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Abstract

Based on the Lord and Shulman generalized thermo-elastic theory with one relaxation time, the dynamic thermal and

elastic responses of a piezoelectric rod fixed at both ends and subjected to a moving heat source are investigated. The

generalized piezoelectric–thermoelastic coupled governing equations for piezoelectric rod are formulated. By means of

Laplace transformation and numerical Laplace inversion the governing equations are solved. Numerical calculation for

stress, displacement and temperature within the rod is carried out and displayed graphically. The effect of moving heat

source speed on temperature, stress and temperature is studied. It is found from the distributions that the temperature,

thermally induced displacement and stress of the rod are found to decrease at large source speed.

r 2007 Published by Elsevier Ltd.
1. Introduction

To eliminate the paradox inherent in the classical uncoupled and coupled thermoelastic theories that heat
propagates with an infinite speed due to the diffusion type heat conduction equation, the generalized
thermoelastic theories were introduced by Lord and Shulman [1] (L–S) and Green and Lindsay [2] (G–L) in
1960s. The L–S theory postulated a wave-type heat conduction law to replace the classical Fourier’s law. This
law is the same as that suggested by Cattaneo [3] and Vernotte [4]. It contains the heat flux vector as well as its
time derivative and contains also a new constant that acts as a relaxation time. The G–L theory modified
both the energy equation and the Duhamel–Neumann relation, and allows two relaxation times. This two
generalized theories can both ensure finite propagation speed of thermoelastic waves.

Numerous works had been devoted to problems involving a moving heat source due to its extensive
engineering applications, such as continuous annealing after cold working, pulsed-laser cutting and welding,
and high speed machining and grinding, etc. Al-Huniti et al. [5] studied the dynamic responses of a copper rod
due to a moving heat source under the wave type heat conduction model. In Ref. [5], by means of the Laplace
transform the temperature was obtained directly from the heat conduction equation.

Piezoelectric ceramics and composites have been extensively used in many engineering applications such as
sensors, actuators, intelligent structures, etc. Mindlin [6] first proposed a thermo-piezoelectricity theory and
also established the governing equations of a thermo-piezoelectric plate [7]. Nowacki [8,9] has investigated the
ee front matter r 2007 Published by Elsevier Ltd.
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Nomenclatures

cijkl elastic constants
CE specific heat at constant deformation
Di components of electric displacement
Ei components of electric field vector
hijk piezoelectric constants
pi pyroelectric constants
Q strength of the applied heat source per

unit mass where i, j, k, l ¼ 1,2,3
t time
T absolute temperature

T0 initial environment temperature, chosen
as |(T�T0)/T51|

ui components of displacement vector
eij components of strain tensor
y temperature increment y ¼ T�T0

kij coefficients of thermal conductivity
lij thermal modulus
r mass density
sij components of stress tensor
t thermal relaxation time
tik dielectric constants
j electric potential function
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physical laws for the thermo-piezoelectric materials. Chandrasekharaiah [10] has generalized Mindlin’s
theory of thermo-piezoelectricity to account for the finite speed of propagation of thermal disturbances
on the basis of the first and the second thermodynamics laws. Compared with the investigation of
propagation of thermoelastic waves in elastic media, similar investigation in piezoelectric media is much fewer.
Majhi [11] introduced a potential function to deal with the transient thermal response of a semi-infinite
piezoelectric rod subjected to a local heat source based on L–S theory. Although the temperature
distribution was given in Ref. [11], the result is unreasonable. He et al. [12] used Laplace transform and state-
space method to solve the dynamic response of a semi-infinite piezoelectric rod subjected to a thermal shock at
one end based on the G–L theory, and one-dimensional (1D) analytical solution was obtained and displayed
graphically.

In this paper, based on the L–S theory, the dynamic response of a finite piezoelectric rod fixed at both ends
and subjected to a moving heat source is investigated. The piezoelectric–thermoelastic coupled equations are
formulated and the equations are solved by means of Laplace transform. Then the numerical Laplace
inversion is carried out to obtain the temperature, displacement and stress distributions in the piezoelectric
rod.
2. Basic equations

In the absence of body force and free charge, the generalized thermo-piezoelectric governing differential
equations are:
(a)
 Strain–displacement relations

�ij ¼
1
2
ðui;j þ uj;iÞ. (1)
(b)
 Constitutive equation

sij ¼ cijkl�kl � hkijDk � lijT ; Ei ¼ hikl�kl þ tikDk � piy. (2)
(c)
 Motion equation

sij;j ¼ r €ui. (3)
(d)
 Gauss equation and electric field relation

Di;i ¼ 0; Ei ¼ �j;i. (4)
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Heat conduction equation
(e)
kijy;ij ¼ 1þ t
q
qt

� �
ðrCE

_yþ T0lkl _�kl � T0pk _j;k �QÞ. (5)
In the above equations, a comma followed by a suffix denotes material derivative and a superposed dot
denotes the derivative with respect to time.

