those they examined. The dynamic behavior of bushing and
rolling bearing type retainer bearings differs considerably, as the investigations carried out by Fumagalli [4]
and Swanson et al. [13] have proved. The emergency drop-down of the rotor is usually caused by a component,
power or control system failure. It is noteworthy that researchers have different estimations regarding the
effect of the collapsing magnetic force on the drop-down behavior of the rotor. Zeng [14] mentioned in his
examination that the effect of the collapsing magnetic force of the failed AMB might be ignored in the
analysis. On the other hand, Orth et al. [3] compared the results of Fumagalli [4] with their own examinations
and suggested that the reason for the discrepancy between the examinations is the collapsing magnetic field of
the AMBs that is still producing a decreasing magnetic force.

Common to all above-mentioned examinations is that they are based on the finite element model [15],
conventional rotor dynamics or experimental studies. In most of the cases, the rotor is described by using
Jeffcott’s rotor model and simple bearing models. The objective of this study is to build a detailed simulation
model of the AMB system in order to describe the rotor drop-down on the retainer bearings. The introduced
simulation model couples a finite element model, modal reduction and a detailed bearing model. The retainer
bearings are described using a ball bearing model which includes damping and stiffness properties, oil film,
inertia of rolling elements and friction between the races and rolling elements. The model of the AMB system
includes unbalances of the flexible rotor, which is modeled by using the finite element approach. The stiffness
and damping properties of the support are included in the model.
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In this study, the focus is on the dynamics of the mechanical components of the AMB system, whereas
electrical components and electromechanical forces are not considered. This study sheds light on the effects of
a number of modes used in the component mode synthesis on the accuracy of simulated responses during the
drop-down. The unstabilizing effect of the natural frequency of the rotor during rundown is also explained in
this study. In addition, the effect of various friction models and radial clearance of the retainer bearing on the
behavior of the rotor system is described in this study.
2. Models of rotor and backup bearings

Models of the rotor, bearing and contact are presented in this section. The model of the rotor is
accomplished by using the finite element approach. In this study, the ball bearing model previously introduced
by Sopanen and Mikkola [16,17] is employed.
2.1. Models of the flexible rotor

The rotor under investigation is modeled using beam finite elements. The beam elements are based on the
Timoshenko beam theory, which accounts for the shear deformation. In this study, the analysis of the rotor is
focused on the lateral vibration, and for this reason, axial and torsion degrees of freedom are neglected in the
beam element. The cross-section of the element is assumed to remain undeformable, and thus the
configuration of the element can be parameterized by employing the centerline of the element. The detailed
implementation of a flexible rotor by using finite elements is explained in Refs. [18–20]. In the finite element
approach, equations of motion for a rotor bearing system with a variable rotation speed can be written
as follows:

M€qþ ðCþ OGÞ_qþ ðKþ _OGÞq ¼ O2Q1 þ
_OQ2 þ F, (1)

where M is the mass matrix, C is the damping matrix, which in this study is defined using experimental modal
analysis, G is the gyroscopic matrix and K is the stiffness matrix. Vector q is the vector of system nodal
coordinates, F the vector of externally applied forces and O the angular velocity of the rotor. Force vectors Q1

and Q2 describe the mass unbalance of the rotor. For a system with a constant angular velocity, Eq. (1) can be
simplified as follows:

M€qþ ðCþ OGÞ_qþ Kq ¼ O2Q1 þ F. (2)

Both Eqs. (1) and (2) can be solved by using a standard time integration scheme. However, a numerical
solution may be time consuming since equations may include high frequencies and the dimensions of the
matrices may be large. The number of the degrees of freedom of the system can be reduced using the
component mode synthesis [21,22]. In this approach, modal coordinates, instead of nodal coordinates, are
used in the equation of motion. In the component mode synthesis, high frequency modes can be neglected
without a significant loss of accuracy. This is realistic because, in practice, only the lowest frequency modes
contribute significantly to the response of the system. This approach will also lead to diagonal matrices in the
description of mass, stiffness and damping matrices. By using modal coordinates, Eq. (1) can be re-written
as follows:

UTMU€pþ ðUTCUþ OUTGUÞ_pþ ðUTKUþ _OUTGUÞp ¼ UTFtot, (3)

where U is the mode matrix of the rotor, p is a vector of modal coordinates and Ftot is a vector of the sum
of applied forces. The vector of modal coordinates can be solved using a standard time integration scheme.
A drawback associated with the component mode synthesis is the matrix multiplication that is needed when
physical forces are transformed into modal forces and when modal coordinates are transformed into physical
coordinates. However, in AMB applications only a few bearing forces are used and only a few sensor
displacements are needed during the solution of the equations of motion. For this reason, the transformations
can be simplified and the multiplication of full matrices may not be necessary.
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2.2. Model of ball bearing

