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Abstract

This paper investigates the forced response dynamics of a clamped—clamped beam to which a rigid body is attached, and
in the presence of periodic or non-periodic impacts between the body and a comparatively compliant base structure. The
assembly is subjected to base excitation at specified frequency and acceleration, and the potentially complex responses that
occur are examined analytically. The two sets of natural frequencies and vibration modes of the beam-rigid body structure
(in its in-contact state, and in its not-in-contact state), are used to treat the forced response problem through a series of
algebraic mappings among those states. A modal analysis based on extended operators for the (continuous) beam and
(discrete) rigid body establishes a piecewise linear state-to-state mapping for transition between the in-contact and not-in-
contact conditions. The contact force, impulse, and displacement each exhibit complex response characteristics as a
function of the excitation frequency. Periodic responses occurring at the excitation frequency, period-doubling
bifurcations, grazing impacts, sub-harmonic regions, fractional harmonic resonances, and apparently chaotic responses
each occur at various combinations of damping, excitation frequency, and contact stiffness. The results of parameter
studies in structural asymmetry and the eccentricity of the contact point’s location are discussed.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Impact in structures can occur as a result of clearances and manufacturing tolerances, or through
intermittent contact between rotating or translating machine elements. Excessive clearance between an
engine’s piston and the cylinder wall, for instance, enables the piston to move laterally and impact the cylinder
with each stroke [1]. Turbomachinery blades are likewise sensitive to imbalance, and their vibration leads to
high cycle fatigue problems which can be addressed, in part, through self-tuning impact dampers [2].

Aside from machine dynamics, nuclear power plants are one class of structures for which impact-driven
vibration is of concern. Steam generator tubes and reactor control rods, for instance, can contact their
supporting structures. The resulting impacts and vibration not only can damage those components, but they
can introduce contaminants into the reactor’s fluids systems. In pressurized water reactors, the primary
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coolant for the reactor compartment flows through thousands of meters of tubing within the steam generators.
Support plates are used to control and minimize, but not necessarily eliminate, lateral motion of the thousands
of tubes present in each generator. Impact of any particular tube against its support structure increases the risk
of fracture and leakage could contaminate the secondary fluid loop [3].

Reactor fuel rods are another application in which a slender beam-like structure is subjected to impact. In
that case, the rod’s designed end conditions vary from being “‘seated’’ (where the rod rests in a fitted cup) to
“floating” (where the reactor’s cap produces elastic hold-down forces). Spacer grids support the overall fuel
assembly structure and prevent the rods from impacting one another while still enabling the primary coolant
to flow freely [4]. Impact can cause undesirable fretting and wear of such sensitive components.

Related literature on the subject of impact dynamics includes studies of discrete and continuous systems
that are subjected to impact under various circumstances. Shaw and Holmes [5] examined a single-degree-of-
freedom system comprising a concentrated mass that can impact a spring and that is otherwise free between
collisions. This piecewise linear system’s response spectrum exhibited periodic responses, period-doubling
bifurcations, and chaotic response regimes. Fourier [6], continuation [7], harmonic balance [8], and finite
element [9—11] methods have each been applied to study specific impact oscillator systems. Maezawa et al. [6]
represented the steady-state response of an impacting single-degree-of-freedom oscillator through a Fourier
series. In addition to the features reported in Ref. [5], superharmonics developed at higher values of the
contact stiffness. Xu et al. [12] applied the incremental harmonic balance method to analyze a nonlinear single-
degree-of-freedom system that exhibited multiple bifurcations and regions of chaos. While examining
structural dampers for a vibrating beam, Bonsel et al. [13] experimentally verified the occurrence of multiple
harmonics and subharmonics in the structure’s repetitive impact frequency response. Fang and Wickert [14]
examined the vibration of a cantilever beam subjected to repetitive tip impact, and found a recurring pattern
of resonance, bifurcation, and non-periodic motions.