We shall consider a thin piezoelectric rod. Let the piezoelectric rod polarization direction be parallel with
the axial direction.

For 1D problem we assume displacement components of the form

ux ¼ uðx; tÞ; uy ¼ uz ¼ 0. (6)

From Gauss’s law, since there is no free charge inside the piezoelectric rod, for 1D case, we have

qD

qx
¼ 0 (7)

which leads to D ¼ D(t). For simplification, we would like to keep D ¼ const along the piezoelectric rod.
For 1D case, the first equation in Eqs. (2), (3) and (5) reduce to

s ¼ c11
qu

qx
� l11T � hD, (8)

c11
q2u

qx2
� l11

qT

qx
¼ r

q2u
qt2

, (9)

k11
q2T

qx2
¼ 1þ t

q
qt

� �
rCE

qT

qt
þ l11T0

q2u
qxqt
�Q

� �
. (10)

For simplifications we introduce the following non-dimensional variables

xn ¼ c0Z0x; un ¼ c0Z0u; tn ¼ c20Z0t; tn ¼ c20Z0t; yn ¼
y

T0
,

sn ¼
s

c11
; Dn ¼

hD

c11
; Q� ¼

Q

k11T0c
2
0Z

2
0

; c0 ¼

ffiffiffiffiffiffi
c11

r

r
; Z0 ¼

rCE

k11
. ð11Þ

In terms of these non-dimensional variables in Eq. (11), Eqs. (8)–(10) take the following forms (dropping the
asterisks for convenience)

s ¼
qu

qx
� by�D, (12)

q2u

qx2
� b

qy
qx
¼

q2u
qt2

, (13)

q2y
qx2
¼ 1þ t

q
qt

� �
qy
qt
þ g

q2u
qxqt
�Q

� �
, (14)

where b ¼ l11T0=c11 and g ¼ l11=rCE . The piezoelectric rod is assumed to be initially at rest and has a
reference temperature T0 and zero temperature velocity such that the initial conditions are determined as

uðx; 0Þ ¼ _uðx; 0Þ ¼ 0; yðx; 0Þ ¼ _yðx; 0Þ ¼ 0. (15)

Assuming the piezoelectric rod is fixed at both ends with a non-dimensional length l and both ends are heat
insulated, the boundary conditions can be given as

uð0; tÞ ¼ uðl; tÞ ¼ 0;
qyð0; tÞ
qx

¼
qyðl; tÞ
qx
¼ 0. (16)
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The piezoelectric rod is subjected to a moving plane heat source of constant strength releasing its energy
continuously while moving along the positive direction of the x-axis with a constant velocity u. This moving
heat source is assumed to be the following non-dimensional form:

Q ¼ Q0dðx� utÞ, (17)

where Q0 is constant and d is the delta function. Applying the Laplace transform defined by

L½f ðtÞ� ¼ f̄ ðpÞ ¼

Z 1
0

e�ptf ðtÞdt; ReðpÞ40 (18)

to Eqs. (12)–(14) with Eq. (15), we obtain

s̄ ¼
dū

dx
� bȳ�

D

p
, (19)

d2ū

dx2
� b

dȳ
dx
¼ p2ū, (20)

d2ȳ
dx2
¼ ð1þ tpÞ pȳþ gp

dū

dx
� g e�ðp=uÞx

� �
, (21)

where g ¼ Q0/u.
The boundary conditions in Eq. (16) can be transformed to

ūð0; pÞ ¼ ūðl; pÞ ¼ 0;
dȳð0; pÞ

dx
¼

dȳðl; pÞ
dx

¼ 0. (22)

3. Solutions in the Laplace domain

Eliminating ȳ between Eqs. (20) and (21), we obtain the following equation satisfied by ū

d4ū

dx4
�m1

d2ū

dx2
þm2ū ¼ m3 e

�ðp=uÞx, (23)

where

m1 ¼ ð1þ gbÞð1þ tpÞpþ p2; m2 ¼ p3ð1þ tpÞ; m3 ¼
bgpð1þ tpÞ

u
.