2.2.1. Bearing force calculation

In this study, the bearing model introduced by Sopanen and Mikkola [16] is used in the dynamic analysis of
the drop-down of the rotor. A ball bearing consists of a number of moving parts. When describing the
responses of each part, a simulation model consists of a large number of degrees of freedom, and for this
reason it may be computationally excessively expensive. In this study, the bearing model ignores the
centrifugal forces of the balls and assumes that the cage of the bearing is ideal. In practice, this means that the
cage holds the balls in their predefined positions precisely. In the bearing model, it is also assumed that no
slipping or sliding occurs between the components of the bearing. This assumption may not be valid in the
acceleration of the retainer bearings. The assumption is, however, frequently used in studies of retainer
bearings [4,23]. Cole et al. [10] demonstrated the significance of sliding by using a full complement bearing
model. In the research, it is noted that rapid acceleration of the inner race may result in a zone of sliding
balls on the opposite side of the bearing to the impact, where ball loading is small. Helfert et al. [24]
have studied the dynamics of a cageless bearing and showed that the individual ball of the bearing achieved the
full rotation speed almost at the same time as the inner ring of the bearing. After this instant, the velocity of
the ball oscillates before it stabilizes to the velocity of the rotor. Based on the two above-mentioned studies,
the significance of sliding between the balls and races is important when the dynamics of an individual ball
or the bearing itself is examined. However, sliding between the balls and races can be disregarded
when considering the dynamics of the entire rotor system. It is also noteworthy that in the case of the bearing
with a cage, sliding of the ball in the zone of small ball loading is less significant compared to the case of the
cageless bearing.

The original bearing model proposed by Sopanen and Mikkola [16] included six degrees of freedom. In this
study, the bearing model is simplified in such a way that it takes only radial displacements and the rotation
around the bearing axis into account. The ball bearing model includes descriptions of nonlinear Hertzian
contact deformation and elastohydrodynamic fluid film thickness. The geometry, such as the outer and inner
diameter of the bearing and clearances, and material properties are given as an input to the model. In this
section, the description of resultant bearing forces acting upon the rotor in the radial directions is briefly
reviewed. A detailed description of the bearing model can be found from Ref. [16]. The contact force acting on
the ball i can be obtained as follows [25]:

Fi ¼ K tot
c ðd

tot
i Þ

3=2, (4)

where Kc
tot is the total stiffness coefficient of the bearing and di

tot is the total elastic deformation. The total
stiffness coefficient accounts for both the inner and outer race contacts and can thus be expressed as follows:

K tot
c ¼

1

K in
c

 !2=3

þ
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0
@

1
A
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. (5)

The inner and outer race contact stiffness coefficients, Kc
in and Kc

out, for the elliptical contact conjunction
between two solids can be calculated using the generalized fitted expressions for the elliptic integrals and
ellipticity parameter as follows:

K in;out
c ¼ pk̄eE0

ffiffiffiffiffiffiffiffiffiffiffi
Rx̄
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s
, (6)

where the ellipticity parameter k̄e and the effective modulus of elasticity E0 can be defined as follows [26]:
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where Rx and Ry are the effective radii of the curvature in x and y planes, n is Poisson’s ratio of the bearing
material and subscripts a and b refer to solids a and b, respectively (see Fig. 1). Curvature sum R presented in
Eq. (6) can be defined as follows [25]:

1

R
¼

1

Rx

� �
þ

1

Ry

� �
¼

1

rax

þ
1

rbx

� �
þ

1

ray

þ
1

rby

� �
, (9)

where rax, ray, rbx, and rby are radii of the curvature of two solids a and b in two directions, as shown in Fig. 1. It is
important to note that in the ball–ring elliptical contact, parameters rbx and rby are negative due to the concave
surfaces. Elliptic integrals of the first x̄ and second z̄ kinds presented in Eq. (6) can be expressed as follows:

x̄ ¼ 1:0003þ 0:5968
Rx

Ry

; z̄ ¼ 1:5277þ 0:6023 ln
Ry

Rx

� �
. (10)

Ball bearing forces can be calculated from the relative radial displacements between the rings, which are
denoted as ex and ey, correspondingly. In Fig. 2, a ball bearing with eccentricities in the X- and Y-directions is
shown. The corresponding radial eccentricity in the direction of ball i can be expressed as follows:

er
i ¼ ex cos ci þ ey sin ci, (11)

where ci is the attitude angle (azimuth angle) of ball i.
In Eq. (4), the total elastic deformation can be expressed as follows:

dtoti ¼ 2rþ hin
0 þ hout

0 � Rout þ Rin þ er
i , (12)
Fig. 1. Ball–ring elliptical contact.

