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Abstract

A model for coupled acoustic waves and thermal waves in a porous medium is investigated. Due to the use of lighter

materials in modern buildings and noise concerns in the environment such models for thermo-poroacoustic waves are of

much interest to the building industry. We present a model for acoustic wave propagation in a porous material which also

allows for propagation of a thermal wave. The thermodynamics is based on an entropy inequality of A.E. Green and

N. Laws, [On the entropy production inequality, Archive for Rational Mechanics and Analysis 45 (1972) 47–53]. A fully

nonlinear acceleration wave analysis is performed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The reduction of noise is a major modern environmental problem and much research effort is directed to
studying this, see e.g. Refs. [1,2], and the references therein. In seismic zones buildings are constructed with
much lighter porous materials and typically have thinner walls. As a consequence, there is a great need to
study the acoustic properties of porous materials including the nature of the solid matrix and the gas filling the
pores, and the influence of temperature on these quantities. Measurements are being made of acoustic and
related thermal properties of many materials, such as aluminium foams (e.g. Ref. [3]), polyester fibre materials
(e.g. Ref. [4]), and models to fit properties have been devised (e.g. Ref. [5]). We observe that in seismic zones,
such as the region around Avellino, near Salerno, brick manufacturers typically attempt to increase the
porosity (gas volume/total volume) to make the brick lighter. However, this usually has the effect that sound
propagation through the brick is amplified and the brick itself becomes more brittle thereby making it less
strong when subject to earth movement. In an attempt to create lighter bricks but retain strength, engineering
laboratories in the Salerno region are experimenting with filling porous materials used in brick design with
small pieces of chemical which when heated infuse into the brick and remain trapped in the pores in gaseous
form. There is thus interest in investigating the thermo-acoustic properties associated with various gases
infused this way into the brick. We believe thermal-acoustic propagation in such materials will be a nonlinear
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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phenomenon and so any theory which allows us to accurately predict the behaviour of a sound wave in a
porous material is welcome.

There is much need for accurate theoretical modelling of acoustic wave propagation in porous
media. A recent simple nonlinear model has been proposed in a very interesting paper of Jordan [6].
Jordan effectively uses a classical perfect fluid model but adds a term in the momentum equation
which is proportional to the velocity, a Darcy-like term (cf. Ref. [7] for an account of Darcy’s law). Fellah
et al. [8] indicate how transport properties in air-saturated porous media may be measured and Fellah and
Depollier [9] show that the equations for mass conservation and momentum in a perfect fluid, in a certain
low-frequency approximation lead to a linear system of equations equivalent to the Jordan–Darcy model
(in a linearised form).

The work of Jordan [6] is generalised by Ciarletta and Straughan [10] who study his Jordan–Darcy model
using acceleration waves. An acceleration wave is a two-dimensional singular surface in a three-dimensional
body across which the acceleration suffers a finite discontinuity. The use of acceleration waves and related
analyses have proved extremely useful in recent investigations of wave motion in various dispersive and
random media, in a variety of thermodynamic states (see e.g. Refs. [11–23]). Since we are able to obtain exactly
the wavespeeds and wave amplitudes for both the mechanical and thermal waves, with no approximations,
even though we deal with a completely nonlinear theory, we believe this is a main reason why acceleration
waves are especially useful.

The object of this paper is to present a more complete model to that of Ciarletta and Straughan [10] in that
we include thermal effects which were previously neglected. In fact, the theory developed herein allows, in
addition to acoustic wave propagation, for the transmission of heat as a thermal wave. It is increasingly being
recognised that such thermal waves (second sound) have a vital role to play in the study of porous media. For
example, Meyer [24] has devised an ingenious way of drying a saturated porous material via employment of
second sound, Linton-Johnson et al. [25] calculate bulk properties in the porous matrix, and Vadasz et al. [26]
discuss how second sound is prominent in nanofluids where many small particles are present. A recent study
also shows that second sound is evidently a prominent mechanism for heat transfer in some biological tissues,
such tissue also being a porous medium (cf. Ref. [27]).