The general solution of Eq. (23) is

ū ¼ C1 e
�k1x þ C2 e

k1x þ C3 e
�k2x þ C4 e

k2x þ C5 e
�ðp=uÞx, (24)

where Ci (i ¼ 1,2,3,4) are parameters depending on p to be determined from the boundary conditions and
C5 ¼ m3=½ðp=uÞ

4
�m1ðp=uÞ

2
þm2�. k1 and k2 are the roots of the characteristic equation

k4
�m1k

2
þm2 ¼ 0. (25)

k1 and k2 are given by

k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � 4m2

q
2

vuut
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � 4m2

q
2

vuut
. (26)

Similarly, eliminating ū between Eqs. (20) and (21), we obtain the following equation satisfied by ȳ:

d4ȳ
dx4
�m1

d2ȳ
dx2
þm2ȳ ¼ m4 e

�ðp=uÞx, (27)

where m4 ¼ gp2ð1þ tpÞð1� 1=u2Þ. The general solution of Eq. (27) is

ȳ ¼ C11 e
�k1x þ C22 e

k1x þ C33 e
�k2x þ C44 e

k2x þ C55 e
�ðp=uÞx, (28)
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where Cii (i ¼ 1,2,3,4,5) are parameters depending on p. Substituting ū from Eq. (24) and ȳ from Eq. (28) into
Eq. (20), we can find the following relationships:

C11 ¼ �
k2
1 � p2

bk1
C1; C22 ¼

k2
1 � p2

bk1
C2; C33 ¼ �

k2
2 � p2

bk2
C3; C44 ¼

k2
2 � p2

bk2
C4; C55 ¼

pðu2 � 1Þ

bu
C5.

(29)

In order to determine the parameters Ci (i ¼ 1,2,3,4) and Cii (i ¼ 1,2,3,4), we need to consider the boundary
conditions in Eq. (16) and we get

C1 þ C2 þ C3 þ C4 ¼ �C5, (30)

C1 e
�k1l þ C2 e

k1l þ C3 e
�k2l þ C4 e

k2l ¼ �C5 e
�ðp=uÞl , (31)

�C11k1 þ C22k1 � C33k2 þ C44k2 ¼ ðp=uÞC55, (32)

�C11k1 e
�k1l þ C22k1 e

k1l � C33k2 e
�k2l þ C44k2 e

k2l ¼ ðp=uÞC55 e
�ðp=uÞl . (33)

Solving Eqs. (30)–(33) with Eq. (29), we obtain Ci (i ¼ 1,2,3,4) as the following:

C1 ¼
ðk2

2 � p2=u2Þðek1l � e�ðp=uÞlÞC5

ðk2
1 � k2

2Þðe
k1l � e�k1lÞ

,

C2 ¼ �
ðk2

2 � p2=u2Þðe�k1l � e�ðp=uÞlÞC5

ðk2
1 � k2

2Þðe
k1l � e�k1lÞ

,

C3 ¼ �
ðk2

1 � p2=u2Þðek2l � e�ðp=uÞlÞC5

ðk2
1 � k2

2Þðe
k2l � e�k2lÞ

,

C4 ¼
ðk2

1 � p2=u2Þðe�k2l � e�ðp=uÞlÞC5

ðk2
1 � k2

2Þðe
k2l � e�k2lÞ

. ð34Þ

Substituting Ci (i ¼ 1,2,3,4) into Eq. (24), we obtain

ū ¼
ðk2

2 � p2=u2Þðek1l � e�ðp=uÞlÞC5

ðk2
1 � k2

2Þðe
k1l � e�k1lÞ

e�k1x �
ðk2

2 � p2=u2Þðe�k1l � e�ðp=uÞlÞC5

ðk2
1 � k2

2Þðe
k1l � e�k1lÞ

ek1x

�
ðk2

1 � p2=u2Þðek2l � e�ðp=uÞlÞC5

ðk2
1 � k2

2Þðe
k2l � e�k2lÞ

e�k2x þ
ðk2

1 � p2=u2Þðe�k2l � e�ðp=uÞlÞC5

ðk2
1 � k2

2Þðe
k2l � e�k2lÞ

ek2x þ C5 e
�ðp=uÞx. ð35Þ

From the relationships between Ci and Cii in Eq. (29), we get

C11 ¼ �
ðk2

1 � p2Þðk2
2 � p2=u2Þðek1l � e�ðp=uÞlÞC5

bk1ðk
2
1 � k2

2Þðe
k1l � e�k1lÞ

,

C22 ¼ �
ðk2

1 � p2Þðk2
2 � p2=u2Þðe�k1l � e�ðp=uÞlÞC5

bk1ðk
2
1 � k2

2Þðe
k1l � e�k1lÞ

,

C33 ¼
ðk2

2 � p2Þðk2
1 � p2=u2Þðek2l � e�ðp=uÞlÞC5

bk2ðk
2
1 � k2

2Þðe
k2l � e�k2lÞ

,

C44 ¼
ðk2

2 � p2Þðk2
1 � p2=u2Þðe�k2l � e�ðp=uÞlÞC5

bk2ðk
2
1 � k2

2Þðe
k2l � e�k2lÞ

. ð36Þ
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Substituting Cii (i ¼ 1,2,3,4) into Eq. (28), we obtain