Fig. 2. Axial cross-section of a ball bearing.
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A. Kärkkäinen et al. / Journal of Sound and Vibration 306 (2007) 601–617606
where r is the radius of the ball, h0
in and h0

out are the lubricant film thicknesses between the contact surfaces and
Rout is the outer and Rin is the inner raceway radius. The lubricant film thicknesses are calculated according to
the elastohydrodynamic lubrication theory as described in Refs. [16,25].

Finally, the resultant bearing forces acting upon the rotor in radial X- and Y-directions can be summarized
as follows:

FX ¼ �
Xz

i¼1

F i cos ci; F Y ¼ �
Xz

i¼1

Fi sin ci, (13)

where z is the number of balls in the bearing.

2.2.2. Bearing friction and inertia

In this section, the bearing friction and the influence of bearing rotational inertia are clarified. The total
friction torque of a ball bearing consists of three components and it can be written as follows [27]:

T fric ¼ T1 þ T2 þ T3, (14)

where T1 is the viscous friction torque, T2 is the load-dependent friction torque and T3 is the friction torque
caused by rubbing seals. For bearings that operate at relatively low speeds and moderate loads, viscous torque
can be expressed as follows [28]:

T1 ¼ 10�7f 0ðu0nrev=minÞ
2=3d3

m; u0nrev=minX2000

T1 ¼ 160� 10�7f 0d
3
m; u0nrev=minp2000, ð15Þ

where u0 is the kinematic viscosity of the lubricant in centistokes, nrev/min is the rotation speed given in
revolutions per minute, dm is the pitch diameter of the bearing and f0 is a coefficient that depends on the type
of bearing and lubricant. In practice, the values of f0 for deep groove ball bearings range between 0.7 and 2
[28]. Note that this friction torque is independent of the applied load.

The load-dependent friction torque for a deep groove ball bearing with a radial load F can be calculated
as follows:

T2 ¼ CT Fdm

F

C0

� �0:55

, (16)

where C0 is the static load rating of the bearing and CT is a variable that varies from 0.0002 to 0.0004. The
lower value of the scale pertains to light series bearings while the higher value of the scale pertains to heavy
series bearings [28]. In this study, the value of parameter CT for both retainer bearings is selected to be 0.0003.

If rubbing seals are used in ball bearings, the frictional losses can be greater than those that arise from the
bearing itself. In the case of a ball bearing sealed on both sides, the friction torque can be calculated as follows:

T3 ¼
di þD

20

� �2

þ 10, (17)

where di and D are the inner and outer diameter of the bearing, respectively. If only one side of a bearing is
sealed, the friction torque must be divided by 2 [29]. It must be noted that these empirical equations are unit
sensitive; friction torque is expressed in Nmm, loads and forces are expressed in N, dimensions are expressed
in mm and viscosity in cSt (mm2/s).

In this study, the rotational inertias of the balls as well as the inertia of the inner ring are accounted for in
the ball bearing model. The combined inertia of the ball bearing can be derived with the help of the total
kinetic energy of the ball bearing, Ebb,c, as follows:

Ebb;c ¼ Eir;r þ zEb;r þ zEb;k ¼
1

2
Jbb;co2

ir, (18)

where Eir,r is the rotational kinetic energy of the inner ring, Eb,r is the kinetic energy due to the rotation
of a ball around its own axis and Eb,k is the kinetic energy of a ball due to its circumferential movement. In
Eq. (18), Jbb,c is the combined inertia of the bearing and oir is the angular velocity of the inner ring. Neglecting
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the combined inertia of the ball bearing can lead to an inaccurate model. The inertia of the inner ring and balls
is particularly important when the inertia of the inner ring is small compared to the combined inertia of the
bearing. For example, for the ball bearings used in this study (see Table 2) the effect of the combined inertia is
more than 21% compared to a case where only the inertia of the inner ring of the bearing is accounted for.

