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Abstract

The complex Poisson’s ratio plays an important role in characterizing the linear dynamic behaviour of solid materials,

and occurs in a number of equations used for acoustical and vibration calculus. The ratio of the imaginary part to the real

part of complex Poisson’s ratio is referred to as Poisson’s loss factor. The magnitude of the Poisson’s loss factor is

investigated in this paper for homogeneous, isotropic, linear solid viscoelastic materials with positive Poisson’s ratio. The

relation of the Poisson’s loss factor to the material damping is determined. It is shown that the magnitude of the Poisson’s

loss factor is approximately proportional to the difference between the shear and bulk loss factors, and is a rational

fractional function of the dynamic Poisson’s ratio. In addition, relationships are developed which enable one to determine

the approximate magnitude of the Poisson’s loss factor from knowledge only of the shear loss factor and the dynamic

Poisson’s ratio. It is shown that the Poisson’s loss factor is smaller than the shear loss factor usually by one order of

magnitude at least. Moreover, it is pointed out that the Poisson’s loss factor of a high loss and a low loss material may be

about the same. Experimental data on two rubbers and a hard plastic are presented to verify the theoretical conclusions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The Poisson’s ratio is defined as the ratio of the lateral strain to the axial strain in a linear solid body, e.g., a
cylinder, loaded uniaxially, and this ratio is a real number in case of perfect elasticity for either static
or dynamic loading. In contrast, with dynamic loading of a real, i.e., viscoelastic solid, the strain-to-strain ratio
can be considered as a complex number due to the fact that the lateral strain lags behind the axial
strain as a result of damping in the material. This complex number is referred to as complex Poisson’s ratio [1,2].
The real part is known as dynamic Poisson’s ratio, the imaginary part is related to the strain lag, and the ratio of
the imaginary part to the real part is named Poisson’s loss factor [3]. The complex Poisson’s ratio describes the
strain-to-strain ratio in the frequency domain, both the real and imaginary parts depend on the frequency [1–4].

The complex Poisson’s ratio is the counterpart of the complex modulus of elasticity widely used to
characterize the dynamic elastic and damping properties of solid materials. While vast theoretical and
experimental knowledge have been accumulated on the complex moduli (shear, Young’s, etc.) [1,5,6], the
information on the complex Poisson’s ratio, especially its loss part, is less complete and ambiguous. There is
solid theoretical knowledge on the magnitude of dynamic Poisson’s ratio, which may be only between �1 and
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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0.5 with homogeneous, isotropic materials [7]. In addition, the dynamic Poisson’s ratio is more or less known
from experiments for materials of different kind. In contrast, the magnitude of the Poisson’s loss factor is not
known from the theoretical studies [8,9], and its relation to the material damping is not clear. While a modulus
loss factor, e.g., the shear one is directly related to the damping, the experiments have revealed that the
Poisson’s loss factor can be extremely low even if a material has high damping capacity [8]. Experimental data
on the Poisson’s loss factor are scanty, and most of them concern solid polymeric materials, especially the hard
plastics [1,8–11] and some sound absorbing foams [12]. The available experimental data show that the
Poisson’s loss factor is always low, the measured magnitudes are of the order of 10�3–10�2 [1,8–12], or it has
been found to be zero for some materials [13–16] in spite of careful experiments. Referring to its smallness, the
Poisson’s loss factor is often neglected, and the dynamic Poisson’s ratio is considered as a single, frequency
independent number, however, both assumptions violate solid theoretical establishments [2–4,8,9].

The magnitude of the Poisson’s loss factor is investigated in this paper for homogeneous, isotropic, linear
solid viscoelastic materials. For the sake of simplicity, only the materials with positive Poisson’s ratio are
considered. The essential aim is to determine the magnitude of the Poisson’s loss factor and to clear up its
relation to the material damping. The solid polymers, especially the rubbers and hard plastics, referred usually
as viscoelastic materials, are in the focus, but the theory and conclusions concern all real solids within the
linear range of dynamic behaviour. The motivation of this research, beyond the scientific interest, is that the
knowledge of the Poisson’s loss factor is required for both the complete characterization of dynamic
behaviour of materials [1,2,17,18], and the correct acoustical and vibration calculus [19–21].

