
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 306 (2007) 803–817

www.elsevier.com/locate/jsvi
Detection and assessment of damage in 2D structures using
measured modal response

Mohammad Reza Banana,b,�, Yousef Mehdi-pourc

aDepartment of Civil Engineering, Shiraz University, Shiraz, Fars 7134851156, Iran
bDepartment of Civil Engineering, American University of Sharjah, UAE
cCivil Engineering Department, Islamic Azad University, Qeshm, Iran

Received 26 August 2006; received in revised form 24 June 2007; accepted 27 June 2007
Abstract

Motivated by one of the concepts in the field of health monitoring for structural systems, a damage detection procedure

is developed. In order to perform the system health monitoring, structural health along with sensor and actuator

malfunction must be continuously checked. As a step toward developing a system health-monitoring scheme, this paper

investigated structural damage detection, using a constrained eigenstructure assignment. The proposed damage detection

method is constructed based on a concept of control theory and subspace rotation for two-dimensional (2D)-structural

systems. To demonstrate the capabilities of the developed damage detection algorithm, the behavior of a simulated

degraded braced-frame structure is studied. Using Monte Carlo simulation, the performance of the approach is evaluated.

It shows that the proposed algorithm is potentially promising for application to real cases.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

During the lifetime of a structure sever damages might occur due to extreme events. Damage refers to a
localized failure of a structural member. This failure can be a complete loss of some constitutive properties of
the damaged member up to an unacceptable level. We assume this failure or degradation would primarily
affect the stiffness properties. Therefore, it changes the modal characteristics of the dynamic response of the
structure.

A well-designed structure may survive a damaging event but its safety cannot be generally guaranteed,
based on the initial design, after such an experience. Undetected and unrepaired damage may lead to a
structural failure requiring costly repair or loss of human lives. Therefore, it is essential to inspect any
structure for damage, particularly after a severe loading event.

Visual inspection by an expert has been the only option available throughout most of structural monitoring
history. But many parts of a structure might be difficult, if not impossible, to inspect visually. Therefore, using
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclatures

B0 n�m control influence matrix
C n� n proportional damping matrix
E r� n output influence matrix
F axial force
G m� r feedback gain matrix
K n� n stiffness matrix
M n� n mass matrix
M1 member-end moment at node i

M2 member-end moment at node j

S state vector
tij amount of noise in mode i at the jth

degree of freedom
T 3� n transformation matrix
u m� 1 control force vector
vi desired eigenvector

v̂i measured portion of vi

v̂i unmeasured portion of vi

~vij jth member of the ith noisy mode shape
v̂ij jth member of the ith analytically mode

shape
x n� 1displacement vector
_x n� 1 velocity vector
€x n� 1 acceleration vector
z r� 1 output feedback variables
gij angle between two vectors
D axial deformation
y1 member-end rotation at node i

y2 member-end rotation at node j

ld
i desired eigenvalue
~li ith noisy frequency
li ith analytical frequency
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physical nondestructive testing to augment traditional inspection procedures has been increasingly viewed as a
powerful alternative [1–3].

The ability to locate and assess damage in flexible structures has been significantly becoming important for
improving the performance and life span of these systems. Many local or focused approaches have been
developed and studied for the purpose of damage location and damage assessment, including X-ray, optical,
infrared, and ultrasonic methods. Among global or system methods currently in development, those that use
vibration responses and system identification, have considerably progressed in the last decades [4–6]. Here,
system identification refers to the process that modifies or updates a finite element model of a structural system
based on measuring response [7]. The motivation behind a system identification approach for damage
detection is to quantify the damage information contained in the response as much and as effectively as
possible [8].

Some researchers have been studying methods of structural damage locating using measured modal data
[9–13]. These methods can be classified based on the definition of structural models and design parameters,
utilization of the experimental data, and estimation of the parameters. Basically, these methods consider some
sort of change. The change could be frequency, mode shape, energy, and stiffness or flexibility. In general, the
majority of these methods can be classified as model update methods, which are (1) optimal up-date matrix
methods, (2) sensitivity methods, (3) control-based eigenstructure assignment techniques, and (4) hybrid
methods [4].