2.3. Model of the contact

The contact model of the rotor and the retainer bearings includes descriptions of contact forces and friction.
Contact between the rotor and the bearing can be modeled using a nonlinear circle-in-circle contact as
depicted in Fig. 3. This type of contact model has been studied extensively and can be found, for example, in
Refs. [30,31]. The radial contact force Fr is a function of the contact penetration and the penetration velocity.
The radial contact force, which affects the rotor, can be written as follows:

F r ¼
Kd3=2 1þ 3

2
C _d

� �
; erXcr and Fr40;

0; erocr or Frp0;

(
(19)

where K is the stiffness and C is the damping of the contact. In Eq. (19), er represents the radial displacement
of the rotor, cr is the radial clearance between the rotor and the inner ring of the retainer bearing, i.e., an air
gap, d is the depth of penetration of the contact and _d is its derivative with respect to time. In Eq. (19), negative
contact forces are avoided by ignoring contact whenever the contact force becomes negative [32]. The X- and
Y-components of the radial contact force Fr can be calculated using the geometry presented in Fig. 3. Eq. (19)
is based on the Hertzian contact theory for two spheres and it assumes that the impact velocity is below
500mm/s [33]. The classical contact theory presented above is used widely in drop-down simulations.
Fumagalli and Schweitzer [34] as well as von Groll and Ewins [35,36] used similar models of contact in their
research. The penetration d between the rotor and the inner ring of the bearing can be expressed as follows:

d ¼ er � cr. (20)

As shown in Fig. 3, the radial displacement between the rotor and the inner ring of the bearing with respect
to the center of the bearing can be obtained from the displacements along the X- and Y-axis as follows:

er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2x;r þ e2y;r

q
. (21)

Radial clearance in the contact can be obtained using the radii of the rotor rr and the inner ring ri as follows:

cr ¼ ri � rr. (22)
Fig. 3. Circle-in-circle contact.
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Fig. 4. Friction force between the rotor and the inner ring of the bearing in the combined friction model.
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The magnitude of the friction force which acts at the center of the rotor and is perpendicular to the radial
contact force can be calculated as follows:

Fm ¼ mFr, (23)

where m is the coefficient of friction between the rotor and the inner ring of the bearing. The friction coefficient
can be defined as a function of the slipping velocity between the rotor and the inner ring of the bearing. In this
study, the coefficient is defined using two different models. The first friction model is defined employing
Coulomb friction with a constant friction coefficient. The second friction model is a combination of the
Coulomb, Stribeck and static friction models. The model determines the maximum static friction coefficient as
well as the sliding friction coefficient [37,38]. An example of the friction force calculated by using the combined
friction model is presented in Fig. 4. Because the friction force is assumed to act in the center of the rotor it
causes a torque in the direction opposite to the direction of rotation. This torque can be expressed as follows:

Mm ¼ Fmrr. (24)

2.4. Aerodynamic torque

In the case of power failure, the rotor decelerates due to the friction torque of the retainer bearings. In many
applications, the aerodynamic torque has a vital role in the deceleration of the rotor. Schmied and Pradetto
[39] have introduced a model for the aerodynamic torque to describe the deceleration of the rotor as follows:

n ¼
n0

1þ at
, (25)

where n is the speed of the rotor at time t from the failure, n0 is the speed at the instant of the failure and a is a
deceleration factor. The deceleration factor depends on the load as well as the geometry of the rotor. The deceleration
factor can be defined experimentally. In this research, the deceleration factor is assumed to be 0.1 s�1 [39].

The aerodynamic torque which affects the rotor can be calculated as follows:

Mad ¼ Ip _n, (26)

where _n is a derivative of n with respect to time.

3. Numerical results

In this section, a simulation approach introduced in the previous section is used to study responses of a
rotor during a drop-down. The structure under investigation is an electrical motor, whose rotor is supported
by two AMBs. The studied rotor is shown in Fig. 5. Both AMBs (AMB1 and AMB2 in Fig. 5) generate
independent support forces FAMB1 and FAMB2. Both support forces are assumed to close down immediately
when a fault situation occurs. Accordingly, it is assumed in this study that the collapsing magnetic force has



ARTICLE IN PRESS

Fig. 5. Diagram of the electric motor under investigation (dimensions are in millimeters).

