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Abstract

The constitutive equation of an Euler–Bernoulli beam under the excitation of moving mass is considered. The dynamics

of the uncontrolled system is governed by a linear, self-adjoint partial differential equation. A Dirac-delta function is used

to describe the position of the moving mass along the beam and its inertial effects. An approximate formulation to the

problem is obtained by limiting the inertial effect of the moving mass merely to the vertical component of acceleration.

Having defined a ‘‘critical velocity’’ in terms of the fundamental period and span of the beam, it is shown that for smaller

velocities, the approximate and exact approaches to the problem almost coincide. Since, the defined critical velocity is fairly

large compared to those in practical cases, the approximate approach can effectively be used for a wide range of problems.

There is however a slight variation in critical velocity depending on the weight of the moving mass. On the other hand, it is

shown that the effect of higher vibrational modes is not negligible for certain velocity ranges. Finally, a linear classical

optimal control algorithm with a time varying gain matrix with displacement-velocity feedback is used to control the

response of the beam. The efficiency of the control algorithm in suppressing the response of the system under the effect of

moving mass with different number of controlled modes and actuators is investigated.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic behavior of the structures under the influence of moving loads is a subject of considerable
engineering importance. A large amount of literature has been produced by various researchers and engineers
on this regard in the last few decades. There are clearly many problems of great physical significance in which
the load inertia is not negligible and can significantly alter the dynamic behavior of the system. Such systems
are considered by many researchers such as Iwan and Stah [1], Stanisic [2], Akin and Mofid [3], Mahmoud and
AbouZaid [4]. Comprehensive studies on the dynamic stability of continuous systems under the effect of
inertial forces and high velocities of moving loads have been provided by Kononov and Borst [5], and
Verichev and Metrikine [6]. Rao [7] has studied the behavior of a simply supported Euler–Bernoulli beam
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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under the effect of a moving load while the inertial effect is included in the analysis. He considered the effects
of centripetal and Coriolis accelerations besides the vertical component of acceleration of the moving mass.
Using the mode superposition and multiple scale method, he showed that the effect of moving mass on the
transient response of the beam is considerable. Bilello et al. [8] investigated the effect of moving mass on a
prototype single-span bridge structure by conducting an experimental simulation of a small-scale model. The
results of the experiments were compared to that of an analytical model using eigenfunction expansion
approach for the case of moving mass and moving load. It was shown that there is a good correlation between
the analytical and experimental results, without observing any significant inertial effects for the range of mass
velocities considered in the study.

The active structural control on the other hand, has emerged as a new tool for suppressing the dynamic response
of continuous or discrete flexible structures in recent years. A valuable literature survey on this subject has been
provided by Meirovitch [9]. Many control algorithms and implementation mechanisms have been proposed by
researchers on this regard, e.g. Yang et al. [10], Tadjbakhsh and Rofooei [11], Rofooei and Monajemi-Nejad [12].
Also, the application of smart materials as a new means for vibration suppression of continuous structural systems
has been heavily explored. Sung [13] has studied the active control of a simply supported beam under a moving
mass using piezo materials as actuators. He used a classical optimal control algorithm with displacement-velocity
feedback, while the optimal placements of piezoactuators are determined by the minimization of an appropriate
cost function. The results showed a good performance for the selected control algorithms.

In this work, the governing differential equation of motion for an Euler–Bernoulli beam under moving mass
is employed taking into account the centripetal and Coriolis accelerations besides the vertical component one.
Also, an approximate formulation to the problem is obtained merely by retaining the vertical component of
acceleration, as it is suggested in a number of previous works [2,3,14]. Defining a critical velocity in terms of
the fundamental period and span of the beam, the accuracy of the approximate method in estimating the
dynamic response of the system is examined using different weight and velocities for the moving mass. It is
shown that for velocities below the critical velocity, the approximate and exact approaches of the problem
almost coincide. Since, the defined critical velocity is fairly large compared to those in practical cases, the
approximate approach can effectively be applied instead of exact approach for a wide range of problems.

For masses moving with velocities higher than the critical one, exact formulation of the problem will be
required. It should be noted that there is a slight variation in critical velocity depending on the weight of the
moving mass. On the other hand, in case of moving mass, it is shown that the effect of higher vibrational
modes is not negligible, especially for the velocities above a specific level.