Various theories have been proposed to allow heat to propagate as a wave of finite speed. For example, the
Maxwell–Cattaneo theory (e.g. Refs. [28,26], and the references therein), or the time lag theory (e.g. Refs.
[29,30]). However, such models have inherent difficulties when coupled to the other equations of continuum
mechanics such as those for the description of fluid or elastic properties, due to the correct representation of
time derivatives. For example, Straughan and Franchi [31] and Franchi and Straughan [32] show that entirely
different results may be obtained in convection problems depending on which objective derivative is employed.
Moreover, D. Graffi (see Ref. [33]) and Morro and Ruggeri [34] show that the coefficient t in the
Maxwell–Cattaneo theory cannot be constant as is usually assumed.

To develop a thermal poroacoustic theory we, therefore, employ the thermodynamics of Green and
Laws [35] who use a generalised temperature f instead of the usual temperature y. Since their approach is
developed with a view to producing a rational continuum thermodynamic theory of any solid or fluid it
extends naturally to the porous medium application we have in mind and is not subject to any criticism of
objective derivatives.

In this paper, we present a theory for acceleration wave propagation in a Darcy porous material which also
allows heat to travel with a finite wavespeed. We then show that one can develop a full nonlinear analysis for
our model with no approximation whatsoever. Moreover, a precise evolutionary behaviour is predicted for the
amplitude of an acceleration wave. This demonstrates that the use of porous materials for constructing
modern buildings (horizontal structures and walls) guarantees a large effect on attenuation of acoustic waves
where the attenuation may be due to the Darcy effect or to a thermodynamic effect, or a combination of both.
Due to the interest in acoustic theory in building materials we believe our results are of value.

2. The model

The model for a perfect fluid employing the thermodynamics of Green and Laws [35] is presented in
Ref. [36]. We here include a Darcy term to account for the fact that we are considering heat and sound
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propagation in a porous medium. The equations of motion are, therefore,

_rþ rvi;i ¼ 0, (1)

r_vi ¼ tki;k � kvi, (2)

r_� ¼ tkidik � qi;i, (3)

where we have set the body force and heat supply equal to zero. The quantities r; vi; tki; �; qi; dik and k are
density, velocity, stress tensor, internal energy, heat flux, symmetric part of the velocity gradient, and the
(constant) Darcy coefficient, respectively. Standard indicial notation is used throughout with ;i denoting q=qxi

and a superposed dot denoting the material derivative. The Darcy term �kvi may be thought of as a friction
loss term, or alternatively, one could proceed by considering a mixture of a fluid and a solid, as in Ref. [10],
whence this term arises naturally.

The constitutive variables may be taken to be (cf. Ref. [36]), r; y; _y and l ¼ y;iy;i=2: In terms of the
Helmholtz free energy, c ¼ �� Zf and the generalised (Green–Laws) temperature, f; where Z is the entropy,
we have the relations (Ref. [36]),

f ¼ fðy; _yÞ; c ¼ cðr; y; _y; lÞ, (4)

Z ¼ �
qc

q_y

�
qf

q_y
¼ Zðr; y; _y; lÞ, (5)

qi ¼ �Ky;i, (6)

K ¼ rf
qc
ql

�
qf

q_y
¼ Kðr; y; _y; lÞ, (7)

tik ¼ �pdik � r
qc
ql

y;iy;k, (8)

p ¼ r2
qc
qr
¼ pðr; y; _y; lÞ, (9)

where p is a pressure and K is a thermal diffusivity. One should note that unlike the isothermal case of Jordan
[6] or Ciarletta and Straughan [10], the stress tensor contains the extra piece rðqc=qlÞy;iy;k; and p is no longer
simply a function of r.