Table 1

Parameters of the studied electric motor and the contact

Dimension and property Specification

Mass of rotor system, mr 54.1 kg

Polar moment of inertia of rotor, Ip,r 0.07 kgm2

Diametral moment of inertia of rotor, Id,r 7.41 kgm2

Mass of couplings, mc 5.6 kg

Polar moment of inertia of couplings, Ip,c 0.015 kgm2

Diametral moment of inertia of couplings, Id,c 0.010 kgm2

Air gap between rotor and bearings, cr 300mm
Stiffness coefficient of contact, K 5� 108N/m

Damping coefficient of contact, C 1000N s/m
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no effect on the dynamic behavior of the rotor during the drop-down. The structure includes retainer bearings
which have a vital role in an emergency drop-down. The air gaps between the inner rings of the retainer
bearings and the rotor are half of the air gaps of the AMBs. The outer rings of the retainer bearings are
assumed to be rigidly attached to the bearing housings. In the simulation model, the bearing housings have
only two degrees of freedom that are translations in the global X- and Y-directions. The bearing housings
are connected to the ground with linear spring-dampers in the X- and Y-directions. The dimensions of the
entire rotor system are shown in Table 1 while the parameters of the retainer bearings used are shown in
Table 2. The direction of gravity is the negative Y-direction. The unbalance mass UB is located in the middle
of the rotor at an angle of 901 from the positive X-axis. The masses and moments of inertia of the couplings
(C1 and C2 in Fig. 5) at both ends of the rotor are given in Table 1. In addition, the parameters for the contact
model between the rotor and the retainer bearings are shown in Table 1.

The rotor is made of steel, and its density r is assumed to be 7800 kg/m3. The inertia of AMB laminations is
accounted for in the rotor model while the shear and the elastic modulus of laminations are assumed to be
zero. Due to the displacement sensors of the control system of the AMBs, aluminum sleeves are assembled on
the rotor. The translational displacements and forces are predicted from both retainer bearings. The numerical
integrator used in this study is the fourth order Runge–Kutta [40] method with a time step of 1.5� 10�5 s.

3.1. Modal analysis

In order to validate the simulation model, an experimental modal analysis is carried out on the rotor system.
In the experiment, the rotor is hoisted using flexible rubber ropes. As a consequence, the effects of the support
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Table 2

Parameters of the retainer bearings

Dimension and property Specification

Number of bearing RB1 RB2

Type of bearing Deep-groove ball bearing

Inner diameter, di (mm) 75.0 70.0

Outer diameter, D (mm) 95.0 90.0

Bearing width, B (mm) 10.0 10.0

Pitch diameter, dm (mm) 85.0 80.0

Ball radius, r (mm) 2.8 2.8

Static load rating, C0 (N) 14 300 13 200

Number of balls, z 27 25

Diametral clearance, cd,b (mm) 15

Bearing damping coefficient, Cb (N s/m) 250

Inner and outer race conformity, Rr 0.52

Modulus of elasticity, E (MPa) 207 000

Poisson’s ratio, n 0.3

Viscosity of lubricant, u0 (cSt) 25.0

Table 3

Measured and calculated free–free frequencies of the studied rotor

Mode # Measured frequency (Hz) Calculated frequency (Hz) Difference (%) Measured damping (%)

1 193.5 193.5 0.0 0.164

2 397.0 414.0 +1.5 0.055

3 767.5 790.7 +0.8 0.064

4 1238.0 1341.1 +2.7 0.116
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on the natural frequencies and modes of the rotor are minimized. The measurement is carried out by
employing a roving hammer procedure, where the accelerometer position is fixed and the hammering points
are varied along the rotor. The hammering impulses are applied horizontally in order to minimize the effect of
the rubber ropes on rotor damping. The modal analysis is performed for the rotor with stacks of steel
laminations and couplings. Measured and calculated natural frequencies as well as measured damping ratios
are presented in Table 3.

It can be concluded from the results that the calculated natural frequencies are slightly higher than the
measured ones. This is typical for beam models where the cross-section deformation of the element is ignored.
In addition, the beam finite element used in this study does not account for discontinuities in the shear force.
This may be one reason for the discrepancy between the calculated and measured frequency [41]. It is
noteworthy that the studied rotor includes structural irregularities. One irregularity is friction between jointed
components. The friction is particularly difficult to define because the sleeves and the laminations are not fitted
on the rotor. The most significant irregularity is the stacks of steel laminations. Because of the structure of the
laminations, they are modeled without any bending stiffness. In practice, the laminations may carry some
bending load.