ȳ ¼ �
ðk2

1 � p2Þðk2
2 � p2=u2Þðek1l � e�ðp=uÞlÞC5

bk1ðk
2
1 � k2

2Þðe
k1l � e�k1lÞ

e�k1x �
ðk2

1 � p2Þðk2
2 � p2=u2Þðe�k1l � e�ðp=uÞlÞC5

bk1ðk
2
1 � k2

2Þðe
k1l � e�k1lÞ

ek1x

þ
ðk2

2 � p2Þðk2
1 � p2=u2Þðek2l � e�ðp=uÞlÞC5

bk2ðk
2
1 � k2

2Þðe
k2l � e�k2lÞ

e�k2x þ
ðk2

2 � p2Þðk2
1 � p2=u2Þðe�k2l � e�ðp=uÞlÞC5

bk2ðk
2
1 � k2

2Þðe
k2l � e�k2lÞ

ek2x

þ
pðu2 � 1Þ

bu
C5 e

�ðp=uÞx. ð37Þ

Substituting ū in Eq. (35) and ȳ in Eq. (37) into Eq. (19), we obtain

s̄ ¼ �
p2ðk2

2 � p2=u2Þðek1l � e�ðp=uÞlÞC5

k1ðk
2
1 � k2

2Þðe
k1l � e�k1lÞ

e�k1x �
p2ðk2

2 � p2=u2Þðe�k1l � e�ðp=uÞlÞC5

k1ðk
2
1 � k2

2Þðe
k1l � e�k1lÞ

ek1x

þ
p2ðk2

1 � p2=u2Þðek2l � e�ðp=uÞlÞC5

k2ðk
2
1 � k2

2Þðe
k2l � e�k2lÞ

e�k2x þ
p2ðk2

1 � p2=u2Þðe�k2l � e�ðp=uÞlÞC5

k2ðk
2
1 � k2

2Þðe
k2l � e�k2lÞ

ek2x

� puC5 e
�ðp=uÞx �

D

p
. ð38Þ

4. Numerical inversion of the transforms

In order to determine the temperature, displacement and stress distributions in the piezoelectric rod, ȳ, ū

and s̄ must be inverted from Laplace domain back into the time domain. However, these solutions are too
complicated to be inverted directly and hence, no analytic solutions are possible. Therefore, the Riemann-sum
approximation method is used to obtain numerical results. In this method, any function f̄ ðx; pÞ in Laplace
domain can be inverted to the time domain as [13]

f ðx; tÞ ¼
ebt

t

1

2
f̄ ðx;bÞ þRe

XN

n¼1

f̄ x;bþ
inp
t

� �
ð�1Þn

" #
, (39)

where Re is the real part and i is the imaginary number unit. For faster convergence, numerous numerical
experiments have shown that the value of b satisfies the relation btE4.7 [13].

5. Numerical results and discussion

In terms of the Riemann-sum approximation defined in Eq. (39), numerical Laplace inversion is performed
to obtain the non-dimensional temperature, displacement and stress in the piezoelectric rod. In the calculation,
the material constants of the piezoelectric rod necessary to be known are given as [14]

c11 ¼ 74:1� 109 Nm�2; r ¼ 7600 kgm�3; CE ¼ 420 J kg�1 K�1; T0 ¼ 293K;

l11 ¼ 0:621� 106 NK�1 m�2.

The other constants are taken as

Q0 ¼ 10; t ¼ 0:05; l ¼ 10; D ¼ 1� 10�6.

Numerical calculation is carried out for two different cases. The first case is investigating how the non-
dimensional temperature, displacement and stress vary with different time when the moving heat source
velocity keeps constant. The second case is investigating how the non-dimensional temperature, displacement
and stress vary with different moving heat source velocity when the time keeps constant. In the first case, we
consider three different time instants t ¼ 1, 2 and 3, while the constant heat source velocity is u ¼ 1. In the
second case, we consider three different heat source velocities u ¼ 1, 2 and 3, while the constant time instant is
t ¼ 1. The numerical results are obtained and presented graphically in Figs. 1–6.
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Fig. 1. Non-dimensional temperature distributions at u ¼ 1.