If we were to describe few methods from each of the four classes, this would require a lengthy paper, which
is out of the scope of our objective. Therefore, we just focus on the methods of class 3. These methods are
based on the concept of control [14–16].

Designers of control systems have traditionally used eigenstructure assignment techniques to force a system
to respond in a predetermined way. For model refinement and damage locating, the desired eigenstructure,
i.e., eigenvalues and eigenvectors, is the response that is measured in the test. In 1988, Minas and Inman [17]
and in 1990, Zimmerman and Widengren [18] derived methods that determine the pseudo (fictitious) controller
required to produce test eigenstructures. The control gains can then be translated into matrix adjustments
applied to the initial finite element model. Zimmerman and Kaouk [15] in 1992 applied this eigenstructure
model refinement algorithm to structural damage detection techniques. A major difficulty associated with their
approach is that the method identifies matrix coefficients changes and thus requires an additional step of
identifying structural members corresponding to these changes. This additional step is not a straightforward
step for complex structures. Besides, the method requires a solution of the generalized algebraic Riccati
equation. The authors proposed an iterative solution to preserve the load path of the undamaged structure,
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i.e., to maintain the zero–nonzero pattern of the undamaged stiffness matrix. But when a structural member is
completely damaged, the initial load path is broken. Consequently, for damage cases where the stiffness of a
member is completely lost, preserving the load path is not valid anymore.

Basically, to perform successfully system health monitoring, structural health along with sensor and
actuator malfunctioning must be monitored. So, in 1994, Lim [14] proposed a structural damage detection
method using a constrained eigenstructure assignment. His approach might be used not only for structural
damage detection (partial and complete loss of stiffness) but also for sensor monitoring and actuator
performance in a unified manner. Besides, the additional step of correlating matrix coefficient changes to
structural parameter changes is avoided. The proposed approach requires neither a solution of Riccati
equation nor any iteration to converge to a solution.

To demonstrate capabilities of any newly proposed approach, the authors usually use either truss or
mass–spring systems. Studying the performance of these damage detection methods when applied to other
structural system such as frames are not usually discussed.

In this paper, we focus on damage detection process for two-dimensional (2D) structures. Damage is defined
as the loss of stiffness in a single member of 2D-structural systems. We will follow the formulation of the
eigenstructure assignment for 2D trusses developed by Lim [14] and derive the appropriate relations for frame
structures and propose an algorithm. The algorithm uses incomplete measured modal testing data. It has the
capability of locating and assessing both complete and partial damages. Finally, the identification limitations
of the proposed method are discussed.

2. Problem formulation

The proposed algorithm consists of two major steps. In the first step, we use subspace rotation technique to
determine the location of damage. In the second step, we employ some well-defined concepts in the field of
control to assess the magnitude of identified damage. These steps are briefly discussed here.

2.1. Damage location

Consider a finite element model of a structure with n degrees of freedom and a feedback control system

M €xþ C _xþ Kx ¼ B0u (1)

where M, C, and K are n� n analytical mass, damping, and stiffness matrices, respectively, x is an n� 1 vector
of displacements, B0 that defines the locations of control forces is an n�m control influence matrix, u is m� 1
vector of control forces, and the over dots represent differentiation with respect to time. In addition, the r� 1
output vector z of sensor measurements is given by

z ¼ Ex, (2)

where E is an r� n output influence matrix. The employed control law is a general linear output feedback
represented as follows:

u ¼ �Gz, (3)

where G is the m� r feedback gain matrix. In 1983, Andry et al. [18] proved that if a system described by
Eqs. (1) and (2) is controllable and observable, then by proper selection of G, max(m, r) closed-loop
(controlled) eigenvalues can be assigned. This maximum number of eigenvalues which is max(m, r) closed-loop
eigenvectors can be partially assigned with min(m, r) entries in each eigenvector being arbitrarily assigned.
Vector z contains output feedback variables. This vector consists of relative measured displacements as
follows:

z � d ¼ BT
0 x, (4)

where d is vector of relative displacements. From Eqs. (3) and (4), the control force becomes

u ¼ �GBT
0 x. (5)
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Assume the changes in mass and damping properties due to damage are not significant. Then, substitute the
control force into the equation of motion, Eq. (1), and rearranging it. We will have

M €xþ C _xþ ðKþ B0GBT
0 Þx ¼ 0. (6)

In this equation term, B0 G BT
0 is a perturbation term that is generated due to the loss of stiffness. It shows

that the stiffness of the system is modified. Redistribution of the gain matrix to appropriate element degrees of
freedom is performed by matrix B0.