3.2. Simulation results

The dynamic behavior of the rotor system during the drop on retainer bearings is studied using a detailed
simulation model introduced in previous section. In the first example, the effect of the number of selected free-
free modes of the rotor on the behavior of the rotor system during drop-down is studied. The second example
presents simulation results of the drop-down and the deceleration of the rotor under the natural frequency of
the first free-free mode of the rotor. The effect of friction coefficients in the contact between the rotor and the
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retainer bearing is studied in the third example. Coulomb and combined friction models are also compared in
this example. In the fourth example, the effect of the radial clearance of the retainer bearings on the behavior
of the rotor is examined. In the numerical examples, the unbalance mass mub is assumed to be 1 g with an
eccentricity of 42.5mm, the stiffness of the support Ks is assumed to be 3� 108N/m and the damping of the
support Cs is assumed to be 5000N s/m. The total time of the simulation is 0.1 s and the initial angular velocity
of the steady-state rotor is assumed to be 15 000 rev/min. In this study, it is assumed that the rotor experiences
no vibration before contact with the retainer bearings. In other words, it is assumed that the unbalance
compensation of the AMBs is functioning properly before drop-down. In this section, all the presented results
are monitored from the node in the location of retainer bearing 2 (RB2 in Fig. 5).

3.2.1. Number of flexible modes

The effect of the number of selected flexible modes of the rotor on orbit prediction is examined in this
section. Five sets of modes are used in the numerical examples. The number of modes in the sets varies from 8
to 32 with steps of eight. In addition, one set includes only four selected modes. Solutions obtained using five
sets of modes are compared against the reference solution in which 56 modes are used. The orbits of the rotor
with different numbers of selected flexible modes of the rotor are shown in Fig. 6. It can be seen from the figure
that, one hand, by using eight free-free modes, the results are significantly more accurate than by using four
modes. On the other hand, the use of 32 modes yields nearly as accurate a result as by using 56 modes. Thus it
can be concluded that the use of eight selected modes in this example leads to an acceptable solution while the
use of 32 selected modes leads to a practically identical solution as the use of 56 selected modes. It is
noteworthy that the response of a mode needs to be described with a corresponding differential equation. For
this reason, the reduction of the modes has a direct influence on the number of the differential equations and,
consequently, on the CPU time consumption.

The reason for the inaccurate description when using four elastic modes is the impacts between the rotor
and retainer bearings during the drop-down. The impacts excite eigenmodes which have even higher
frequencies than the fourth bending mode of the rotor can describe.

3.2.2. Unstabilizing effect of natural frequency

Deceleration above the speed of the first free–free frequency during the drop-down of the rotor is
studied in this section. The initial angular velocity of the rotor at the instant of the drop-down is selected to be
Fig. 6. Orbit of the rotor by using: (a) 4, (b) 8, (c) 16, (d) 24, (e) 32 and (f) 56 selected flexible modes. The circle indicates the air gap of the

retainer bearing and the line the orbit of the rotor.
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12 500 rev/min while the aerodynamic torque is assumed to be four times smaller than in other simulations.
Thus the contribution of the first free–free frequency of the rotor to the dynamic response is emphasized. The
rotor system under investigation is slightly modified after the experimental modal analysis. In the
modification, one additional sleeve is added to the rotor. This increased the first calculated free–free
frequency of the rotor to 197.0Hz.

Fig. 7 shows the vertical displacements of the rotor during the deceleration. It can be seen in the figure that
vibration increases when the rotational velocity of the rotor decelerates under 11 700 rev/min (195.0Hz). This
is due to the excitation of the first free–free mode of the rotor. The greatest response occurs about 2Hz below
the first free–free frequency. This is consistent with the general vibration theory of decelerating rotors [42]. A
part of the discrepancy may be due to the fact that the rotor system is not unsupported all of the time. The
contact of the rotor with the bearings introduces a support that results in decreasing the lowest natural
frequency of the rotor system. For this reason, the reference condition of the eigenvalue analysis should be
selected with care [43].

The spectrum of the vertical velocity of the rotor is presented in Fig. 8. It can be seen from the figure that the
first free-free mode, 197.0Hz, contributes to a peak in the acceleration rate of the rotor. The increased
acceleration rate, in turn, influences the contact and support forces. Peaks in lower frequencies, 55 and 60Hz,
Fig. 7. Response of the rotor in vertical direction.

Fig. 8. The spectrum of the vertical velocity of the rotor from 0 to 250Hz.
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Fig. 9. Critical speed map of the supported rotor.
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are caused by the eigenfrequencies of the supported rotor. The second and third natural frequency can be seen
clearly in Fig. 9, where the critical speed map of the rotor is depicted. As can be seen from the critical speed
map, the first frequency is higher than 197.0Hz. The reason for this is the fluctuations in the rotor supporting
conditions, as explained above. This kind of fluctuation is difficult to take into account in practice because it is
occasional and depends on many parameters and the structure itself [44].