2. Vibration model

Fig. 1 illustrates the schematic of a rigid body having mass m and mass moment of inertia J that is
supported by two Euler—Bernoulli beams having clamped end conditions. Each beam segment i = 1 or 2 is
rectangular in cross-section with areas A; as the product of depth b; and height /;, and the second moments of
area are denoted I; = b,-hf/12. Beam portions “1” and ““2” likewise have flexural rigidities £/, and E,I,,
volumetric densities p,; and p,, and lengths L; and L,. Illustrative numerical values for the model parameters

W, (X,1) w,(X,,1)
F F
X, \e(t) X,
— @ |
] I
'ﬁz k
—_—
L, L., | L,

- TITIIIT

e(t)= e, sin wt

Fig. 1. Model of a rigid body, supported by two elastic beams, that is subjected to base excitation and impact.
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Table 1
Nominal parameters used in the case studies

System

Length, L (m) 1.52 x 107!
Contact location, a (m) 127 x 1072
Clearance, ¢ (m) 0

Beam 1

Modulus, E; (GPa) 69
Density, p; (kg/m?) 2.69 x 10
Length, L; (m) 6.35 x 1072
Height, /; (m) 3.02x 1073
Width, b; (m) 2.54 x 1072
Rigid body

Length, L,, (m) 2.54 x 1072
Mass, m (kg) 3.30 x 1072
Rotational inertia, J (kg/m?) 7.17 x 107°
Beam 2

Modulus, E; (GPa) 69
Density, p, (kg/m?) 2.69 x 10°
Length, L, (m) 6.35 x 1072
Height, &, (m) 3.02 x 1073
Width, b, (m) 2.54 x 1072

used in the later case studies are listed in Table 1. The displacements of the beam portions on either side of the
rigid body are denoted by w;(x;, ) and w;(x;, f) where the local coordinates are x; = x and x; = L — x.

The motion of the rigid body couples with the beams through its translational y and rotational 0 degrees of
freedom, where y denotes the centroidal displacement. Contact between the rigid body and the supporting
base structure occurs on the rigid body at distance a along its full length L,,, as indicated in the diagram. The
symmetry (or asymmetry) of the structure about the rigid body’s centroid, the clearance or stand-off gap
distance ¢, and the contact stiffness k& can each be varied in simulation. Motion of the combined rigid body and
two-beam system is viewed as switching sequentially between two states SY) within which vibration is linear:
state j = 0 refers to the configuration in which the rigid body does not contact the spring, and state j = 1 refers
to the case in which the body does contact the spring.

The configuration of the system in either state is given by:

o =[w wy y 0], (1)

where the first two elements of the vector are functions of position and time, and the second two elements are
functions of time only. Geometric compatibility between the rigid body and beams requires

J/(f) = Wl(Lla t) + (Lm/z)wl,x(Ll, Z‘)
= W2(L2a l) + (Lm/z)w2,x(L2, l), (2)

0(1) = wix(Ly, 1) = —wax(Lo, 1), (€)

where the comma-subscript notation implies partial differentiation. For brevity here and in what follows, the
term “x”* subscript denotes differentiation with respect to x; for terms involving wy, and with respect to x; for
terms involving w;.

The compatibility conditions among the beam segments are

M/Z(Lza t) = M}I(Ll > t) + LH’IM}I,X(Lla Z)’ (4)

wi(Li, 1) = —wa (Lo, 1). ()
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The remaining boundary conditions for the beam segments represent the clamped supports and prescribed
base excitation e(?): wi(0, 1) = e(?), w1 x(0,7) = 0, w2(0, 1) = e(?), and w (0, £) = 0. The equations of motion for
the beam portions are

plAlwl,tt + Elllwl,xxxx =0, (6)

PrAowa + Ealaw) wxxy = 0. (7
In S©, the equations of motion for the rigid body are

my,zt = Elll Wl,xxx(Ll > l) + E2I2W2,xxx(L2a t)a (8)

JO = — ExDiwi(Ly, 1) + Exlowy (L, 1)
Lm Lm
- 7E111 Wi (L1, 1) + 7E212W27xxx(L27 0. ©)

The latter expression incorporates the influence of the beams’ end shears, which were not considered in
Ref. [15]. In SU, terms representing the contact spring’s restoring force and moment about the body’s centroid
are appended to Egs. (8) and (9).