Finally, a linear classical optimal control algorithm with a time varying gain matrix with displacement-
velocity feedback is used to control the response of the beam under the effect of moving mass. Parametric
studies are carried out to explore the effect of controlling the higher vibrational modes and the number of
actuators on the performance of the control system. The results are indication of applicability of the active
structural control in reducing the system’s dynamic response.
2. Problem formulation

A uniform Euler–Bernoulli beam with moving mass and various boundary conditions is considered.
A moving mass M whose inertia is assumed to be relatively large, travels along the beam with a constant
velocity. The bending stiffness, EI and the mass per unit length of the beam m, is assumed to be constant. Let
z(x, t) denote the deflection of the beam with x and t representing the position of a point in the domain D and
the time, respectively. For a one-dimensional beam problem, the position vector x will represent the x-axis with
its origin coincided on the left support. The initial conditions for this undamped dynamic system are considered
to be z(x, 0) ¼ g1(x) and qzðx; 0Þ=qt ¼ g2ðxÞ in which g1(x) and g2(x) are any continuous functions. Also,
assume that n actuators are used in the system at locations xi, i ¼ 1,2,3,y, n to exert the required control forces
ui(t), as it is shown in Fig. (1). The equation of motion of the controlled system can be described by

m€zþ Lz ¼ f ðx; tÞ þ
Xn

i¼1

uiðtÞdðx� xiÞ; x 2 D; t4t0, (1)
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Fig. 1. Schematic figure of the dynamic system.
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where

L ¼
q2

qx2
EI

q2

qx2

� �
¼ EI

q4

qx4

and

f ðx; tÞ ¼M g�
d2z0ðtÞ

dt2

� �
dðx� vtÞ ¼M g�

d2zðvt; tÞ

dt2

� �
dðx� vtÞ

¼M g�
q2z
qt2
� 2v

q2z
qxqt
� v2

q2z
qx2

� �
x¼vt

dðx� vtÞ. ð2Þ

The z0(t) denotes the vertical displacement of the mass M, that is equal to z(x ¼ vt, t) assuming continuous
contact between the mass and the beam. It should be noted that in the approximate approach to the problem,
only the vertical component of acceleration, (q2z=q2t) is retained in the formulation, as it is suggested in a
number of previous works [2,3,14]. Also, ui and v are the control force and the velocity of the mass M,
respectively, while g is the acceleration of gravity.

Using the eigenfunction expansion, the displacement z, and the forcing function f can be represented as
z ¼

P1
k¼1fkðxÞAkðtÞ, and f ðx; tÞ þ

Pn
i¼1uiðtÞdðx� xiÞ ¼

P1
k¼1fkðxÞBkðtÞ in which Ak(t) and Bk(t) are time-

dependent modal amplitudes and fk are the beam’s orthogonal modal shapes [9]. Considering the first p

vibrational modes, the right-hand side of Eq. (1) can be re-written as

M g�
q2z

qt2
� 2v

q2z

qxqt
� v2

q2z

qx2

� �
x¼vt

dðx� vtÞ þ
Xn

i¼1

uiðtÞdðx� xiÞ ¼
Xp

i¼1

fiðxÞBiðtÞ. (3)

Substitution of the above expansion in Eq. (3) results in:

M g�
Xp

i¼1

fiðxÞ
d2Ai

dt2
ðtÞ þ 2vf0iðxÞ

dAi

dt
ðtÞ þ v2f00i ðxÞAiðtÞ

� � !
dðx� vtÞ

þ
Xn

i¼1

uiðtÞdðx� xiÞ ¼
Xp

i¼1

fiðxÞBiðtÞ. ð4Þ

Multiplying both sides of Eq. (4) by fk(x) and integrating for the entire beam yields:

M g�
Xp

i¼1

fiðvtÞ
d2Ai

dt2
ðtÞ þ 2vf0iðvtÞ

dAi

dt
ðtÞ þ v2f00i ðvtÞAiðtÞ

� � !
fkðvtÞ

þ
Xn

i¼1

uiðtÞfkðxiÞ ¼ V kBkðtÞ, ð5Þ
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where

V k ¼

Z l

0

f2
kðxÞdx. (6)