3.2.3. Effects of friction coefficient and models

In this section, the behavior of the rotor during its drop-down is studied using different friction coefficients
together with two different friction models. The first model is a simple Coulomb friction model, whereas the
second one is a combined friction model which is based on the Coulomb, Stribeck and static friction models.
In the combined friction model, the static friction coefficient is in all of the cases 0.05 higher than the dynamic
friction coefficient.

Fig. 10 shows the orbits of the rotor when the Coulomb friction model is used. It can be seen from the
results that the rotor does not undergo a whirling motion when the friction coefficient between the rotor and
the retainer bearings is below 0.45. This can also be seen from Fig. 11, which presents the orbits when the
combined friction model with different friction coefficients is used. Figs. 10 and 11 show that the orbit of the
rotor becomes larger when the friction coefficient increases. This can be observed even before the rotor starts
to whirl. In the whirling motion, the displacements of the rotor increase significantly. It can be concluded from
the results that the largest displacement of the rotor does not take place immediately after the drop-down, as
in the case of the lower friction coefficients. Instead, the greatest response occurs after 0.08 s of the drop-down.
After this instant, the response, i.e., the orbit of the rotor, are stabilized. The orbit of the rotor does not stay
inside the static retainer bearing (the circle in Figs. 10 and 11) after the drop-down. The reason for this is that
the retainer bearings are assembled elastically on the ground and the bearing model is able to describe the
elasticity of the bearing.

The effects of the friction coefficient between the rotor and retainer bearings on the dynamic responses are
examined widely. However, it is important to note that the friction coefficient alone does not determine the
behavior of the rotor during the drop-down. Many other parameters, such as stiffness and damping properties
of the support, mass of the support device, balancing of the rotor and, naturally, the structure of the rotor
system determine the behavior of the structure. Ecker [8] examined the effects of friction to the rotor responses
and noticed that high friction coefficients can lead to a backward whirling motion of the rotor. This is an
important observation because in magnetic bearing applications a contaminant free environment is often
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Fig. 10. Orbit of the rotor by using the Coulomb friction model. The friction coefficient varies: (a) 0.15, (b) 0.25, (c) 0.35 and (d) 0.45.

The line in the middle of the circle describes the displacement of the support.

Fig. 11. Orbit of the rotor by using a combined friction model. The friction coefficient varies: (a) 0.15, (b) 0.25, (c) 0.35 and (d) 0.45.

The line in the middle of the circle describes the displacement of the support.
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required. This means, in turn, that the retainer bearings are required to be dry and thus without lubrication.
Furthermore, Fumagalli and Schweitzer [45] noted that a low coefficient of friction is a beneficial feature for
the retainer bearings. It is important to note that the coefficient of friction may not be constant. This is due to
wearing that can occur during the interaction between the rotor and retainer bearings and, thereby, increase
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the friction. Sun [46] examined the thermal growth of the retainer bearings during the contact. He noted that
the rotor drop dynamics and thermal growth drastically change when the friction coefficient increases.
Because of a larger friction force, the orbit of the rotor expands after drop-down and the direction of the first
bounce approaches the tangential direction of the contact point. Hence, it is important to find a threshold
friction coefficient above which the rotor enters into a high-speed backward whirl. Therefore, reducing the
friction coefficient plays a critical role in the stability of the rotor drop dynamics. A fine surface finish and
powder or solid lubricants can be utilized on the contact area, if it is acceptable in practice. In this study, the
AMB system needs a high friction coefficient between the rotor and bearings in order to cause a full backward
whirling motion of the rotor. This is in agreement with previous examination of retainer bearings [44]. From a
practical point of view, simulated predictions of the orbit may carry some uncertainties. The main source of
uncertainty is a constant friction coefficient which does not account for the increase of the friction coefficient
resulting from thermal expansion and wearing in inner rings [14].

From Figs. 10 and 11 it can be concluded that different friction models lead to practically identical results.
It is noteworthy that the effect of the static friction coefficient is insignificant even when the rotor is stabilizing
from the whirling motion. For this reason, it can be noted that a Coulomb friction model leads to acceptable
results during the rotor drop on retainer bearings. It is worth mentioning that the combined friction model is
computationally more expensive than the Coulomb friction.