2. Theory

2.1. The complex Poisson’s ratio-definitions

For defining the complex Poisson’s ratio and the respective loss factor, consider the strain state of a
cylindrical solid body subjected to direct uniaxial dynamic stress. The axial strain, ex, of the cylinder is
assumed to obey a harmonic function, which is given here in complex form as:

�xðtÞ ¼ �̂xe
jot, (1)

where t is the time, �̂x is the amplitude of the axial strain, j ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit, o ¼ 2pf, f is the
frequency in Hz. In addition, it is assumed that the strain is small enough, i.e., the dynamic behaviour of the
material is linear, and then the lateral strain also obeys a harmonic function of o frequency. Nevertheless, it is
reasonable that in case of a real solid the lateral strain cannot vary simultaneously with, but lags behind the
axial strain by a Dt time due to the damping in the material. Consequently, the lateral strain can be written as

�yðtÞ ¼ �̂ye
joðt�DtÞ ¼ �̂ye

j ot�dnð Þ, (2)

where �̂y is the amplitude of the lateral strain, and dn is the phase lag:

dn ¼ oDt. (3)

The ratio of the lateral strain to the axial strain results in a complex number referred to as the complex

Poisson’s ratio

n̄ðjoÞ ¼
�y

�x
¼
�̂y
�̂x

e�jdn ¼
�̂y

�̂x

ðcos dn � j sin dnÞ ¼ nd ðoÞ � jnlðoÞ ¼ ndðoÞ 1� jZnðoÞ
� �

, (4)

where the overbar denotes the complex value, nd is the dynamic Poisson’s ratio, nl is the loss component, and Zn
is the Poisson’s loss factor defined as

ZnðoÞ ¼
nlðoÞ
ndðoÞ

¼ tgdnðoÞ. (5)

In addition, the absolute Poisson’s ratio is useful to define as:

n̄ðjoÞ
�� �� ¼ �̂y

�̂x
¼ ðn2d þ n2l Þ

1=2
¼ ndð1þ Z2nÞ

1=2. (6)
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It is clear that the Poisson’s loss factor is zero in case of perfect elasticity, and then Eqs. (4) and (6) yield the
Poisson’s ratio, n, which is a real, frequency independent number:

n̄ðjoÞ ¼ n̄ðjoÞ
�� �� ¼ nd ¼ n. (7)

The complex Poisson’s ratio describes the strain-to-strain ratio in the frequency domain, and both the real
and imaginary parts inevitably depend on the frequency [2–4]. The dynamic Poisson’s ratio of solid
viscoelastic materials is known to decrease monotonically with increasing frequency while the respective loss
factor passes through a maximum [1–4]. Moreover, it is known that the decrease in nd(o) is related to the
magnitude of the Poisson’s loss factor, namely the higher Zn, the larger the decrease in nd(o), as it is formulated
by the local Kramers–Kronig relations [4]:

ZnðoÞ � �
p
2

d log ndðoÞ½ �

d log o½ �
. (8)

This equation is approximate one, but its accuracy is better than 10% if the slope of frequency variations of
the components of the complex Poisson’s ratio plotted in a log–log system is smaller than 0.35 [22]. This
condition is usually satisfied, some examples for the frequency variations of nd(o) and Zn(o) will be shown in
the experimental part of this paper.

2.2. Magnitude of the Poisson’s loss factor

It is known from the theory of elasticity that the Poisson’s ratio of a homogeneous, isotropic, linear solid
material cannot be arbitrary, but has bounds, namely: �1onp0.5 [7]. The negative Poisson’s ratio is scanty
[23], the majority of the common solid materials have positive Poisson’s ratio, and only these materials are
considered in this work. The bounds on n are evidently valid for the dynamic Poisson’s ratio too, i.e.,
0pndp0.5, because nd governs the dynamic strain-to-strain ratio if the material specimen is perfectly elastic
(Eq. (7)). In contrast to nd, the magnitude of the Poisson’s loss factor is not known from theoretical works,
which concerned only the comparison of the loss factors. It has been found that Zn is the smallest among the
modulus loss factors [8], but the relation of the Poisson’s loss factor to the material damping has not been
investigated.