The equations of motion for the rigid body and the two beam segments are written in a structured manner
in terms of extended operators. The advantage of such an approach is that modal analysis can be employed in
a standard fashion, notwithstanding the presence of eigenvalues in the boundary condition expressions. The
coupled Egs. (6)—(9) are written in terms of the vector v

Mv,+Kv=0, (10)
in either state, where the inertia operator M is
prAiwi(x, 1)
prAawa(x, 1)

my(1)
JO(7)

MYy = (11)

The stiffness operator in S is

_ElIlWl,xxxx(xa Z)
E2[2W2,xxxx(xs Z)
—E1 I Wi (L1, ) — Exlawy s (L2, 1)

KOy =
T E(Iw (L1, 1) — Exlows (Lo, 1)

(12)

Lm L"’l
+E1117W1,xxx(Ll 1) — E2127W2,xxx(L2a )]

and in SU it is given by
_ 0 _
0
) © () — k0o [ 2
KYyp=KYp+ (1) — kO(1) 7+a . (13)

_k(a — %")y(t) - ka(a - %) 9(!)_

The impetus for the extended operator formulation is that the inertia and stiffness operators for each
state are self-adjoint. With respect to the inner product with the arbitrary vector r={[r1 r r3 r4]',
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for instance

L] LZ
(KO0, 1) = / E1Tiwi xxxxr1 dxy +/ E>Iow yxxytr dxo
0 0

+ [_EIIIWI,xxx|L1 - E2I2W2,xxx|Lg]r3
+ [Elllwl,xx|L1 - E212W2,XX|L2

L L
+ Elll mel,xxxhl - E212%W2,xxx|L2]r4 (14)
is identical to (K@ r, v).
In Fig. 1, the beam is subjected to base vibration e(f) = ¢y sin(w?). With the superposition v = u +[e(r)
e(f) 0 0]", the boundary conditions on w; and w, become homogeneous. The equation of motion then
becomes

Mu, +Ku=f (15)

with the body force vector

z == [—p1A1€’,, - pzAze,n - me"n O]T. (16)

3. Free vibration in S© and SV

Synchronous solutions for free vibration within either state S9 are sought such that u%) = Q(") sin(wt). The
mode shapes Q(’) are given by

¢V =W (x) Wax) Y O], (17)

where Y and @ are constant amplitudes. Since M and K are self-adjoint, these mode shapes are orthogonal
with respect to the aforementioned operators and inner product. With the subscripts p and g denoting two

different modes in S, the orthonormality relationships between (bg) and qﬁ(q/) are (M ¢,(!)’¢g)> = 0,y and
(K ﬂ(;j)’ @1’)) = wg)zéq,, (no sum).

The modal deflection over each beam segment i is written as a superpositions of terms A sin(yx)+
Bcos(yx) + Csinh(yx) + Dcosh(yx), where 72 = E;I;/(p;A,), in either S¥. Coordinates ¥ and © are also
expressed in terms of these coefficients through Egs. (2) and (3). Together, Egs. (4)—(5), Egs. (8)—(9), and the
remaining boundary conditions provide the constraints necessary to determine the beams’ displacement
coefficients. The resulting characteristic equation for each state j is an eigenvalue problem for the system’s
natural frequencies @; and mode shapes.

Figs. 2 and 3 depict mode shapes at the parameter values listed in Table 1, for which the structure is
symmetric about the rigid body’s centroid. Here the (scalar) ¢§’) denotes the modal displacement field of the
rigid body and two beams over x € (0, L). The spatial coordinates are normalized by the total length L so that
x*=x/L € (0,1). For each symmetric mode, the rigid body has zero slope, and the beam segments are
subjected effectively to clamped boundary conditions. In SV, the contact spring further constrains motion of
the body. The reduction in modal amplitude at the centroid is directly related to the magnitude of k and the
contact force. Force terms are non-dimensionalized with respect to the structure’s static stiffness &, to a force
applied at, and displacement measured at, the body’s centroid. At low values, the contact stiffness has little
effect on the S mode shapes. Fig. 3 depicts the first four mode shapes for the system while in contact with the
spring, for k* = k/k;, = 10°. Here the spring contacts the rigid body’s centroidal line, which is a nodal point
for the anti-symmetric modes. The first anti-symmetric mode in Fig. 3 has the lowest natural frequency, which
is the case for k*>3.3 x 10*. The spring strongly influences the first symmetric mode and reduces the rigid
body’s deflection by 12.1% relative to the corresponding mode in S©.
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Fig. 2. First four normalized mode shapes in NRA of =1, 3.46, 8.74, and 11.11. Parameters are as listed in Table 1.
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Fig. 3. First four normalized mode shapes in NS wf =346, 5.75, 9.14, and 11.11. Parameters are as listed in Table 1; k* = 10°.
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Motion of the rigid body and attached beams in SY is a superposition of N modal vectors QU), written as
uP(x, 1)~ > 0 (V) (x), (18)
i=1