3.2.4. Effect of retainer bearing’s radial clearance

In the last numerical example, the effect of the radial clearance of the retainer bearings on the behavior of
the rotor is examined. The clearances are varied from zero clearance to C3 via the normal and C2 clearance.
The magnitude and direction of the contact force with the above presented clearances of the retainer bearings
are shown in Fig. 12. The effect of radial clearance is minor but observable. Based on the numerical results,
enlarged clearance results in a more indefinite orbit. This means that the magnitude of the contact forces
increased, as can be seen in the figure. It is also important to note that due to the geometry of the large
Fig. 12. Magnitude and direction of the contact force with different clearances ((a) zero clearance, (b) C2 clearance, (c) normal clearance,

(d) C3 clearance) of the retainer bearing.
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clearance bearing, the individual ball is imposed by larger loading than a ball in the same position in the
case of a small clearance bearing or preloaded bearing. This is due to the fact that in a preloaded bearing,
the loading is distributed more evenly between several balls. Thus it is recommendable to use
preloaded bearings instead of a bearing with a large clearance if the thermal expansion does not cause
severe problems.
4. Conclusions

In this study, the dynamics of an AMB supported rotor during the drop-down on retainer bearings was
studied employing a detailed simulation model. The studied structure included a rotor, two AMBs and two
retainer bearings. The retainer bearings were described using a detailed ball bearing model, which accounts for
damping and stiffness properties, oil film, inertia of rolling elements and friction between races and rolling
elements. The rotor was modeled as a flexible body by using the beam finite elements based on the
Timoshenko theory.

In this study, the simulation response of the rotor during the drop-down was analyzed using a component
mode synthesis. This approach is numerically efficient and may be utilized in a real-time control application.
Using the developed model, the effects of the number of selected flexible modes on the prediction of the orbits
of the rotor were discussed. The effects of free–free natural frequencies of the rotor during rotor deceleration
on the orbit of the rotor were also studied. It was noticed in the examination that the responses of the rotor
grew when the rotational velocity of the rotor went under the first natural frequency. The same behavior was
noticed from the spectrum of the vertical velocity and the critical speed map. Furthermore, the effect of
different friction models as well as the effect of the radial clearance of retainer bearings on the behavior of
rotor was examined. From the simulated scenarios it can be concluded that the effect of the friction models on
the orbit of the rotor was not significant. The effects of the friction coefficient were in good agreement with the
other studies available in the literature. The study of the radial clearance of the retainer bearings revealed that
the effect of the clearance on the dynamic behavior of the rotor is insignificant.
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[37] H. Olsson, K.J. Aström, C. Canudas de Wit, M. Gäfvert, P. Lischinsky, Friction models and friction compensation, European Journal

of Control 4 (1998) 176–195.

[38] J.L. Ha, R.F. Fung, C.F. Han, J.R. Chang, Effects of frictional models on the dynamic response of the impact drive mechanism,

Journal of Vibration and Acoustics 128 (2006) 88–96.

[39] J. Schmied, J.C. Pradetto, Behaviour of a one ton rotor being dropped into auxiliary bearings, Proceedings of the Third International

Symposium on Magnetic Bearings, Alexandria, USA, 1992, pp. 145–156.

[40] E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer, New York, 1993.

[41] E. Lantto, Finite Element Model for Elastic Rotating Shaft, Licentiate Thesis, Helsinki University of Technology, 1997.

[42] T. Yamamoto, Y. Ishida, Linear and Nonlinear Rotordynamics: A Modern Treatment with Applications, Wiley, New York, 2001.

[43] A.A. Shabana, Dynamics of Multibody Systems, second ed., Wiley, New York, 1998.

[44] W.C. Foiles, P.E. Allaire, Nonlinear transient modeling of active magnetic bearing rotors during rotor drop on auxiliary bearing,

Proceedings of the MAG’97 Industrial Conference and Exhibition on Magnetic Bearings, Alexandria, USA, 1997, pp. 154–163.

[45] M. Fumagalli, G. Schweitzer, Motion of rotor in rigid retainer bearings, Proceedings of the Fifth International Symposium on

Magnetic Bearings, Kanazawa, Japan, 1996, pp. 509–514.

[46] G. Sun, Rotor drop and following thermal growth simulation using detailed auxiliary bearing and damper models, Journal of Sound

and Vibration 289 (2006) 334–359.


	Dynamic simulation of a flexible rotor during drop �on retainer bearings
	Introduction
	Models of rotor and backup bearings
	Models of the flexible rotor
	Model of ball bearing
	Bearing force calculation
	Bearing friction and inertia

	Model of the contact
	Aerodynamic torque

	Numerical results
	Modal analysis
	Simulation results
	Number of flexible modes
	Unstabilizing effect of natural frequency
	Effects of friction coefficient and models
	Effect of retainer bearing’s radial clearance


	Conclusions
	References