Now, let us to define our desired eigenvalue and eigenvector ld
i and vd

i , respectively. Then the eigenvalue
problem associated with Eq. (6) will be as follows:

Mld2

i þDld
i þ ðKþ B0GBT

0 Þ

h i
vd

i ¼ 0. (7)

To demonstrate the feasibility of the procedure we employ a simple element. Fig. 1 illustrates an element
with prescribed degrees of freedom and nodal forces. The relationship between nodal deformations and nodal
forces for this element is as follows:
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If constitutive properties or axial and flexural stiffnesses of each element are presented by g1 ¼ EA/L and
g2 ¼ EI/L, then Eq. (8) turns to
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This equation can be written in the following form:

uj ¼ Gjdj. (10)

Assuming linear behavior for geometry and constitutive material of the structure, Gj can be decomposed in
the following form:

g1 0 0

0 4g2 2g2

0 2g2 4g2

2
64

3
75 ¼ g1

1 0 0

0 0 0

0 0 0

2
64

3
75þ g2

0 0 0

0 4 2

0 2 4

2
64

3
75. (11)

Eq. (11) can be written in matrix form as

Gj ¼ g1jD1 þ g2jD2. (12)
θ1
θ2

Δ

Fig. 1. (a) Global nodal displacements, (b) effective forces and self-straining deformations.
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The subscript j represents that this relation is derived for the jth member of the structure. On the other hand,
the relation between deformations and nodal displacements of the jth element in global coordinate system is as
follows [19]:

dj ¼ B0jx. (13)

In this equation, x is the vector of nodal displacements in global coordinate system and dj and the
transformation matrix B0j are defined as

dj ¼

D

y1
y2

8><
>:

9>=
>;; B0j ¼

0 � � � 0 �C �S 0 0 � � � 0 C S 0 0 � � � 0

0 � � � 0 �S C L 0 � � � 0 S �C 0 0 � � � 0

0 � � � 0 �S C 0 0 � � � 0 S �C L 0 � � � 0

2
64

3
75, (14)

where C ¼ cosf, S ¼ sinf and f is the orientation of the jth element relative to the global coordinate system.
From Eqs. (9) and (13), we will have

uj ¼ GjB0jx, (15)

where uj is the vector of control force which is enforced on the jth element.
Now, consider Eq. (7) and by rearranging it, define vd

i as follows:

vd
i ¼ �ðMld2

i þDld
i þ KÞ�1B0j Gj B

T
0j v

d
i . (16)

By substituting Eq. (12) in Eq. (16) the following relation yields

vd
i ¼ �ðMld2

i þDld
i þ KÞ�1 g1jB0jD1B

T
0j þ g2jB0jD2B

T
0j

n o
vd

i . (17)

Let us define Pa
ij and Pb

ij as follows:

Pa
ij ¼ �ðMld2

i þDld
i þ KÞ�1B0jD1B

T
0j, (18)

Pb
ij ¼ �ðMld2

i þDld
i þ KÞ�1B0jD2B

T
0j. (19)

Then Eq. (17) can be expressed by

vd
i ¼ Pa

ijaij þ Pb
ijbij , (20)

where aij ¼ g1jv
d
i and bij ¼ g2jv

d
i . This equation shows that vd

i is a linear combination of vectors Pa
ij and Pb

ij

that span a subspace which contains vd
i . But due to errors in modeling and measurements, the desired

eigenvector might not precisely locate in this subspace. If so, the closest possible eigenvector to vd
i can be

compute in a least-squares sense as follows:

va
ij ¼ PijP

þ
ij v

d
i (21)

where va
ij is the best achievable eigenvector and Pij and Pþij are defined in the following equation:

Pij ¼ Pa
ij Pb

ij

h i
and Pþij ¼ ðP

T
ijPijÞ

�1PT
ij . (22)

The relationship between the vectors va
ij and vd

i as well as the subspace spanned by the columns of Pa
ij and

Pb
ij are illustrated in Fig. 2. If the jth structural member is damaged then vd

i lies in the shown subspace and va
ij

and vd
i will be identical. These two vectors will not be identical if either mode i is not significantly affected by

the damage developed in member j or other members might be damaged.
By computing va

ij and its angle with vd
i for all structural members, one can spot the damaged element. Based

on this concept, the element for which the angle between these two vectors is either zero or smaller than other
values could be the most probable damaged element. The angle between these two vectors can be computed as

gij ¼
180

p
cos�1

vaT
ij vd

i

va
ij

��� ���
F

vd
i

�� ��
F

0
B@

1
CA. (23)
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Fig. 2. Relation between two vectors.
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But, the vector of measurements is usually incomplete. It is because of (i) limited number of sensors,
(ii) hard to reach some parts of structures, and (iii) some degrees of freedom could not be measured. Therefore,
the eigenvectors are incomplete. We partition the desired eigenvector into two parts as follows:

vd
i ¼

v̂i

v̄i

( )
, (24)

where v̂i is the measured part and v̄i is the unmeasured portion of desired eigenvector. Using Eq. (21), the best
achievable eigenvector is defined as

v̂
a
ij ¼ PijP̂

þ

ij v̂i, (25)

where P̂
þ

ij contains the rows corresponding to v̂i. The angle defined in Eq. (23) becomes as follows:

ĝij ¼
180

p
cos�1

~vaT
ij v̂

d
i

~va
ij

��� ���
F

v̂
d
i

��� ���
F

0
B@

1
CA, (26)

where ~va
ij is that partition of vector v̂

a
ij which is corresponding to the measured part of the desired eigen-

vector v̂i.
The main advantages of using the best achievable eigenvector concept proposed by Lim [20] could be

summarized as follows. First, it allows partial specification of the eigenvector and second the measurement
errors that are not consistent with the analytical model are filtered out.
2.2. Magnitude of damage

After identification of damaged members the eigenstructure assignment is employed to compute the
magnitude of damage. Using state-space, the equation of motion (1) becomes as

_S ¼ ASþ Bû; (27)

where in this equation matrices A, B, and S are defined as follows:

A ¼
0 I

�M�1K �M�1C

� �
; B ¼

0

M�1B̂0

" #
; S ¼

x

_x

� �
, (28)

Matrix B̂0 contains only those columns corresponding to the damaged members. The output Eq. (2) then
becomes

ẑ ¼ ES ¼ B̂
T

0 0

h i
S. (29)
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The output feedback is thus defined as

û ¼ �Gẑ ¼ �GES. (30)

Now we have to find the diagonal gain matrix G. The best achievable eigenvectors are given by Eq. (21) and
the desired eigenvalues and eigenvectors are as follows:

via ¼ PiP̂
þ

i vi, (31)

where Pi ¼ ðl
d
i I� AÞ�1B and P̂

þ

i contains rows of the upper-half of Pi corresponding to the measured degrees
of freedom used in vi [14]. Using the constrained eigenstructure assignment algorithm by Andry et al. [18], the
jth diagonal gain of G is computed as

gj ¼ �WjX
þT

j , (32)

where gj is the vector of stiffness parameters changes of the jth structural member, Wj is the jth row of W and
Xj is the jth row of X. In the above equation, the matrices W and X are defined as

X � Ê V,

W � Y� A1V, ð33Þ

where Ê, A1, Y, and V are defined as follows [12]:

Â ¼ T�1AT ¼
A1

A2

" #
; B̂ ¼ T�1B ¼

Im

0

� �
; Ê ¼ ET;

V ¼ T�1W; Y ¼ S1WL;

W ¼ v1a v2a . . . vpa

h i
; L ¼ diagðl1; l2; . . . ; lpÞ; T�1 ¼

S1

S2

" #
:

(34)

Derivation of Eq. (33) corresponds to the stiffness parameter changes of the jth structural member, i.e., the
magnitude of structural damage that satisfies the measured eigenvalues and eigenvectors in the least-squares
sense. Owing to inaccuracy (noise) in measured modes and the analytical model, the magnitude of structural
damage will not be exact.