where the 17?) (?) are generalized coordinates in the discretization. Motion within either state is described fully
by the sets {ny)}, and the remaining portion of the contact analysis involves a mapping between those two sets
for each contact event. In the light of orthogonality among the (,i)(i), each modal coordinate satisfies

i + 2% + o = (f,ul), (19)
where & is the modal damping ratio for the system in state j. Accounting for the prescribed base motion, the

particular solution takes the form QY) sin(wt) + RY) cos(wt). With the system’s initial displacement u, and
velocity u, vectors known, the modal coordinates 11?) are calculated as outlined in the Appendix.

4. Mapping between states

Switching between states occurs when there is impact between the rigid body and base, or loss-of-contact
between the two, and at those conditions

wi(Ly,t) + awix(L1,1) + ¢ =0. (20)

Should the spring be located at the center of the rigid body (a = L,,/2), then this condition simplifies to
v+ ¢ = 0. The roots of Eq. (20) identify the instants at which the body contacts the spring or rebounds from it.

With a specific impact or rebound time being denoted by #; as shown in Fig. 4, the displacement and
velocity of the system just beforehand () are related to those just afterwards () by enforcing compatibility
conditions [16]. For impact at #; and rebound at #;,1,

Impact:  uO(x, ;) = uV(x, 1),
iOx, 1) = iV (x, ).

. 1 - 0
Rebound:  uV(x, 7)) = u®(x, 2], ),
. (1 _ . (0
iV, ) = 100 ). (21)
The continuity conditions at impact require that the two sets of modal coordinates are related by
(1)(l+) 01) (0 (l )
A5 = 7OV (0 (%), (22)
where ﬂ(i) is a column vector comprising the nl- . The transformation matrix 7V is constant, and it is

determined solely by the sets of eigenfunctions in S¥. The p—¢ element of TV is the M-weighted projection of
modal vectors in the two bases:

T(Ol) Md)(o) d)(l)
b 0) 171 b I
z/o plAlW(lq)W(lp)dxl—i-/o pr A2 WS WS dxs
+mYP Y 70060 (23)

The companion matrix 7U9 = 7ODT maps rebound from SI to S©.
Figs. 4 and 5 illustrate maps between the two sets of modal coordinates. Fig. 4(a) depicts a period-one (P-1)
steady-state response, in which one impact and one rebound occur during each oscillation of the structure’s

base. Linear vibration occurs in S with the modal coordinates ;150) evolving according to Eq. (19); 7" maps
1 to 4 across the impact at #; linear vibration occurs in S with the modal coordinates ntY evolving
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Fig. 4. Schematic illustration of the mapping across impact at #; for a period-one response. (a) Displacement of the rigid body’s mass
center (n = 1 peak, w* = 1.355). (b) Modal coordinate trajectories and mapping between r](lo) and 11(11). (c) Modal coordinate trajectories
and mapping between r]éo) and ngl). Here k* = 10*, N = 8 for each state, ¢© = 1%, and ¢ = 5%. Trajectories in S© are denoted by (- - ),
and those in SU by (x x x).

according to Eq. (19); and 7" maps n") back to #®) across impact at 7;4|. The corresponding paths traced by 7
and 11(11) in their respective state spaces are shown in Fig. 4(b), along with the transformations between them. During

this cycle, the 17(30) and ;1(31) coordinates in Fig. 4(c) undergo multiple oscillations in the light of their higher frequencies.

Fig. 5(a) depicts a more-complex period-three (P-3) motion including impacts, rebounds, and grazing
contact. During a time interval corresponding to three oscillations of the table’s base, the rigid body and beam
system moves freely, contacts the spring, loses contact, and then contacts it again over approximately the last
third of a cycle. The maps transform modal coordinates for each of the two impacts and two rebounds: 7V
for the transitions labeled B-C and F-G, and 79 for the transitions D-E and H-A.

