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Abstract

A generalized van der Pol oscillator with parametric excitation is studied for its bifurcation. On the basis of the MLP

method, we enable a strongly nonlinear system to be transformed into a small parameter system. The bifurcation response

equation of a 1/2 subharmonic resonance system is determined by the multiple scales method. According to the singularity

theory, the bifurcation of equilibrium points is analyzed. The stability of the zero solution is researched by the eigenvalues

of the variational matrix and the bifurcation sets are constructed in various regions of the parameter plane.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Some problems of nonlinear oscillator require further study, and attention has mainly focused on
bifurcation and chaos, etc. Parametrically excited nonlinear oscillators are widely studied for their qualitative
changes using the bifurcation theory. Bajaj [1] studied a parametrically excited oscillator which includes van
der Pol as well as Duffing type nonlinearity on the basis of the bifurcation theory. Zhang and Huo [2]
considered the bifurcation in a nonlinear oscillator under combined parametric and forcing excitation and
obtained the transition sets and bifurcation diagrams. These analyses are limited to weakly nonlinear systems
[3]. To extend the range of application of the bifurcation theories to strongly nonlinear systems is the desire of
researchers.

In this paper, we consider the bifurcations of a strongly nonlinear oscillator which is a more general
Mathieu–van der Pol system. On the basis of the MLP method presented by Cheung et al. [4], we enable a
strongly nonlinear system to be transformed into a small parameter system [8,9]. To study the 1/2
subharmonic resonance case, we define a new transformation parameter a ¼ a(e, 2o0,o1). Then, the
bifurcation response equation is determined by the multiple scales method [10,11]. From the singularity
theory, the constant solutions are obtained and the bifurcation of equilibrium points is understood. Stability
analysis of the singular points gives the bifurcation sets in various regions of the parameter plane.
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2. Parameter transformation

We consider the strongly nonlinear oscillator

€xþ xþ ðm̄þ ḡx2 þ b̄ _x2Þ _xþ n̄ cos 2tx ¼ 0. (1)

It can be written as

€xþ xþ �ðmþ gx2 þ b _x2Þ _xþ 2� cos 2tx ¼ 0, (2)

where e is not a small parameter. A new variable

t ¼ ot (3)

is introduced. The parametric excitation is near 1/2 subhamonic resonance, o ¼ 2. Substituting Eq. (3) into
Eq. (2) yields

o2x00 þ xþ �ðmþ gx2 þ bo2x0
2
Þox0 þ 2�cos tx ¼ 0, (4)

where x0 ¼ dx/dt, x00 ¼ d2x/dt2. A new parameter is defined

a ¼
�o1

ð2o0Þ
2
þ �o1

¼
�o1

4þ �o1
(5)

such that

� ¼
4a

o1ð1� aÞ

and

o2 ¼ 22 þ �o1 þ �
2o2 þ � � � ¼

4

1� a
ð1þ Z2a

2 þ Z3a
3 þ � � �Þ,

o ¼ 2 1þ
1

2
aþ

3

8
þ

Z2
2

� �
a2 þ � � �

� �
. ð6Þ

Applying the mathematical operation [9], we can obtain

o1 ¼
4ða2

0 � b2
0Þ

a2
0 þ b2

0

, (7)

where a0 is a initial condition of Eq. (1), x(o) ¼ a0, and b0 can be determined as

8a0b0 þ 4mða2
0 þ b2

0Þ þ ðgþ 3bÞða2
0 þ b2

0Þ
2
¼ 0. (8)

Thus, o1 is known which is determined in Eqs. (7) and (8). This idea comes from the result of the MLP
method [4] and is suitable for other problems [5–7].