So

BkðtÞ ¼
M

V k

� �
g�

Xp

i¼1

fiðvtÞ
d2Ai

dt2
ðtÞ þ 2vf0iðvtÞ

dAi

dt
ðtÞ þ v2f00i ðvtÞAiðtÞ

� � !
fkðvtÞ

þ
1

Vk

� �Xn

i¼1

uiðtÞfkðxiÞ. ð7Þ

The modal amplitudes Ak(t) can be determined by substituting Eqs. (7) and (3) into Eq. (1):

m
Xp

i¼1

fi

d2Ai

dt2
þ EI

Xp

i¼1

Aif
iv
i �

Xp

i¼1

fi

V i

�
Xn

j¼1

ujðtÞfiðxjÞ þM g�
Xp

k¼1

fkðvtÞ
d2Ak

dt2
ðtÞ þ 2vf0kðvtÞ

dAk

dt
ðtÞ þ v2f00kðvtÞAkðtÞ

� � !
fiðvtÞ

( )
¼ 0. ð8Þ

Also, considering Eq. (8), one can conclude that:

Xp

i¼1

fi m
d2Ai

dt2
þmo2

i Ai �
1

Vi

Xn

j¼1

ujðtÞfiðxjÞ

 !(

þ
M

Vi

g�
Xp

k¼1

d2Ak

dt2
fkðvtÞ þ 2vf0kðvtÞ

dAk

dt
þ v2f00kðvtÞAk

� �" #
fiðvtÞ

)
¼ 0 ð9Þ

in which

mo2
j ¼

Z l

0

fjLfj dx; j ¼ 1; 2; . . . . (10)

Eq. (9) must be satisfied for any arbitrary fi. This is possible only when the expression in the bracket be
equal to zero:

m
d2Ai

dt2
þmo2

i Ai �
1

Vi

Xn

j¼1

ujðtÞfiðxjÞ

(

þM g�
Xp

k¼1

d2Ak

dt2
fkðvtÞ þ 2vf0iðvtÞ

dAk

dt
þ v2f00i ðvtÞAk

� �" #
fiðvtÞ

)
¼ 0; i ¼ 1; 2; . . . . ð11Þ

Eq. (11) is a set of p coupled ordinary differential equations. Using orthonormal system of eigenfunctions
(Vk ¼ 1, k ¼ 1,2,y) and re-arranging them in a matrix form results in:

TðtÞ €Aþ YðtÞ _Aþ KðtÞA ¼ fðtÞ þ BuðtÞ; Aðt0Þ ¼ A0; _Aðt0Þ ¼ B0, (12)

in which A0;B0 and f are p-dimensional vectors with their elements defined as

ðA0j ;B0jÞ ¼

Z l

0

mðz0; _z0Þðfj=mÞdx,

f j ¼

Z l

0

Mgdðx� vtÞðfj=mÞdx; j ¼ 1; 2; 3 . . . . ð13Þ

The elements of the matrix Bp�n are given by:

Bji ¼ fjðxiÞ=m; i ¼ 1; 2; 3; :::; n. (14)
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TðtÞ, YðtÞ and KðtÞ, are also p� n matrixes with their elements defined as:

Tij ¼ dij þ
M

m
fiðvtÞfjðvtÞ, (15)

Y ij ¼
2vM

m
fiðvtÞf0jðvtÞ, (16)

Lij ¼ o2
j dij þ

v2M

m
fiðvtÞf00j ðvtÞ. (17)

Multiplying Eq. (12) by TðtÞ�1, the state-space form of this equation can be shown as:

_XðtÞ ¼ ĀðtÞXðtÞ þ D̄ðtÞ uðtÞ þ ĒðtÞ fðtÞ, (18)

where

X ¼
A

_A

" #
2p�1

; Ā ¼
0 I

�T�1K �T�1Y

" #
2p�2p

; D̄ ¼
0 0

0 T�1

" #
2p�2p

0

B

" #
2p�n

¯E ¼
0 0

0 T�1

" #
2p�2p

0

I

" #
2p�p

;Xðt0Þ ¼
Aðt0Þ

_Aðt0Þ

" #
2p�1

.

The state vector X(t) can be obtained as follows [15]:

XðtÞ ¼ UðtÞU�1ðt0ÞXðt0Þ þ

Z t

t0

UðtÞU�1ðtÞ D̄ðtÞUðtÞ þ ĒðtÞ fðtÞ
� �� 	

dt; (19)

in which U(t) is the fundamental solution matrix and:

_UðtÞ ¼ ĀðtÞUðtÞ; Uðt0Þ ¼ I2p. (20)

Also

XðtÞ ¼ UðtÞXðt0Þ. (21)

A transfer matrix U is used to obtain UðtÞ such as

Uðt; tÞ � UðtÞU�1ðtÞ. (22)