5. Results and discussion

For a single-degree-of-freedom system, the oscillator’s peak displacement between successive impacts is a
convenient scalar metric of the steady-state response’s amplitude [5]. When viewed as a function of the
excitation frequency, that quantity is a useful measure for describing the repetitive impact frequency response
function. For the continuous system at hand, the displacement varies along the structure, multiple frequencies
are present, and multiple modes contribute to that response.! In what follows, the dimensionless impulse

"For generality, the subsequent results are presented entirely in dimensionless form, and non-dimensional parameters are denoted by an
asterisk superscript. Time is non-dimensionalized with respect to the structure’s fundamental natural frequency in S© such that ¢+ = w(lo)t.
Displacements are normalized by the total length L.
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Fig. 5. Schematic illustration of the mapping across impact at #; for a period-three response. (a) Displacement of the rigid body’s mass
center (w* = 2). Modal coordinate trajectories and mapping between (b) r](lo) and (c) n(l]). Here k* = 10%, N = 8 for each state, ¢ = 1%,
and &V = 5%. Trajectories in S© are denoted by (- - -), and those in SI by (x x x).

I = (Ia)(lo))/(kbL) (where I is the dimensional value) exerted on the rigid body during contact is taken to
represent the character of response as a function of excitation frequency.

The frequency response of a repetitive impact oscillator can have periodic, quasi-periodic, or chaotic
behavior. Simulations of the rigid body and beam system at hand exhibit a number of qualitatively different
features in the frequency response, including multiple harmonics at which local resonance occurs, bifurcations
in amplitude, and instances of grazing impact. Such phenomena have been observed in the context of other
nonlinear structures. Shaw and Holmes [5] identified flip bifurcations, which are sudden changes in periodicity
occurring along a branch of the frequency response function. A supercritical flip bifurcation occurs when a
branch corresponding to a period-one response splits into two branches, which together mark the paired
amplitudes of period-two vibration. Sudden changes in the response period for small changes in the driving
frequency can also occur. For instance, a period-m branch can jump to a period-n response with small
frequency changes, a phenomenon that is manifested as an apparent jump or discontinuity in the frequency
response function. Such discontinuities were examined in the context of hysteretic effects by Minorsky [17]
among others. Cascades of period-doubling bifurcations were examined by Narayanan and Sekar [9], who
demonstrated the existence of crossed branches in the spectrum of a damped single-degree-of-freedom system.
A grazing impact occurs when contact between surfaces is imminent, but the contact impulse at that
borderline condition vanishes [18]. The study of de Weger et al. [19] applied perturbation methods to study
grazing phenomena and disclosed discontinuities and overlapping regions in the frequency response function.

5.1. Discretization and relative convergence

The model is discretized in Eq. (18) through the subset of N modes in each of the two states S”. The fidelity
of the approximation is assessed by relative convergence of the repetitive impact frequency response function
as a function of N, recognizing the trade-off involved between computational efficiency and accuracy of the
simulation over a particular frequency range.
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Fig. 6. Relative convergence of the repetitive impact frequency response function in terms of the number of modes N taken in the
structure’s discretization for each S¥: (a) N =2, (b) N =4, and (¢) N = 6. Here k* =3 x 10°, ¥ = 1%, and ¢V = 5%.

In Fig. 6(a), the repetitive impact frequency response function is shown for the parameters listed in Table 1
and with N = 2. Broad and isolated peaks occur near w* = 1.8 and 3.6, and a narrow region comprising the
complex dynamics of loops and discontinuities occurs over 2.55<w*<3.25. However, that spectrum is
predicted on the basis of a two-mode approximation in S (as in Fig. 2), and a two-mode approximation in
SU (as in Fig. 3). In Fig. 6(b) with N = 4, two closely spaced peaks develop at w* = 1.70 and 1.84, in contrast
to the single peaks present in the N = 2 model. A similar pair develops across w* = 3.5. Further, the simpler
two-mode approximation does not capture the more complex features associated with mode-to-mode coupling
that are evident over 2.08 <w* <3.25. The additional complexity at N = 4 includes discontinuities, the loop
structure at 2.08 <w*<2.18, and a broad region of apparent chaos. At N =6 in Fig. 6(c), the frequency
response function changes slightly relative to the solution at N = 4 over this frequency range. In what follows,
N = 8 is taken as a compromise between computational efficiency and relative convergence in such spectra.