In order to determine the magnitude the Poisson’s loss factor, and to clear up the relation to the material
damping, the relation between the complex Poisson’s ratio and the complex moduli is investigated.
A homogeneous, isotropic solid material is known to have two independent complex moduli, namely the
complex shear modulus, Ḡ, and the bulk modulus, B̄, and, therefore, their relation to the complex Poisson’s
ratio is considered here. The respective relationship is [2]

n̄ðjoÞ ¼
3B̄ðjoÞ � 2ḠðjoÞ
6B̄ðjoÞ þ 2ḠðjoÞ

, (9)

where

ḠðjoÞ ¼ GdðoÞ þ jGlðoÞ ¼ Gd ðoÞ½1þ jZGðoÞ� (10)

and

B̄ðjoÞ ¼ BdðoÞ þ jBlðoÞ ¼ BdðoÞ½1þ jZBðoÞ�, (11)

in which Gd and Bd are the dynamic shear modulus and bulk modulus, respectively, Gl and Bl are the loss
moduli, moreover ZG and ZB are the modulus loss factors defined as:

ZGðoÞ ¼
GlðoÞ
GdðoÞ

, (12)

ZBðoÞ ¼
BlðoÞ
BdðoÞ

. (13)

The magnitude of the Poisson’s loss factor could be derived from Eq. (9), but it is more suitable to
determine the bulk loss factor as a first step of the derivation. The rearrangement of Eq. (9) yields the complex
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bulk modulus:

B̄ðjoÞ ¼
2

3
ḠðjoÞ

1þ n̄ðjoÞ
1� 2n̄ðjoÞ

(14)

and the separation of Eq. (14) into real and imaginary parts results in:

ZB ¼
½ð1þ ndÞð1� 2ndÞ � 2ðndZnÞ

2
�ZG � 3ndZn

ð1þ ndÞð1� 2ndÞ � 2ðndZnÞ
2
þ 3ndZnZG

. (15)

The rearrangement of Eq. (15) and some mathematical manipulations give an equation of second degree for Zn
as:

2

3

ZG � ZB

1þ ZGZB

ndZ2n þ Zn �
ZG � ZB

1þ ZGZB

ð1þ ndÞð1� 2ndÞ

3nd

¼ 0. (16)

The physically meaningful root of Eq. (16) is:

Zn ¼

�1þ 1þ
8

9

ZG � ZB

1þ ZGZB

� �2

ð1þ nd Þð1� 2ndÞ

( )1=2

4

3

ZG � ZB

1þ ZGZB

nd

. (17)

It can be seen that the magnitude of the Poisson’s loss factor is related to both the modulus loss factors,
i.e., the material damping, and the dynamic Poisson’s ratio.

Eq. (17) can be written in a simpler form by taking the first-order approximation of the square root. This
approximation can be done if:

Z2G
8

9

1� ZB=ZG

1þ ZGZB

� �2

ð1þ ndÞð1� 2ndÞ51, (18)

where 0p1� ZB=ZGp1, because the bulk loss factor is smaller than the shear one [8,9], moreover
0pð1þ ndÞð1� 2ndÞp1 for 0pndp0.5. It follows that Eq. (18) holds true if:

Z2G51; i:e:; ZGo0:3 (19)

and then

ZGZB51 (20)

is valid too. Using these approximations, Eq. (17) yields:

Zn � ðZG � ZBÞ
ð1þ ndÞð1� 2ndÞ

3nd

. (21)

Before going further, the validity of Eq. (21) with respect to real solid materials is useful to study. The basic
assumption required to derive Eq. (21) that the shear loss is as low as ZGo0.3, holds true for the majority if
not all stiff structural materials (metals, ceramics, composites, etc.) and even the hard plastics at room
temperature. Nevertheless, it is easy to show that Eq. (21) may be valid for the high loss rubbery materials too.
Namely, it is known that the rubbers are usually nearly incompressible, i.e., the dynamic Poisson’s ratio is close
to 0.5, and therefore, Eq. (18) holds true due to the member (1�2nd). Moreover, it is clear that ZB is inevitably
very low in the case of near-incompressibility, because Bd-N as nd-0.5, therefore, ZB5ZG holds true too. It
follows that Eq. (20) may be valid even if the shear damping is high, say ZGE1.0. From these, one can
conclude that Eq. (21) may be accurate enough not only for the low loss materials, but also the high loss
rubbers and other elastomers.