2.3. Identification limitation

For calculation of P̂
þ

ij in Eq. (24) the following constraint must be satisfied

rankðP̂ijÞpN senspN dof ;

where N sens is the number of sensors and N dof is the number of degrees of freedom of the finite
element model of the structure. Thus, number of rows of matrix P̂ij is equal to number of placed sensors.
The number of columns of this matrix is equal to 12 (refer to definition of Pij). A frame element with six
degrees of freedom has three independent degrees of freedom. Therefore, Pij have maximum three inde-
pendent columns. Consequently, the maximum rank of P̂ij will be three. It is necessary to say that if Pij is
constructed for the frame element where one end is hinge and the other end is clamped, the rank of matrix P̂ij

is less than three. The relationship between the minimum number of placed sensors and rank of the matrix
P̂ij is as

minðrankðP̂ijÞ; 3ÞpN senspN dof :

2.4. Operational modal analysis

The success of the proposed algorithm depends on the quality of the modal data of the structure under
investigation. Obtaining relatively accurate modal vectors and natural frequencies, for a complex structure,
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from real noisy and sparse measurements is not a simple task but can be achieved. It has been an active field of
research especially during past four decades. While it is not the objective of this paper we address some issues
in this regard.

Extracting modal parameters (natural frequencies, damping loss factors and modal constants) from
measured vibration data can be deduced by modal analysis. Based on the measured data, which can be in the
form of either impulse responses or frequency response functions, modal analysis can be categorized as time
domain modal analysis and frequency domain modal analysis. Some of the well-known methods in each of
these categories are as follows. In time domain one might use least-squares time-domain method, Ibrahim
time-domain method, random decrement method, ARMA time-series method, least-squares complex
exponential method. Some of the methods in frequency domain are least-square method, peak-picking
method, Dobson’s method, circle fit method, and inverse FRF method [21–23].

Many researches namely Ibrahim and Mikulcik [24], Jauang and Papa [25], Brown et al. [26], James et al.
[27], Hermans and Van der Auweraer [28], Parloo et al. [29] and Brincker and Andersen [30], in their works
have already addressed different methods for deducing modal parameters from experimental data. More
recently, Mohanty and Rixen [31] proposed a procedure for identifying mode shapes and modal frequencies in
the presence of both noise and unknown harmonic excitation.

In this paper, our intention is developing an algorithm and numerically studying its behavior. Exposing the
algorithm to real data is beyond the scope of this paper. Therefor, in the next section, we will try to show the
capabilities of the developed algorithm in a simulation environment.

3. Numerical studies

In this section, we investigate the performance of this devised approach through numerical simulation
implemented to a braced-frame structure. In a numerical simulation environment, the behavior of the
developed damage detection algorithm is studied with respect to change in some parameters such as location
and extension of damage, sensor placement in view of number and location, and magnitude of error in
measuring data.

The topological characteristic of the desired structure is illustrated in Fig. 3. This structure is made of steel
frame and truss elements with rigid beam–column connections (moment resisting frame) and simple bracing
connection to the joints. The Young’s modulus of steel is 2� 106 kgCm�2 and the other properties of
structural members are presented in Table 1.

To create the real condition of measuring process in a modal experiment through a simulation environ-
ment, we have to consider a few factors that will affect the quality of measurements and consequently
the output of the proposed damage identification algorithm. So, the employed simulated model has the
following features.
Fig. 3. Case study: braced frame.
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Table 1

Properties of elements

Element type Area (cm2) I (cm4) r (kg cm�1)

Bracing 15 0 0.15

Beam 15 100 0.15

Column 30 100 0.30

Sensor Location:

Fig. 4. Two cases of sensor placement: (a) 6 sensors and (b) 8 sensors.
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3.1. Damage in the finite element model of the structure

We have assumed that the damage due to a destructive event is developed as stiffness reduction in a
member. It means that the changes in other constitutive parameters of the member, such as mass and
damping, are not significant. So, the damage in the model of the structure is considered by stiffness reduction
of a desired member. In this study, we introduce damage rates in three different levels of 25%, 50%, and 95%
in a specified element.
3.2. Measured data

Owing to noise in the measured modal data (natural frequencies and mode shapes), sensor placement
difficulties and limited number of sensors, the measured data is noisy and sparse. In the simulation
environment we have separately considered these two realistic features of the measured data.