5.2. Harmonic structures

The repetitive impact frequency response function includes a number of features that occur at regular
frequency intervals, either integer or fractional multiples of a fundamental frequency. Fig. 7(a) illustrates the
frequency response of a system having relatively low modal damping and contact stiffness. By way of
nomenclature in describing such functions, the integer n denotes the nth harmonic, and represents a motion
that has period 7 relative to the excitation. The corresponding time history for displacement of the rigid body’s
centroid at the n = 1 resonance peak in Fig. 7(a) is shown in Fig. 8(a). In this period-one response, for each
cycle of base motion e(?), the structure also completes one cycle in the steady state. With a local resonant
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Fig. 7. Repetitive impact frequency response function with k* = 104, &9 = 1%, and ¢ = 1%. (a) Response over a broad frequency

range encompassing the n = 1 peak and its second harmonic. The regions within the dashed borders are magnified in subfigures (b) and (c).
(b) Magnified view of the region in which fractional harmonics are present. (c) Magnified view of the region in which the period-one to
period-two bifurcation occurs, and in which a discontinuity develops through a grazing impact. Responses y*(#) at the conditions identified
by the () notation are shown in Fig. 8.

frequency of w* = 1.36, the n = 1 peak falls between the first natural frequencies (w* = 1 and 2.12) of the
system in its states SY. Also in Fig. 7(a), the harmonics of this peak appear in the spectrum, but with
decreasing amplitudes; the labeled » = 2 peak occurs at exactly twice the frequency of the n = 1 peak, but with
only 20% of its amplitude.

At the relatively low dissipation level of Fig. 7, intermediate peaks develop between the integer-spaced
harmonics; these fractional harmonics occur at ratios 3/2, 4/3, 5/4... m/(m — 1), for m = 3 and higher, of the
n =1 peak. In analogous single-degree-of-freedom studies, intermediate peaks have been shown to occur at
exactly the half-harmonic locations, and for a continuous system, the intermediate peaks can cascade to ratios
less than half [13]. The m/(m — 1) harmonics tend toward an accumulation point at the n = 1 peak. However,
the higher fractional harmonics diminish in width and amplitude with additional damping; in Fig. 7(b), the
three harmonics m = 3, 4, and 5 are present at the chosen value of 1% modal damping.

The resonances corresponding to fractional harmonics extend over small ranges in the impact frequency
response function. The time history for y*(¢) at the 3/2-harmonic in Fig. 7(b) is depicted in Fig. 8(b). Here the
base undergoes three complete cycles, while the rigid body has only two local maxima in S© (and two local
minima in S1). The width in frequency of these regions decreases with m; in Fig. 7(b), for instance, the region
corresponding to the 4/3-harmonic is only approximately 30% as wide as that of the 3/2-harmonic, a result
consistent with the findings of Gontier and Toulemonde [7]. Likewise, as dissipation increases, the magnitudes
and widths of the fractional peaks decrease. In Fig. 9, the structure’s frequency response was simulated over a
range of modal damping ¢”. Fig. 9 also illustrates how only two fractional harmonics (m = 3 and 4) are
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Fig. 8. Time histories for the rigid body’s non-dimensional displacement y(¢) at the conditions designated by the (*) notation in Fig. 7. (a)
Response at the n = 1 peak (w* = 1.36). (b) Response at the 3/2-fractional harmonic peak (w* = 2.04). (c) Response subsequent to the
period-two bifurcation (w* = 2.30). (d) Response subsequent to the grazing impact discontinuity (w* =2.39). Absolute motions in S© are
denoted by (- - ), and those in SV by (x x x). The displacement of the structure’s base is denoted by (—).

present at &Y = 2% in response to additional dissipation. No fractional harmonics develop at &V = 15%, and
even at £>10%, they are nearly indiscernible.

The magnitude of the contact stiffness likewise has qualitative implications for the complexity of the
repetitive impact frequency response function. With damping now held constant in Fig. 10, changes in k*
significantly alter the structure of harmonic peaks, fractional peaks, bifurcation points, and regions of
apparent chaos [12]. At the relatively low value k* = 10* in Fig. 10(a), a single period-one peak occurs at
w* = 1.36, and its period-two harmonic is present at w* = 2.72. As the stiffness increases beyond k* = 6 x 10%,
the single n = 1 peak pairs with another at a slightly higher frequency. For instance, at k£* = 10° in Fig. 10(b),
two peaks emerge at w* = 1.68 and 1.79, as well as their second harmonics. For k* > 1.7 x 10°, the magnitude
of the second peak in the pair grows beyond that of the first generating peak. Fig. 10(c) illustrates that
phenomenon at k* = 3 x 10°, where the peak at w* = 1.84 is 52% larger in amplitude than the peak at
o* =1.70. In addition to these changes in the n-peak structure, the repetitive impact frequency response
functions increase substantially in complexity at intermediate values.