Eq. (21) shows that the Poisson’s loss factor is directly proportional to the difference between the shear and
bulk loss factor, which is the largest and smallest, respectively, amongst the modulus loss factors [8]. In
addition, the magnitude of Zn depends on the dynamic Poisson’s ratio too as defined by Eq. (21). Bearing in
mind that the possible magnitudes of the dynamic Poisson’s ratio are known from the theory, the investigation
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of the Poisson’s loss factor as a function of nd deserves special attention, and it will be the subject of the next
section.

2.3. Poisson’s loss factor vs. dynamic Poisson’s ratio

The magnitude of the Poisson’s loss factor at nd ¼ 0 and 0.5, respectively, is easy to determine. It can be seen
from both Eqs. (17) and (21) that Zn ¼ 0 if nd ¼ 0.5. The physical reason of the vanishing Poisson’s loss factor
is clear in this case, namely the material is perfectly incompressible (B̄ ¼ 1) if nd ¼ 0.5, and then the lateral
strain must vary in phase with the axial strain in each and every moment (dn ¼ 0). Similarly, it is also clear
from the physical meaning of the Poisson’s loss factor that Zn ¼ 0 if nd ¼ 0 (no lateral motion, no phase lag). It
should be noted that the latter statement is not plausible mathematically at first glance, because Eq. (5)
defining Zn yields an indefinite 0/0 form as nd-0 due to the fact that then the loss part, nl, in the complex
Poisson’s ratio vanishes too. Nevertheless, it can be proved (e.g., by means of Eq. (9)) that this 0/0 form
approaches zero as nd-0. It is worth noting that, in both cases discussed above, the Poisson’s loss factor
vanishes regardless of the magnitude of the shear damping.

The magnitude of the Poisson’s loss factor also can easily be determined if the dynamic Poisson’s ratio is
close to 0 and 0.5, respectively, by approximating Eq. (21). For the sake of convenience, the Poisson’s loss
factor related to the shear loss factor is considered, i.e.,

Zn
ZG

� 1�
ZB

ZG

� �
ð1þ ndÞð1� 2nd Þ

3nd

, (22)

where 0pZB/ZGp1 [8,9].
The simplest case to determine Zn/ZG is if nd is close to 0.5, i.e., the material is nearly incompressible like

rubbers. Then, the bulk loss is much smaller than the shear loss as mentioned before, and, therefore, the
approximation:

1�
ZB

ZG

� �
1þ nd

3nd

� 1 (23)

holds true. Consequently, Eq. (22) can be written as

Zn
ZG

� 1� 2nd . (24)

It follows that the Poisson’s loss factor related to the shear one, in case of near-incompressibility, essentially
depends only on the dynamic Poisson’s ratio.

If nd is close to zero, Eq. (22) can be approximated as

Zn
ZG

� 1�
ZB

ZG

� �
1

3nd

. (25)

This equation formally seems to approach infinity as nd-0, however, in this case Zn must approach zero.
Nevertheless, Eq. (25) is able to describe the vanishing of Zn as nd-0, because then ZB-ZG. (The latter is clear
from Eq. (14).) It can be concluded from the afore-mentioned that the prediction of Eq. (25) is adequate for
nd-0 if the member (1�ZB/ZG) can be expressed as a function of nd, and this function obeys a power law
defined as

1�
ZB

ZG

¼ ann
d , (26)

where a40 and n41 should stand. The replacement of Eq. (26) into Eq. (25) results in:

Zn
ZG

�
a

3
nn�1

d . (27)

Eq. (27) predicts that the magnitude of ZB/ZG depends only on the dynamic Poisson’s ratio if the latter is
close to zero. The same conclusion has been drawn for the case when nd is close to 0.5. It is an intriguing
possibility that the relation between ZB/ZG and nd may exist for other values of dynamic Poisson’s ratio. Such a
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relation can simply be constructed by assuming that Eq. (26) holds true for all values of nd between 0 and 0.5.
The investigation of this assumption, i.e., that the ratio of bulk to shear loss can be given as a function of nd, is
the subject of a recent research, which definitely supports this idea, some results will be published soon. The
replacement of Eq. (26) into Eq. (22) yields:

Zn
ZG

�
a

3
nn�1

d ð1þ ndÞð1� 2ndÞ, (28)

where a ¼ 2, which follows from Eq. (26) seeing that ZB-0 as nd-0.5.
At this stage, it is useful to summarize the assumptions used to develop Eq. (28). The assumptions are:

(a) the solid material is homogeneous and isotropic, (b) the dynamic behaviour is linear, (c) the dynamic Poisson’s
ratio is positive, and 0pndp0.5, (d) the shear damping is low, namely ZBo0.3, (e) Eq. (26) holds true, i.e., the
ratio of the bulk loss factor to the shear loss factor obeys a power law of the dynamic Poisson’s ratio.