Thus

XðtÞ ¼ Uðt; tÞXðtÞ. (23)

An approximate solution can be used to obtain U:

Uðtkþ1; tkÞ ¼ eĀðtkÞDtk , (24)

in which Dtk ¼ tk+1�tk is an assumed time interval. If Ā
�1
ðtkÞ exists, Eq. (18) can easily be solved as follows:

Xðtkþ1Þ ¼ Ā1ðtkÞ þ D̄1ðtkÞuðtkÞ þ Ē1ðtkÞ fðtkÞ, (25)

where

Ā1ðtkÞ ffi eĀðtkÞDtk ;

D̄1ðtkÞ ffi ½Ā1ðtkÞ � I�Ā
�1
ðtkÞD̄ðtkÞ;

Ē1ðtkÞ ffi ½Ā1ðtkÞ � I�Ā
�1
ðtkÞĒðtkÞ:
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Solving Eq. (25) with appropriate time step would be more efficient in terms of the computation time needed
for a parametric study. Therefore, in this study, the MATLAB program is used to numerically solve Eq. (25).

3. Control algorithm

The applicability of active structural control in reducing the maximum response of a continuous system
under the effect of moving mass is investigated using a number of discrete actuators. A linear classical optimal
control algorithm with displacement-velocity feedback is used to determine the required control forces. Thus,
the following Riccati type matrix equation is considered [16]:

P Ā� 1
2
P D̄R�1D̄

T
Pþ Ā

T
Pþ 2Q ¼ 0, (26)

in which Q2p�2p and Rn�n are positive semi-definite and positive definite matrices, respectively. The parameters
P and p represent the Riccati matrix and the number of controlled modes involved in the control process,
respectively, while n is the number of actuators. The resulting control gain matrix becomes:

G ¼ �1
2
R�1 D̄

T
P. (27)

Therefore, the control force vector can be shown as

uðtÞ ¼ GXðtÞ. (28)

Substituting Eqs. (27) and (28) in Eq. (18) leads to:

_XðtÞ ¼ ðĀþ D̄GÞXðtÞ þ Ē fðtÞ; Xð0Þ ¼ A0. (29)

Eq. (29) should be solved to determine the controlled response of the system. Also, as Eq. (18) shows, the
system matrix Ā is a function of time, meaning that the control gain matrix components are continuously
changing as the moving mass is traveling along the beam. This will change to a constant gain matrix for
controlling the free vibration response of the system once the moving mass passes the beam.

4. Numerical examples

In this section, two examples are presented. In the first example, the dynamic response of an uncontrolled
simply supported beam under the effect of moving mass and moving load is investigated. Parametric studies
are carried out to evaluate the effect of velocity and weight of the moving mass on the beam’s response both
for the exact and approximate approaches. The importance of the moving mass inertia, as well as the number
of vibrational modes needed to accurately determine the beam’s response were studied for both approximate
and exact formulations. In the second example, the actively controlled response of the same problem has
been considered. A parametric study is carried out to investigate the performance of the control system in
reducing the dynamic response of the beam under moving mass for different number of vibrational modes and
actuators involved in the control process.

4.1. Example 1

A uniform 60m long, simply supported Euler–Bernoulli beam is considered. The mass per unit length of the
beam is 1 kg/m (m ¼ 1) and its bending stiffness, EI, is equal to 5.0� 105Nm2. Any other value can be used
for the bending stiffness and the mass per unit length of the beam as long as they lead to the same fundamental
period of vibration for the beam. In order to simplify the parametric study, the parameter V0 is defined as
V0 ¼ 2L/Tp, in which Tp is the fundamental period of the beam.

First, it is assumed that the beam is under the effect of moving mass and moving load separately considering
only the first vibrational mode of the beam. In Fig. 2, the dynamic amplification factor, that is the ratio of
beam’s absolute maximum dynamic response to its maximum static displacement at the midspan, is plotted
versus the velocity of the mass. It should be noted that the maximum dynamic response may happen in the first
phase of the motion (while the mass is still on the beam) or in its second phase (the mass has passed through
the end point of the beam, and there is a free vibration), depending on the mass velocity. As it is shown, the
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Fig. 2. The effect of inertia due to the changes in velocity and mass: (a) Mg ¼ 20N, (b) Mg ¼ 50N, (c) Mg ¼ 100N, (d) Mg ¼ 200N;

(—— moving load; ??? moving mass—approximate approach; – � – � – moving mass—exact approach).
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inertial effects will be noticeable for the mass velocities larger than 0.2V0. Also, as Fig. 2 indicates, any increase
in the weight of the mass will intensify the inertial effects. Based on this figure, the effect of centripetal and
Coriolis accelerations are negligible for the velocities lower than E0.4V0 which is named as critical velocity
Vcr. For velocities larger than that, use of exact formulation will be required.