5.3. Bifurcations
The character of the P-1 to P-2 bifurcation highlighted in Fig. 7(c) depends on the level of modal

dissipation. While damping has little influence on the frequency at which the bifurcation occurs, it does affect
the width and separation of the two subsequent branches. Comparing the bifurcations for the cases of 2% and
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15% modal damping in Fig. 9, the splits occur at the virtually the same locations, with the branch-point
frequency increasing by only 0.45% between & = 2% and 15%. The separation between these branches at
¢ = 15% immediately prior to the grazing impact condition is 365% greater than that for ¢ = 2%. In short,
the length, breadth, and branch-point frequency of the period-one to period-two bifurcations each increase
with £, albeit to different extents.

5.4. Grazing impact

Figs. 8(c) and (d) also depict the time histories associated with the transition between the direct and grazing
impacts in Fig. 7(c). In the former case, the P-2 motion comprises two local maxima in S, and two local
minima in SV, so that two collisions occur for each complete cycle. Subsequent to the onset of a grazing
impact at * = 2.39, the response remains P-2, but with only one local maximum in S©.

Grazing impact or rebound results in a distinct discontinuity in the repetitive impact frequency response
function, as highlighted in Figs. 7(c) and 9. With a slight increase in w*, the two post-bifurcation branches
abruptly terminate, and a single locus of greater magnitude develops subsequently. The motion of the system,
as measured by the displacement time record y*(¢), does not change appreciably over this slight change in
frequency.

5.5. Aggregate response

For lower values of the contact stiffness, the repetitive impact frequency response function comprises a
pattern of flip bifurcations, grazing impacts and rebounds, and a series of fractional harmonics (for sufficiently
low dissipation). As the stiffness increases, the response function becomes generally more complex. For
instance, the region associated with the 3/2-fractional harmonic peak in Fig. 7(b) also contains a grazing
impact. At o* = 1.944, three P-3 branches generate from a single P-1 branch in the response function. Those
branches subsequently coalesce to two branches through grazing impact at w* = 1.973.

The additional grazing impact in this region develops through relatively low contact stiffness, as in
Fig. 10(a). At higher stiffness values, the discontinuities overlay into the complex response spectrum shown in
Fig. 11 for k* =3 x 10°. Here, the fractional harmonics, bifurcations, and grazing impacts are no longer

10°

Impulse, I*

10_4 L ! ! ! Lt ! !
2.3 24 2.5 2.6 2.7 2.8 2.9 3
Frequency, o*

Fig. 11. Magnified view of the repetitive impact frequency response function having complex dynamics. Here k* = 3 x 10°, ¢ = 1%,
and &V = 5%.
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Fig. 12. Apparently chaotic time history y*(f) of the response identified in Fig. 11; w* = 2.70. Absolute motions in S are denoted by
(- - ), and those in SO by (x x x).

individually discernible, and bounded bands of apparently chaotic behavior are also present. An illustrative
time record for one such band is shown in Fig. 12, and steady-state response is not reached even after
thousands of impacts.

6. Influence of asymmetry

The structure’s natural frequencies and mode shapes are sensitive to symmetry in the model. The
introduction of asymmetry, in geometry or the point of contact, shifts the peaks and qualitative character of
the repetitive impact frequency response function. In addition, the degree of overall complexity changes with
asymmetry.

The parameter ¢ determines the location of contact on the rigid body. When a = L,,/2, only the SV
symmetric modes in Fig. 3 are excited through contact. For ¢ =0 and a = L,,/4, the SO anti-symmetric
modes are also driven, and additional modes are required in the discretization for acceptable convergence. For
different values of a, the n =1 peak and its second harmonic are identically located, and as a — 0, the
amplitudes of these peaks decrease. Fig. 13 illustrates the influence of offset on a complex response in the
region between the n = 1 and 2 peaks. As Figs. 13(a)—(c) indicate, the region w* € (1.70,2.44) is particularly
rich and increases in complexity as the spring’s location shifts, or as a — 0.