The variations of Zn/ZG predicted by Eq. (28) are shown in Fig. 1 as a function of nd for n ¼ 1.5, 2.0 and 2.5.
Also are shown, for the sake of completeness, the approximations by Eqs. (24) and (27). It can be seen that
Zn/ZG varies along an arched curve, and Eq. (28) satisfies all requirements concerning Zn, namely; Zn ¼ 0 at both
nd ¼ 0 and 0.5 as discussed before, and ZnoZG in agreement with previous theoretical studies [8,9]. Moreover,
combining Eqs. (26) and (28) shows that ZnoZB, which is also in agreement with the theoretical findings [8].

It should be emphasized, however, that it is not thought at all that Eq. (28) (and Eq. (26)), with certain
coefficients a and n, would universally be valid for all solid materials over the whole range of dynamic
Poisson’s ratio. In contrast, the assumption is that Eq. (28) is able to relate Zn/ZG to nd for real solids over
restricted ranges of nd, and the coefficients a and n certainly vary from material to material. The adequacy of
Eq. (28) will be investigated in the following paragraph by means of experimental data covering some ranges
of nd.

3. Experimental data

3.1. Polyurethane rubber (0.490ondo0.497)

It is well known that the rubbers and other elastomers are nearly incompressible at low frequencies, in the
rubbery range of dynamic behaviour, where nd ffi 0:5. Notwithstanding, the rubbers loose this property with
increasing frequency, and become compressible in the transition and glassy ranges, where the dynamic
Poisson’s ratio may be as low as 0.4 or 0.3 [3,5,8]. Consequently, the rubbers offer an excellent possibility to
study the validity of both Eqs. (24) and (28). Unfortunately, only few experimental data on the Poisson’s loss
factor of rubbery materials are available from the technical literature [8,24], and even these data cannot be
used for our purpose, because they are not complete or reliable enough. Bearing in mind that the complex
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Poisson’s ratio can be determined from the measurements of two complex moduli, it was decided to search for
such experimental works, and to calculate Zn and nd from the available modulus data.

Detailed, reliable experimental data on the complex shear and bulk moduli of a commercial polyurethane
rubber are in the paper by Mott et al. [25]. The complex shear modulus was measured as a function of
frequency (10�4–2Hz) and temperature (�36 to 34 1C), mainly in the rubbery range and in the lower part of
the rubber-to-glass transition range, and reduced frequency curves from 10�4 to 109Hz were constructed at
reference temperature 34 1C by means of the frequency–temperature equivalence principle. The complex bulk
modulus was determined from the measurement of longitudinal sound speed and attenuation as a function of
frequency (12.5–75 kHz) and temperature (3.9–32.6 1C). The combination of the longitudinal data with the
shear data, and the application of the frequency-equivalence principle at reference temperature 34 1C, have
resulted the reduced frequency curves for the complex bulk modulus from 104 to 3� 107Hz. The frequency
variations of the dynamic shear and bulk moduli, and the respective loss factors, determined from the
smoothed reduced frequency curves (Figs. 7 and 10 in Ref. [25]), are shown in Fig. 2.

In this work, the components of the complex Poisson’s ratio were calculated from the experimental shear
and bulk data below the loss factor peak, at frequencies 104, 105, 106 and 107Hz. The Poisson’s loss factor was
calculated by Eq. (21), and the dynamic Poisson’s ratio was determined by the formula:

nd �
3Bd � 2Gd

6Bd þ 2Gd

. (29)