The residual entropy inequality is

�
qc
qy
þ Z

qf
qy

� �
_yþ 2K

qf
qy

l
f
X0 (10)

and this leads to the relations

qc
qy
þ Z

qf
qy

� �����
E

¼ 0, (11)

qZ

q_y

qf

q_y

� �����
E

�
qZ

q_y

� �����
E

X0, (12)

K jEX0, (13)

where f jE ¼ f ðr; y; _y; lÞjE denotes the value of f in thermal equilibrium, i.e. where _y ¼ l ¼ 0: In keeping with
Green and Laws [35] we suppose qf=qyjE ¼ 1.
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In view of the ensuing analysis we note that Eq. (3) may be rewritten in the form

Ky;ii þ
qK

qr
r;iy;i þ 2l

qK

qy
þ

qK

q_y
_lþ

qK

ql
l;iy;i

� r
qc
qy
þ Z

qf
qy

� �
_y� rf

qZ
qr
_r� rf

qZ
qy
_y� rf

qZ

q_y
€y

� r
qc
ql
þ f

qZ
ql

� �
_lþ rf

q

q_y

qc
ql

�
qf

q_y

� �
y;iy;jdij ¼ 0. ð14Þ

We shall suppose c and f are such that qZ=q_y40; which is not inconsistent with Eq. (12).
3. Wave amplitudes

Jordan [6] and Ciarletta and Straughan [10] developed acceleration wave analyses for the isothermal version
of (1)–(3). Since we are interested in analysing thermodynamic influences on acoustic wave propagation we
now develop a complete nonlinear analysis for the full system of Eqs. (1), (2) and (14). Since the theory of
acceleration waves is now well known and documented in detail, in, e.g. the research article of Chen [37], we
present only the relevant results pertinent to our theory and omit detailed calculations. For system (1), (2) and
(14) we define an acceleration wave to be a singular surface S across which the velocity vi; the density r; and
the temperature gradient y;i are continuous, while their first and higher derivatives, in general, possess finite
discontinuities.

It is possible to develop a general acceleration wave analysis in three-dimensions for Eqs. (1), (2) and (14),
i.e. where the acceleration wave is a two-dimensional surface S moving through a three-dimensional porous
body. However, the key physics in connection with acoustic wave propagation is captured by considering a
plane wave moving through a three-dimensional body and in this case we can restrict attention to Eqs. (1), (2)
and (14), in the one-dimensional picture. In the full three-dimensional scenario the differential geometry
involved, cf. the calculations in elasticity in Ref. [37], or those for a perfect fluid in Ref. [36], could well obscure
the essential physics we wish to highlight. In one space dimension with v ¼ ðu; 0; 0Þ and a wave moving in the
x-direction, Eqs. (1), (2) and (14) become

rðut þ uuxÞ ¼ �prrx � pyyx � p_y
_yx � pllx � ðrcly

2
xÞx � ku, (15)

rt þ rux þ urx ¼ 0, (16)

Kyxx þ Krrxyx þ 2lKy þ K _y
_lþ Kllxyx

� rðcy þ ZfyÞ
_y� rfZr _r� rfZyðyt þ uyxÞ

� rfZ_yðytt þ 2uytx þ utyx þ uuxyx þ u2yxxÞ

� rðcl þ fZlÞðlt þ ulxÞ þ 2rf
q

q_y

cl

f_y

� �
uxl ¼ 0. ð17Þ

Let þ denote the region ahead of S and let � likewise denote the region behind the wave moving in the þ
direction. The amplitudes AðtÞ;BðtÞ and CðtÞ of the acceleration wave may be defined as

AðtÞ ¼ ½ux� ¼ u�x � uþx (18)

and

BðtÞ ¼ ½rx�; CðtÞ ¼ ½yxx�. (19)

While we could develop a complete analysis from Eqs. (15) to (17) for an arbitrary state ahead of S we have
found that the essential features of the Darcy effect (porous medium) and the influence of thermodynamics are
yielded by considering a wave moving into a region at rest at constant temperature, i.e. uþ � 0; yþ � constant,
rþ � constant (and this renders the outcome of the calculations more transparent).
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By taking the jump of Eqs. (15)–(17) and using the Maxwell relation one may now show that the wavespeed
V satisfies the fourth-order equation