Fig. 14 shows frequency response diagrams for three values of /;. For the symmetric case in which the
beams have the same thicknesses (Fig. 14(b)), the harmonic peaks, the 3/2-fractional harmonic peak, the
period-one to period-two bifurcation, and the grazing impact features have a structure similar to that
discussed above. For the case in which beam “1” is less stiff than beam “2” (Fig. 14(a)), the width of the 3/2-
fractional harmonic region grows even to the point of coalescence with the bifurcation region near o* = 2.38.
Alternatively, when beam “1”° is twice as high as and thus more stiff than beam “2” (Fig. 14(c)), no fractional
harmonics appear. In this case, the complexity of the frequency response diagram decreases as the structure
becomes less symmetric and stiffer.
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Fig. 13. Contribution of offset to the structure of the repetitive impact frequency response function; ¢ = 1%, ¢V = 5%, ¢* =0, and N
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= 0.

7. Summary

The vibration of a beam and rigid body system that can contact a base structure, with impact modeled by
the linear restoring force of a spring, is examined. This type of structure, the excitation means, and the
response complexity are relevant to the design and operation of mechanical systems that are subjected to
repetitive impact, and in particular, to some internal components present in nuclear reactor power plants.

The motion is described in a piecewise fashion as switching between the in-contact and not-in-contact states,
and compatibility conditions are applied at their junctions. The equations of motion for the beam and rigid
body are cast in an extended state operator format, so that modal analysis can be applied within each state.
Those solutions are stitched together sequentially to form and to study the steady state response. The two sets
of modal coordinates (in-contact and not-in-contact) are related across the instantaneous contact and loss-of-
contact events by transformation matrices which are calculated in terms of the mass-weighted projection of
one set of mode shapes onto another.

The simulation method is computationally efficient, even when multiple modes are included in
discretization. The predicted repetitive impact frequency response functions capture the rich dynamics of
the structure, and they are expressed in terms of the contact’s impulse. Fig. 7, for instance, demonstrates the
presence of multiple harmonics, fractional harmonics, bifurcations, and grazing impacts. Parameter studies
investigate the influence of dissipation (Fig. 9), contact stiffness (Fig. 10), and asymmetry (Fig. 13) on the
complexity of the structure’s frequency response.
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&M = 5%, and ¢* = 0. The responses are shown for /1, values (a) half, (b) equal to, and (c) twice the nominal value listed in Table 1.

Appendix A

Provided herein are the expressions relating to the mapping within a state, as discussed in Section 3. These
expressions apply for any time 7 and for either S© or S, using the particular solution coefficients QE’) and RE’)
obtained from Eq. (19) in terms of the shifted time Az = 7 — ;. For a given mode i having a natural frequency

. _ 2 - .
w; and damped natural frequency wy; = /1 — £ w;, the modal coordinates evolve according to

n(1) e—cor | Esin(wgAl) + /1 — & cos(wgAl) Lsin(wyA1)
0| V1-8& — o sin(wgAr) —&sin(wgAt) + VT — & cos(wgAi)
n?)(t;: Fii(w, 0, 65,8 Fi(o,on,t,6,%) Q,(;/)(fz—f) Al
) . 1
f/f/)(t,f) Faol(o,0,t,65,8)  Fuo(o,0,t,17,£) Rg)(tZ)
where
Fi = sin(wt) — eéwimﬂcos(wl,f) sin(wgAt) — eéwathm(th) sin(wgAt)
Wd V1i-¢&
— M sin(wt;) ) cos(wgAt),
_ Eoiht D Y\ o cone &
F, = cos(wt) +¢ w—sm(wtk ) sin(wyAf) — e —_—
d

cos(wt;) sin(wyAr)
Vi-¢&
— e*A cos(wtf) cos(waAl),
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2
Fa1 = wcos(wt) — e“ Eay; sin(ot]) ) cos(wgAt) + e“ A 572% sin(wf) sin(w,Af)
V1I=¢
— e“ g cos(wty ) cos(wgAt) + e“ A < sin(wqAt)w cos(wit)

V1—¢&

+ e sin(wtf )/ 1 — Ew; sin(wgAt) + ¥4 sin(wt] )Ew; cos(waAt),

52
V1-¢&

sin(wgAf) sin(of})

Fy = — wsin(wt) — e Ew; cos(wt]) ) cos(wgAt) 4+ e ay;

¢
Vi1-¢é

+ ey cos(wt)) sin(waAt) + e Ew; cos(wagAt) cos(wt]). (A.2)

sin(wqAt) cos(wt;))

+ ey sin(wt]) cos(waAl) — e“ Moy
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