The proposed critical velocity is fairly large for the common bridge structures due to their larger natural
frequencies. It implies that the approximate approach could effectively be used instead of the exact one in most
of the practical cases. Moreover, the amount of Vcr is slightly decreasing due to increase in mass weight. For
example, while the critical velocity is 0.402V0 for a moving mass equal to Mg ¼ 20N, which is about %3 of the
beam’s whole weight, it decreases to 0.325V0for a mass equal to Mg ¼ 200N, around %33 of the beam’s
weight. Also, the variation considered in the weight of the moving mass (up to %33 of the beam’s weight)
presumably will not violate the basic assumptions made for having a linear behavior in problem formulation.
From Eq. (17), one could observe that for a simply supported beam, the mass’s velocity should be kept less
than V ¼ V 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml=2M

p
in order to ensure the stability of the dynamic system.

As Fig. 3 shows, increasing the number of considered vibrational modes on the response of the beam mainly
improves the accuracy of the approximate approach. In other words, using more number of modes increases
the critical velocity, so that the approximate approach can be used instead of the exact one in a larger velocity
range of moving mass. Using more than 3 modes does not make any noticeable change in the results for both
moving load and moving mass cases.

Equally important, is the effect of change in moving mass weight on the beam’s dynamic response for a constant
velocity. The results provided in Fig. 4 are for the case with only the first vibrational mode of the system. As Fig. 4
shows, in case of moving load, the maximum response of the beam remains unaffected with respect to any changes
in the weight of the moving load. It also shows that for velocities less than critical velocity, the exact and
approximate approach lead to very close results that are increasing almost linearly with the weight of moving load.

The effect of including more modes in the formulation for the case V ¼ 0.5V0 is shown in Fig. 5. One could
see that while the peak response of the beam in the exact approach is slightly reducing, the accuracy of the
approximate method in estimating the peak response gets better.

Finally, for a moving mass equal to Mg ¼ 100N, Figs. 6 and 7 show the time-history of the midspan
deflection of the beam for moving velocities of V ¼ 0.3V0 ¼ 11.1 and V ¼ 0.9V0 ¼ 33.3m/s, respectively. As it
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Fig. 3. The effect of considered number of modes for the case Mg ¼ 100N: (a) 1 Mode; (b) 2 Modes; (c) 3 Modes. (—— moving load;

??? moving mass—approximate approach; – � – � – moving mass—exact approach).

Fig. 4. The effect of change in mass on the response of the beam: (a) V ¼ 0.3V0; (b) V ¼ 0.5V0; (c) V ¼ 0.7V0; (d) V ¼ 0.9V0; (——moving

load; ??? moving mass—approximate approach; – � – � – moving mass—exact approach).

A. Nikkhoo et al. / Journal of Sound and Vibration 306 (2007) 712–724 719
was expected, for the mass velocity below the critical one, the response of the beam is almost the same for
both approaches and inclusion of higher vibrational modes has no appreciable effect on the results (Fig. 6).
The difference between the exact and approximate approaches and the effect of involving higher modes
become more important for the moving velocities larger than the critical velocity (Fig. 7).
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Fig. 5. The contribution of the higher modes to the response of the system for V ¼ 0.5V0: (a) 1 Mode; (b) 2 Modes; (c) 3 Modes;

(—— moving load; ??? moving mass—approximate approach; – � – � – moving mass—exact approach).

Fig. 6. The time history of the midspan deflection under the effect of moving mass and moving load: (a) 1 Mode; (b) 3 Modes;

(Mg ¼ 100N, V ¼ 0.3V0 ¼ 11.1m/s; —— moving load; ??? moving mass—approximate approach; – � – � – moving mass—exact

approach).

A. Nikkhoo et al. / Journal of Sound and Vibration 306 (2007) 712–724720
4.2. Example 2

In this example, the actively controlled response of the previous example for a moving mass velocity equal
to V ¼ 0.3V0 ¼ 11.1m/s and moving mass weight Mg ¼ 20N is considered. Based on the results of the
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Fig. 7. The time history of midspan deflection under the effect of moving mass and moving load: (a) 1 Mode; (b) 3 Modes; (Mg ¼ 100N,

V ¼ 0.9V0 ¼ 33.3m/s; —— moving load; ??? moving mass—approximate approach; – � – � – moving mass—exact approach).