ðV2 �U2
T ÞðV

2 �U2
M Þ þ kV 2 ¼ 0, (20)

where U2
T ¼ K=rfðqZ=q_yÞ, U2

M ¼ qp=qr and

k ¼
qp

q_y

qZ
qr

�
qZ

q_y
¼ �r2

q2c

q_y qr

� �2
,

qf

q_y

qZ

q_y
. (21)

The quantities UT and UM are the speeds of a thermal wave in a rigid heat conductor and a sound wave in a
porous medium (cf. Refs. [38,6,10]). From Eq. (21) we might expect ko0 and we suppose this to be the case.
Then, Eq. (20) shows that there are two sets of waves, each moving to the right and left with speeds �V 1;�V 2

where

V2
2oðU

2
T ;U

2
M ÞoV2

1. (22)

Experience with second sound waves (cf. Ref. [28]) and the references therein, suggests the thermal wave will
be the slower. Thus, by studying the first wave with speed V 1 we can obtain information on acoustic wave
propagation into a porous medium taking into account also temperature-dependent properties.

In fact, we now solve for the amplitudes A;B;C for the wave with speed V1. This is a straightforward but
somewhat involved calculation, cf. the method in Ref. [37]. We present the outcome. One may show that A

satisfies the equation

dA

dt
þ bAþ aA2 ¼ 0, (23)

where d=dt is the intrinsic derivative (i.e. the derivative at the wavefront),

b ¼
k

2r

pr

V 2
þ

2fZ_yðpr � V2Þ

ðK � rfZ_yV
2Þ

( )�1

þ
ðpr � V2ÞfV2rfZy þ ðK � rfZ_yV

2Þpy=V2p_yg

2frfZ_yðpr � V 2Þ þ ðK � rfZ_yV
2Þpr=V2g

ð24Þ

and

a ¼
1

2frfZ_yðpr � V 2Þ þ ðpr=V 2ÞðK � rfZ_yV
2Þg

� p_yf
q
qr

r2
qZ
qr

� �
þ
ðK � rfZ_yV

2Þ

V 2
2
qp

qr
þ r

q2p
qr2

� �(

þ
pr

V2
� 1

� �
2�

3rp_yr

p_y

� �
ðK � rfZ_yV

2Þ

�

þ2r
qK

qr
þ V 2f2rfZ_y � r2Zrðf_y þ 2_yfÞg

�

þ
pr

V2
� 1

� �2
ðK � rfZ_yV2Þ

p2
_y

ðrV2p_y_y þ rpl þ 2r2clÞ

(

þ
r2V 2

p_y
fV 2ðf_yZ_y þ fZ_y_y � 2K _yÞ þ cl þ fZlg

))
. ð25Þ

The solution to Eq. (23) is

AðtÞ ¼
Að0Þ

ebt þ Að0Þab�1ðebt � 1Þ
. (26)
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This yields exactly the evolutionary behaviour of the wave amplitude of an acceleration wave moving into a
porous medium. The amplitudes BðtÞ and CðtÞ then follow from the jumps of Eqs. (15) and (16).

It is worth pointing out that if we take the limit in Eq. (23) of letting the theory approach the isothermal one
in which _y and l are not present then V2! qp=qr; and b! K=2r; a! 3=2þ r2ðq=qrÞðr�1qp=qrÞ=2qp=qr:
This is in complete agreement with the result found for the isothermal situation by Ciarletta and Straughan
[10]. However, Eq. (26) clearly displays the damping effect of the thermodynamic variables. Even if k! 0 (i.e.
the porous medium disappears) there is attenuation of the wave amplitude due to the presence of the b term.
Eq. (26) allows us to assess the combined effect of the porous medium, via the k term, and the Green and Laws
[35] theory. We presently await further experimental results to allow us to construct suitable functions fðy; _yÞ
and cðr; y; _y; lÞ: Once such information is available expression (26) yields exactly the wave amplitude.
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