3. Bifurcation response equation and analysis

The new parameter a will enable a strongly nonlinear system corresponding to e be transformed into a small
parameter system with respect to a. We have

ð1þ Z2a
2 þ � � �Þx00 þ

1� a
4

xþ
2a
o1
½mþ gx2 þ 4bð1þ aþ a2 þ � � �Þ

�ð1þ Z2a
2 þ � � �Þx0

2
� 1þ

1

2
aþ

3

8
þ

Z2
2

� �
a2 þ � � �

� �
x0 þ

2a
o1

cos tx ¼ 0. ð9Þ

To study Eq. (9) for small a, we use the multiple scales method. Let x be expanded in powers of a, i.e.,

x ¼ x0ðT0;T1Þ þ ax1ðT0;T1Þ þ � � � , (10)
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where T0 ¼ t and T1 ¼ at. The differential operators are given by

d

dt
¼ D0 þ aD1 þ � � �

d2

dt2
¼ D2

0 þ 2aD0D1 þ a2ðD2
1 þ 2D0D2Þ þ � � � . (11)

Perturbation equations in this case are

D2
0x0 þ

1
4
x0 ¼ 0, (12)

D2
0x1 þ

1

4
x1 ¼

1

4
x0 � 2D0D1x0 �

2

o1
½mþ gx2

0 þ 4bðD0x0Þ
2
�D0x0 �

2

o1
cosT0x0. (13)

The solution of Eq. (12) is

x0 ¼ A eiT0=2 þ Ā e�iT0=2. (14)

Substituting Eq. (14) into Eq. (13) and eliminating the secular terms, we get

D1A ¼ �
1

4
iA�

m
o1

A�
1

o1
ðgþ 3bÞA2Āþ i

Ā

o1
. (15)

Let

A ¼ a eif. (16)

Eq. (15) transforms to

a0 ¼ �
m
o1

a�
1

o1
da3 þ

1

o1
asin 2f,

af0 ¼ �
1

4
aþ

1

o1
acos 2f, (17)

where

d ¼ gþ 3b. (18)

At the singular points a0 ¼ f0 ¼ 0. Eliminating f from Eq. (17), we get the bifurcation response equation

d2a4 þ 2mda2 þ m2 þ
o2

1

16
� 1 ¼ 0; a ¼ 0. (19)

The possible solutions of Eq. (19) are
(a)
 a1 ¼ 0, and

a2 ¼ �
m
d
þ

1

d
1�

o2
1

16

� �1=2
" #1=2

for o1j jo4; m2 þ
1

16
o2

1o1 and d40. (20)
(b)
 a1 ¼ 0, and

a2 ¼ �
m
d
�

1

d
1�

o2
1

16

� �1=2
" #1=2

for o1j jo4; m2 þ
1

16
o2

1o1 and do0. (21)
(c)
 a1 ¼ 0, and

a2 ¼ �
m
d
þ

1

d
1�

o2
1

16

� �1=2
" #1=2

, (22)
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a3 ¼ �
m
d
�

1

d
1�

o2
1

16

� �1=2
" #1=2

for o1j jo4; m2 þ
1

16
o2

1o1 and mdo0. (23)
(d)
 a1 ¼ 0, and

a2 ¼

ffiffiffiffiffiffiffi
�m
d

r
for o1j j ¼ 4 and mdo0. (24)
(e)
 a1 ¼ 0, and

a2 ¼ d2 1�
o2

1

16

� �� �1=4
for o1j jo4; m ¼ 0 and da0. (25)
(f)
 a1 ¼ 0 everywhere else in (o1, m, d) space.
One or two non-trivial solutions of Eq. (19) depend on the parameters o1, m and d. The origin a ¼ 0 is
always a singular point. We divide (o1, m) plane into 12 regions. The relation of a�m, a�d, a�o1 is shown in
Fig. 1. The curve a�d in the fixed parameters m and o1 are obtained numerically. Two curve shapes are not
same, but to turn inside out is same. The curve a�m in the fixed parameters d and o1 are similar to the curve
a�d. The curve a�o1 in the fixed parameters d and m is four and more complex.