(i) Sparsity simulation: It is almost impossible to measure all components of displacements at all degrees of
freedom of a real structure. So, the measurements are incomplete in space, which causes the sparsity of data.
We partition each analytical eigenvector vi to two parts; one corresponds to the measured degrees of freedom,
v̂i and the other corresponds to the unmeasured degrees of freedom v̄i. Next, we disregard the unmeasured
portion of each eigenvector v̄i and reduce the size of each eigenvector to the size of measured degrees of
freedom v̂i. In Fig. 4, locations of instrumented sensors, which are mounted on the structure are shown. These
sensors measure only translational degrees of freedom.

(ii) Noise simulation: Noise in the measured data is not systematic, it has a random nature. We consider the
effect of white noise on the measured data, by employing the following relation:

~li ¼ lið1þ ti0Þ; ~vij ¼ v̂ijð1þ tijÞ, (35)

where ~li and ~vi are noisy modal data, li and v̂i are analytically modal data and tij is amount of noise which is
generated by a random number generator. Index i is mode number and index j is the component number of
each eigenvector.
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3.3. Conducting a modal experiment

Monte Carlo simulation is used to study the behavior of the proposed damage detection algorithm on a
desired structure. We excite the structure in its first six vibrational modes. In each mode, the algorithm is run
10 times and the results of detection process are recorded. After 60 times running the detection process for
each damage scenario, we attain relatively enough statistical information about the performance of this
algorithm and will be able to evaluate the abilities of the devised approach.

3.4. Damage cases

The parameters that characterize the damage cases consist of the number and locations of sensors, rate of
damage, and the amount of error in the measured data. By considering different values for each of these
parameters, we can construct different damage scenarios. For illustrative purpose, we consider the symmetric
structure shown in Fig. 3. Some of the studied damage cases for this structure are given in Table 2.

We assume that the damage may occur at only one member of half of the structure (because of symmetry) at
once. In order to study the sensitivity of the developed algorithm to the location of damage, we have to apply a
fixed value for a desired damage case to each element of the structure.

4. Damage detection criterion

By computing the angle between each mode shape vector and its correspond achievable eigenvector for each
member of the structure and searching for the minimum value of these computed angles, the location of
damage member is determined.
Table 2

Damage scenarios

Parameter Corresponding value(s)

Number of sensors 6 and 8

Damage (%) 25, 50, and 95

Error (%) 1, 5, 10, and 20

Table 3

A typical damage case

Damaged element 9

Error in measurements 5%

Number of sensors 6

Locations of sensors (dof) 4-16-17-19-25-26

Damage condition Strut out
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Fig. 5. Results of damage detection process for considered typical case (5% of error and 6 sensors). Mode 1: , Mode 2: , Mode

3: , Mode 4: , Mode 5: , Mode 6: .
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To demonstrate the approach of detection process, we first simulate a damage case, described in Table 3.
Then by implying the detection algorithm, we will try to find the damaged member.

Fig. 5 summarized the results of the damage detection process. We have used first six vibration modes of
the damaged structure that is created by simulation. In this figure, the horizontal axis is element number and
the vertical axis represents the angle between each mode shape vector and the corresponding achievable
eigenvector for an element [14]. One can observe that the trend of detection curves leads to element number 9.

In simulation environment, one can generate different damage cases. For each damage case the damage
detection algorithm follows the above-mentioned detection process, to determine the desired case.