Fig. 8. The time history of the uncontrolled and controlled deflection of the midspan under the moving mass excitation: Mg ¼ 20N,

V ¼ 0.3V0 ¼ 11.1m/s; —— uncontrolled; ??? controlled.

A. Nikkhoo et al. / Journal of Sound and Vibration 306 (2007) 712–724 721
previous example, the approximate approach could be effectively used here. Considering one sensor and
actuator at midspan and defining the weighting matrices given in Eq. (26) as, R ¼ 0:1 and Q ¼ 120I2�2, in
which, I2�2 is an identity matrix, the uncontrolled and controlled response of the beam are shown in Fig. 8.
Only the first vibrational mode of the beam is considered here. The control force is adjusted to reduce the
maximum deflection of the beam at midspan to half of its uncontrolled response under the effect of moving
mass. As it was mentioned before, for the assumed velocity of the moving mass, the maximum response of the
beam occurs in the first phase of the motion. The required control force is shown in Fig. 9.

As Fig. 9 indicates, controlling more number of vibrational modes will increase the maximum required
control force compared to the first mode control only. One can see the effect of controlling higher modes on
the required control forces. When the higher modes are involved, proper values for the weighting matrix Q
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Fig. 9. Required control force at midspan: (a) 1 Mode, Q ¼ 120I2�2; (b) 2 Modes, Q ¼ 200I4�4; (c) 3 Modes, Q ¼ 200I6�6; (d) 5 Modes,

Q ¼ 240I8�8.

Fig. 10. Required control force for Mg ¼ 20N, V ¼ 0.3V0 ¼ 11.1m/s at (1/4) spans; 1 Mode.

A. Nikkhoo et al. / Journal of Sound and Vibration 306 (2007) 712–724722
should be considered in order to achieve the same level of response reduction. No appreciable change occurs in
the peak response or necessary control force by including more number of modes in the control process.

In order to study the effect of number of controllers, 3 controllers (actuators) are considered at equal
distance along the beam, keeping all the other parameters of the previous part the same. Again, to reduce the
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Fig. 11. Required control force for Mg ¼ 20N, V ¼ 0.3V0 ¼ 11.1m/s at (1/4) spans; 3 Modes.

A. Nikkhoo et al. / Journal of Sound and Vibration 306 (2007) 712–724 723
peak response of the uncontrolled system at midspan in half, the weighting matrices are considered to be
R ¼ 0:1In�n and Q ¼ 60I2p�2p. The required control force for each controller and the effect of controlling
more number of modes are shown in Figs. 10 and 11. As expected, the required control forces are reduced by
increasing the number of controllers. Moreover, use of multiple actuators enables the control system system to
efficiently reduce the contribution of the higher vibrational modes to the response of the system, thus
preventing further fluctuation in the applied control force. Also, no significant change obtained in the amount
of required control force by including more than 3 modes in the control process.
5. Conclusions

The constitutive equation of an Euler–Bernoulli beam under the excitation of moving mass is considered.
The dynamics of the uncontrolled system is governed by a linear, self-adjoint partial differential equation.
An approximate formulation to the problem is obtained by limiting the inertial effect of the moving
mass merely to the vertical component of acceleration. For a simply supported beam, it is shown that
the effect of the centripetal and Coriolis accelerations of the moving mass are negligible for velocities
below a critical velocity that is defined in terms of the beam’s fundamental period and span. This critical
velocity is fairly large compared to those in practical cases, thus the approximate approach can
effectively be used instead of exact one for a wide range problems. There is however a slight variation in
critical velocity depending on the weight of the moving mass. On the other hand, it is shown that the
effect of higher vibrational modes is not negligible for certain velocity ranges. Consideration of the first 3
modes of the system seems to be adequate for getting accurate results especially for high mass velocities.
Finally, a linear classical optimal control algorithm with a time varying gain matrix with displacement-velocity
feedback is used to control the response of the beam. The efficiency of the control algorithm in suppressing the
response of the system under the effect of moving mass with different number of controlled modes and
actuators is investigated. Use of multiple actuators enables the control system to efficiently reduce the
contribution of the higher vibrational modes to the response of the system, thus preventing further fluctuation
in the required control force.
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