This equation can be derived from Eq. (9) under the condition that ZGo 0.3, which holds true at the
frequencies of investigation. The calculated values of nd and Zn are given in Fig. 2. It can be seen that the
dynamic Poisson’s ratio decreases from 0.497 (104Hz) down to 0.49 (107Hz) in the frequency range of
investigation, i.e., this polyurethane rubber is nearly incompressible at these frequencies. It can further be seen
in Fig. 2 that the magnitude of the Poisson’s loss factor is of the order of 10�3, which is much smaller than that
of the shear loss factor. The loss factors ZG and Zn, and the dynamic Poisson’s ratio determined for this
polyurethane rubber were used to verify Eq. (24). The calculated values of Zn/ZG are given in Fig. 3 as functions
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Fig. 2. Dynamic properties of a polyurethane rubber plotted against the frequency. The shear (—) and bulk ( � � � � ) properties are from

the experimental work by Mott et al. [25]. The dynamic Poisson’s ratio and the respective loss factor (J) are calculated from the shear and

bulk data at the frequencies as shown in the figure.
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of nd. In addition, the prediction of Eq. (24) is shown in Fig. 3. The agreement between the experimental data
and the theoretical prediction is rather good.

3.2. Styrene-butadiene rubber (0.416ondo0.49)

The very careful and accurate measurements of the complex bulk modulus and the complex longitudinal
(wave) modulus, L̄ðjoÞ, of a styrene-butadiene rubber performed by Wada et al. [26] offer a further possibility
to investigate the validity not only of Eq. (24) but also Eq. (28). The authors of work [26] measured the
complex bulk and longitudinal moduli at some frequencies in the ultrasonic range (0.33–5MHz), as functions
of temperature (0–55 1C), and calculated the complex shear modulus from these data. Reduced frequency
curves were constructed for the dynamic and loss moduli at reference temperature 20 1C, over the frequency
range from 104 to 109Hz, which covers the main transition zone of this rubber. These data (Fig. 10 in
Ref. [26]) were used to plot the dynamic bulk, longitudinal and shear moduli in Fig. 4. Also are given in Fig. 4
the respective loss factors, which were determined by the present author from the dynamic and loss moduli.
Unfortunately, the shear properties below 105Hz (broken line in Fig. 4) could not reliably be determined from
the available experimental data.

The dynamic Poisson’s ratio and loss factor were calculated from the bulk and longitudinal properties. This
method was used earlier to determine the complex Poisson’s ratio for this rubber, the equations of the
calculations are [3]:

nd �
3Bd � Ld

3Bd þ Ld

, (30)

Zn � ðZL � ZBÞ
ð1þ ndÞð1� ndÞ

2nd

, (31)

where Ld is the dynamic longitudinal modulus and ZL is the respective loss factor. Eqs. (30) and (31) can be
used if ZLo0.3 and ZBo0.3; both conditions are satisfied in this case. The calculated values of nd and Zn are
given in Fig. 4. It can be seen that ndE0.5 at low frequency, while nd approaches 0.4 at high frequency. It can
further be seen that the Poisson’s loss factor is much smaller than the shear one over the whole frequency
range of investigation, and the larger the difference between them, the closer is nd to 0.5. The magnitudes of
Zn/ZG were calculated at some frequencies between 105 (nd ¼ 0.49) and 108Hz (nd ¼ 0.416), the results are
given in Figs. 3 and 5. It can be seen in Fig. 3 that the experimental data are in good agreement with the
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prediction of Eq. (24) if nd40.48, but the data deviate from that by decreasing nd. The increasing deviation is
the consequence of the decreasing difference between the bulk and shear loss factors (Fig. 4). Nevertheless,
Fig. 5 clearly demonstrates that, with decreasing nd, the experimental data follow the prediction of Eq. (28),
and excellent fitting has been found with n ¼ 2.3.
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3.3. Poly(methyl methacrylate) (0.345ondo0.372)

In contrast to rubbers, the hard plastics were in focus in several experimental works to determine the
Poisson’s loss factor [1,8–11]. Of these works, the measurements made by Yee and Takemori [10] on
poly(methyl methacrylate) (PMMA) are of special importance and considered here, because of the
exceptionally high experimental accuracy and reliability of the results. The high accuracy is partly due to
the direct method used by the authors to measure the components of the complex Poisson’s ratio. In addition
to nd and Zn, the complex Young’s modulus was measured on one and the same specimen, and the complex
shear and bulk moduli were calculated from the measured data. The measurements were made at 1Hz as a
function of temperature in the range from �40 to 100 1C, where the so-called secondary or b transition of
PMMA occurs. The Poisson’s loss factor passes through a maximum, while the dynamic Poisson’s ratio
decreases with increasing temperature, as expected. The maximum in Zn is shallow, and occurs at around
20 1C, where Zn ¼ 0.013, nd ¼ 0.363 and ZG ¼ 0.079; these values are typical for hard plastics at room
temperature [1,8–11].