4. Stability of the zero solution

The stability of the constant solutions is determined by the eigenvalues. Let

A ¼ uþ iv, (26)

where u ¼ a cosf and v ¼ a sinf. Eq. (15) transform to

u0 ¼ �
1

o1
muþ

1

4
þ

1

o1

� �
v�

1

o1
duðu2 þ v2Þ,

v0 ¼ �
1

4
þ

1

o1

� �
u�

1

o1
mv�

1

o1
dvðu2 þ v2Þ. ð27Þ

The Jacobi matrix of Eq. (27) is

Dwf ¼

�
m
o1
�

1

o1
dð3u2 þ v2Þ

1

4
þ

1

o1
�

2

o1
duv

�
1

4
þ

1

o1
�

2

o1
duv �

m
o1
�

1

o1
dðu2 þ 3v2Þ

2
664

3
775, (28)

where

w ¼ ðu; vÞT; f ¼

�
1

o1
muþ ð

1

4
þ

1

o1
Þv�

1

o1
duðu2 þ v2Þ

ð�
1

4
þ

1

o1
Þu�

1

o1
mv�

1

o1
dvðu2 þ v2Þ

2
664

3
775.

For the zero solution, the Jacobi matrix is

Dwf
��
a¼0
¼

�
m
o1

1

4
þ

1

o1

�
1

4
þ

1

o1
�

m
o1

2
664

3
775. (29)
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Fig. 1. The relation of a and parameters m, d, o1.
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The characteristic equation for the zero solution can be shown to be

l2 þ
2m
o1

lþ
1

16
þ

m2

o2
1

�
1

o2
1

¼ 0. (30)

The characteristic equation for a non-zero solution is

l2 þ
2

o1
ðmþ 2da2Þl�

4

o2
1

mda2 � 4
1

16
þ

m2

o2
1

�
1

o2
1

� �
¼ 0. (31)
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Eq. (27) is a normal form of codimension one, therefore, the bifurcation of codimension one may be yielded
in the system (1). We discuss the stability of the zero solution. Let o1 ¼ o1=4, the equations

1

o2
1

�
1

16
¼ 0;

1

16
þ

m2

o2
1

�
1

o2
1

¼ 0

become, respectively,

o1 ¼ 1; o1 ¼ �1 and o1
2 þ m2 ¼ 1.

The lines o1 ¼ 1 and ¼ �1 the axes o1 and m and the circle o1
2 þ m2 ¼ 1 divide ðo1; mÞ plane into 12

regions. The bifurcation set of the singular point is shown in Fig. 2. The zero solution is unstable in the shaded
regions.
(a)
 In region Ia, Ib, IIa, and IIb the singular point is the focus point. Moving from Ia (IIa) across the axis o1

into region IIb (IIb) the zero solution loses the stability.

(b)
 In region IIIa, IIIb, IVa, and IVb the origin is the node point. It is a sink type and stable in region IIIa and

IVa. Moving from IIIa (IVa) across the axis m into region IIIb (IVb) the zero solution loses the stability.

(c)
 Across the circle o1

2 þ m2 ¼ 1 the singular point becomes a saddle type. It is source type and unstable in
region V. The oscillator exhibits a pitchfork bifurcation.
(d)
 Along the circle the singular point is a degeneracy case, the oscillator is structurally unstable.

(e)
 Along the o1 (�Noo1o�1) or (1oo1oN) both eigenvalues are a pair of pure imaginary numbers,

therefore, we expect Hopf bifurcations of the origin into a limit cycle.

(f)
 At points A and B two eigenvalues are all equal to zero, the system exhibits the bifurcation of codimension

two. The degenerate bifurcation of codimension two will be studied in detail in the next paper.
On the basis of Eq. (31) the stability of the non-zero solutions is similarly analyzed.
5. Conclusions

A strongly nonlinear with parameter excitation has been transformed into a small parameter system on the
basis of the MLP method presented by Chueng et al. and its bifurcation response equation were determined by
using the multiple scale method. The possible solution of this oscillator has been discussed and the number of
fixed points has been analyzed. Stability analysis of the singular points has given the bifurcation set using
normal form theory. These techniques are applicable to other oscillators with strong nonlinearity.
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