5. Numerical results

Figs. 6–8 show the results of the simulation study. Each figure represents the effects of; number of sensors,
rate of damage and rate of error in the measured data on the detection of damage location. The horizontal axis
gives the story number associated to the damaged member and the vertical axis gives the number of
successfully detected damage location. For each damaged element with fixed amounts of damage and error we
simulate 10 different sets of the first six eigenvectors, which are measured at either 6 or 8 degrees of freedom.
Since we consider 10 sets of the first six incomplete eigenvectors, the number of runs of damage detection
process for each element is 60.
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Fig. 6. Prediction of damage in columns for different values of damage and different number of measurements (Error 1%: , Error

5%: , Error 10%: , Error 20%: ): (a) Damage value 25% and 6 sensors. (b) Damage value 50% and 6 sensors. (c)

Damage value 95% and 6 sensors. (d) Damage value 25% and 8 sensors. (e) Damage value 50% and 8 sensors. (f) Damage value 95% and

8 sensors.
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Fig. 7. Prediction of damage in beams for different values of damage and different number of measurements (Error 1%: , Error 5%:

, Error 10%: , Error 20%: ): (a) Damage value 25% and 6 sensors. (b) Damage value 50% and 6 sensors. (c) Damage

value 95% and 6 sensors. (d) Damage value 25% and 8 sensors. (e) Damage value 50% and 8 sensors. (f) Damage value 95% and 8

sensors.
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The set of curves presented in Fig. 6 shows the capability of the developed algorithm in detection of damage
induced in the columns of the structure.

To explain and evaluate the results, consider Fig. 6 and case (a) that is a third story damaged column. The
algorithm successfully predicts the location of damaged element about 51 times out of 60 for 1% of error, 38
times out of 60 for 5% of error, 22 times out of 60 for 10% error and 10 times out of 60 for 20% of error. So,
one can observe that by increasing the percentage of error, the number of success in predicting the location of
damage decreases. But for a reasonable amount of noise (less than 5%) it behaves acceptably.

Comparing cases (a) and (d) one can notice that by increasing the number of measured data, the behavior of
the algorithm improves. But for large values of error (e.g., 20%) the results are in general unreliable.

Similarly, we performed the simulation for damaged beams and bracing elements. The results are shown in
Figs. 7 and 8, respectively. The same trends in prediction of damage location are observed.
6. Conclusion

Based on the concepts of constrained eigenstructure assignment a damage detection procedure for 2D
structures is presented. The method can be used to develop system health monitoring schemes. The paper has
focused on 2D frames and investigated the abilities of the proposed method as structural damage detection
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Fig. 8. Prediction of damage in bracing members for different values of damage and different number of measurements (Error 1%: ,

Error 5%: , Error 10%: , Error 20%: ): (a) damage value 25% and 6 sensors, (b) damage value 50% and 6 sensors, (c)

damage value 95% and 6 sensors, (d) damage value 25% and 8 sensors, (e) damage value 50% and 8 sensors, and (f) damage value 95%

and 8 sensors.
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and as a system health-monitoring tool. As most health monitoring techniques, this method is case dependent.
Its behavior depends on the accuracy of the finite element model of the structure under investigation.

Some of the desirable features of the presented approach are as follows. First, it directly updates the
physical properties of structural elements instead of updating matrix of coefficients, which may or may not be
physically meaningful. Secondly, it requires only few incompletely measured mode shapes. Finally, it requires
neither a solution of algebraic Riccati equation nor any iterative process to converge to a solution. This
feature distinguishes the proposed algorithm from the other eigenstructure assignment based damage
detection methods.

By observing the trends provided by the shown curves one might deduce the followings results:
(i)
 Increasing the rate of error in measurements reduces the number of success in predicting the damage
location.
(ii)
 There is a direct relation between the rate of damage and the number of success.

(iii)
 Damage detection of those elements, which perform a substantial role in the load carrying system of a

structure (e.g., story columns) is more achievable than the damage detection of the other elements.

(iv)
 Increasing the number of sensors (measurements) increases the number of successful predictions.
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Finally, the devised approach shows good potential to be used for damage detection of real structures. This
method might also be employed for controlling the changes in constitutive parameters of a structure, which is
exposed to dangerous event as a real time monitoring devise option.

The effects of sensor location and the type of measured degrees of freedom are two important factors, which
cannot be ignored. But, in this study we fixed these two parameters. Besides, the performance of the algorithm
for predicting damping changes, which could play a significant role in damage detection process is not studied
here.
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