Fig. 2. Non-dimensional temperature distributions at t ¼ 1.
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Fig. 1 shows the non-dimensional temperature variation in the piezoelectric rod for the first case. In Fig. 1,
the non-dimensional temperature distributions at t ¼ 1, 2 and 3 are represented by the solid line, dot line and
dash line, respectively. From Fig. 1 we observe that the temperature increases as the time increases. The peak
value of non-dimensional temperature in solid line, dot line and dash line occurs at x ¼ 1, 2 and 3,
respectively. This can be understood clearly from Eq. (18) that because the applied heat source moves with
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Fig. 3. Non-dimensional displacement distributions at u ¼ 1.

Fig. 4. Non-dimensional displacement distributions at t ¼ 1.

T. He et al. / Journal of Sound and Vibration 306 (2007) 897–907904
a constant velocity, u, thus, once the time instant t is given, the distance that heat source moves across is
x ¼ ut. At location x ¼ ut heat source releases its maximum energy, which leads to a higher local temperature.

Fig. 2 shows the non-dimensional temperature distribution in the piezoelectric rod for the second case. It
can be found from Fig. 2 that temperature decreases as the moving heat source velocity increases. For the
same time duration, the heat source releases the same amount of energy. However, the intensity of the released
energy per unit rod length decreases as the source speed increases. As a result, each location in the thermal
disturbed region receives less amount energy as the source speed increases. This in turn leads to a reduction in
the local temperature distribution within the rod.
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Fig. 5. Non-dimensional stress distributions at u ¼ 1.

Fig. 6. Non-dimensional stress distributions at t ¼ 1.

T. He et al. / Journal of Sound and Vibration 306 (2007) 897–907 905
Figs. 3 and 4 show the non-dimensional displacement distributions for the first case and second case,
respectively. From Fig. 3 it can be found that displacement increases as the time increases. This indicates as the
time increases heat disturbed region evolves deeper in the piezoelectric rod. Due to the applied heat source the
rod undergoes thermal expansion deformation. As time increases the thermal expansion deformation
accumulates. Therefore, the displacement increases. From Fig. 4 it can be observed that displacement value
decreases as the moving heat source velocity increases. This results from the reduction of the heat energy
intensity per unit rod length at large velocity. It can be also found from Figs. 3 and 4 that the displacement
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value is kept zero at x ¼ 0 and 10, which coincides with the boundary conditions that the rod is fixed at both
ends.

Figs. 5 and 6 show the non-dimensional stress distributions for the two cases, respectively. From Fig. 5 we
can find that the stress in the rod is compressive. The absolute value of the stress increases as the time
increases. This is because the rod is fixed at both ends, which leads to the thermal expansion deformation
being restrained to develop along the rod elongation, therefore, compressive thermal stress occurs in the
piezoelectric rod. It can be seen from Fig. 6 that the absolute of the stress decreases as the velocity increases.
The similar reason for this can be found from the above descriptions.

From Figs. 1–6 we can notice that once the time instant is given, the non-zero values of non-dimensional
temperature, displacement and stress are only in a finite region and outside this region the results are all zero.
This accounts for heat propagation speed being finite in the rod, also this is entirely different from the classical
heat conduction theories, which predict an infinite speed. Because of the finite heat propagation speed, the
heat disturbed region is bounded when the time instant is given, which results in the thermally induced
displacement and stress are also in a bounded region.
6. Conclusions

The dynamic thermo-elastic responses of a piezoelectric rod subjected to a moving heat source is
investigated based on the L–S generalized thermo-elastic theory. The piezoelectric–thermoelastic coupled
governing equations are formulated. By means of Laplace transform and Riemann-sum approximation, the
equations are solved and the numerical results of non-dimensional temperature, displacement and stress are
obtained and displayed graphically. From the graphs, we can arrive at the following conclusions.
1.
 In all figures under the generalized theory of L–S theory, it is clear that all distributions considered have a
non-zero value only in a bounded region of space. Outside this region the values vanish identically and this
means that the region has not felt thermal disturbance yet. From the distributions of temperature, it can be
found the wave type heat propagation in the piezoelectric–thermoelastic medium. The heat wavefront
moves forward with a finite speed with the passage of time. This is not the case for the coupled theory,
where infinite speed of propagation is inherent and hence all the considered functions have non-zero
(although may be very small) value for any point in the medium. This indicates that the generalized heat
conduction mechanism is completely different from the classical Fourier’s in essence.
2.
 At x ¼ ut non-dimensional temperature attains its peak value once the time instant is given.

3.
 The values of non-dimensional temperature, displacement and stress decrease as the moving heat source

increases.
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