The experimental data on nd, Zn and ZG at temperatures �20, 0, 20 and 40 1C (Figs. 4 and 7 in Ref. [10]) were
used to verify Eq. (28). The calculated values of Zn/ZG are given in Fig. 5, as functions of nd ranging from 0.345
to 0.372. It can be seen that the experimental data, like the styrene-butadiene rubber, fit very well to the
prediction of Eq. (28) if n ¼ 2.3.

Although the experimental data seen in Fig. 5 convincingly support the theoretical predictions, more data
are required, of course, to verify Eq. (28). Unfortunately, such data, especially for the lower values of nd, are
not available or some of the published data cannot be used for this purpose, because they are not complete
(ZG or nd is not known) or are not reliable enough due to experimental difficulties. The measurement of the
Poisson’s loss factor for materials of different kind, and the investigation of Eq. (28) by experimental data
offer an exciting research topic.

3.4. Comparison of the experimental data

Up to now, the magnitudes of Zn/ZG were in focus to verify the equations developed in the paper. In Fig. 6
the magnitudes of Zn are plotted against nd for the three materials discussed above. It can be seen that the
experimental data form an inverted ‘‘U’’ plot (in case of the polyurethane rubber, the data are not enough to
see this plot.) This inverted ‘‘U’’ plot is well known from the measurements of complex modulus of viscoelastic
damping materials, when the modulus loss factor is plotted against the dynamic modulus [27].
Notwithstanding, there is a distinct difference between the inverted ‘‘U’’ plots concerning a complex modulus
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ARTICLE IN PRESS
T. Pritz / Journal of Sound and Vibration 306 (2007) 790–802800
and the complex Poisson’s ratio, respectively. In case of a complex modulus, e.g., the shear one, the height of
this plot, i.e., the highest magnitude of the modulus loss factor, is in direct relation to the damping ability of
the material in question. In contrast, it can be seen in Fig. 6 that the highest magnitude of the Poisson’s loss
factor of the styrene-butadiene rubber (Zn ¼ 0.026) and the PMMA (Zn ¼ 0.013) do not differ significantly
from each other, while their shear damping differs by more than one order of magnitude (the maximum in ZG

of the styrene-butadiene rubber exceeds 1.0 (Fig. 4), and that of PMMA is 0.079 [10]). In addition, Fig. 6
clearly demonstrates that Zn of the high loss polyurethane rubber, in the range of near-incompressibility
(nd40.49), may be much smaller than Zn of the low loss PMMA. These phenomena are the consequence of the
fact that the magnitude of Zn is dependent on the dynamic Poisson’s ratio beside the material damping as
formulated by Eq. (28).

4. Discussion

The essential aim of this work was to determine the magnitude of the Poisson’s loss factor, and to clear up
its relation to the material damping for homogeneous, isotropic, linear solid viscoelastic materials with
positive Poisson’s ratio. As a result of theoretical study, it has been found that the Poisson’s loss factor is
approximately proportional to the difference between the shear and bulk loss factors, moreover it is a function
of the dynamic Poisson’s ratio. In addition, it has been shown that the Poisson’s loss factor can be
approximately determined from knowledge only of the shear loss factor and the dynamic Poisson’s ratio by
means of the relationships developed in the paper. These relationships have been verified by experimental data
on two rubbers and a hard plastic (PMMA) in the range of dynamic Poisson’s ratio from 0.345 to 0.497.

Of the relationships developed in the paper, Eq. (28) is of special interest and usefulness. The usefulness of
Eq. (28) is in that it enables one to estimate the magnitude of the Poisson’s loss factor for solid materials, since
the shear loss factor and the dynamic Poisson’s ratio are more or less known for materials of different kind. In
general, it can be proved through Eq. (28) that the Poisson’s loss factor is smaller than the shear loss factor
usually by one order of magnitude at least (Fig. 1). Clearly, among the solid materials, the high loss rubbers
and other elastomers may have the highest Poisson’s loss factor. It is known that the shear loss factor of these
rubbery materials may be as high as 1.0 [1,5,6], and their dynamic Poisson’s ratio is usually larger than
0.46y0.47 at and around the shear loss peak as can be seen in Figs. 2 and 4. From these one can conclude by
means of Eq. (28) that magnitude of the Poisson’s loss factor normally does not exceed 0.1 even if the shear
damping is high. Notwithstanding, the Poisson’s loss factor of a high loss rubbery material may be much
smaller than 0.1 if nd is close to 0.5 or zero as mentioned before. The highest magnitude of the Poisson’s loss
factor of hard plastics, by this estimation, is of the order of 10�3–10�2, seeing that the respective shear loss
peak is of the order of 10�2–10�1, and the dynamic Poisson’s ratio lays between approximately 0.3 and 0.4
[1,8–11]. Furthermore, it is clear from Eq. (28) that the Poisson’s loss factor is inevitably low and can be
extremely low for the low loss materials like metals, ceramics, glasses, etc. It is interesting to conclude from the
above discussion that the magnitude of the Poisson’s loss factor may be about the same for a high loss and a
low loss material as can be seen in Fig. 6.

Although the Poisson’s loss factor is always low, the highest experienced magnitude is of the order of 10�2

[1,8–12], this tiny quantity plays important role in the material behaviour. In spite of it, the Poisson’s loss
factor, referring to its smallness, is frequently neglected, however, it leads to contradiction in characterizing
the dynamic behaviour of materials, and may cause erroneous results in the acoustical calculus. On one hand,
the negligence of Zn implies that the shear loss factor is identical to the bulk and any other modulus loss factors
(see, e.g., Eqs. (14), (21) and (31)), which is absurd and contradicts both solid theoretical statements [8,9] and
experimental observations [1,8–10]. On the other hand, the assumption on Zn ¼ 0 implies that the dynamic
Poisson’s ratio is independent of the frequency, whilst the frequency dependence is inevitable [2–4] and is in
direct relation to the magnitude of Zn as can be seen from Eq. (8). No doubt that in some cases, especially with
the low loss structural materials (metals, ceramics, etc.), the frequency dependence of nd (and the magnitude of
Zn) can be neglected, but in other cases, mainly with the rubbery materials widely used for vibration and sound
control, the assumption on the frequency independent Poisson’s ratio may cause serious error in the acoustical
calculus. Namely, there are a number of equations, which contain the member 1/(1�2nd), and, therefore, these
equations are highly sensitive to the magnitude of, i.e., any small frequency variation in nd, if it is close to 0.5.
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The importance of this question is demonstrated by a numerical example. Consider a frequency range covering
three decades from o1 to o2, where nd(o1) ¼ 0.49 and Zn ¼ 0.005; the latter is assumed to be constant over this
range for the sake of simplicity. In this case, the frequency variation in nd(o) can be predicted from Zn by
means of Eq. (8), from which one can derive that:

ndðo2Þ � ndðo1Þ
o1

o2

� �2Zn=p

. (32)

Using the above data, Eq. (32) yields: nd(o2) ¼ 0.4793, i.e., the decrease in nd(o) from o1 to o2 is about 2%,
which seems to be negligible from practical point of view. Nevertheless, if this small variation in nd(o) is
neglected, i.e., Zn ¼ 0 is assumed, then the error in the calculation by an equation containing the member
1/(1�2nd), may exceed 100% at o2.
5. Conclusions

The magnitude of the Poisson’s loss factor has been investigated in this paper for homogeneous, isotropic,
linear solid viscoelastic materials with positive dynamic Poisson’s ratio. As a result of theoretical investigation
and the experimental data presented in the paper, the following conclusions can be drawn:
(a)
 The magnitude of the Poisson’s loss factor is approximately proportional to the difference between the
shear and bulk loss factors, and is a rational fractional function of the dynamic Poisson’s ratio.
(b)
 The Poisson’s loss factor can be approximately determined from knowledge only of the shear loss factor
and the dynamic Poisson’s ratio by means of the relationships developed in the paper.
(c)
 The Poisson’s loss factor is smaller than the shear loss factor usually by one order of magnitude at least.

(d)
 The magnitude of the Poisson’s loss factor is low and normally does not exceed 0.1 even in the case of

rubbers and other elastomers characterized by high shear damping.

(e)
 The Poisson’s loss factor of a high loss and a low loss material may be about the same.
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