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Abstract

In this paper, the linear vibrations of thermally prestressed beams are studied including the effects of predisplacement

due to prebending and initial imperfections. Only low prestressed states far from the buckling stage are considered, one of

the motivations of this paper being the issue of taking into account climatic temperature effects in damage detection based

on modal techniques. A brief general review is first presented in order to give some theoretical and physical insights upon

structural vibrations superimposed on an initial static state. Both the total Lagrangian and the updated Lagrangian

formulations are applied to a planar Euler–Bernouli beam under the assumption of small prestrains and large

predisplacements. The governing equilibrium equations are solved using a finite element method. Some illustrative

numerical results are given. The model is then validated through experiments inside a climatic chamber. It is concluded

that in addition to the axial prestress, the presence of prebending is also likely to have a significant effect upon some

eigenfrequencies, even in the case of rather small predisplacements.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

For thin structures such as beams, plates, or shells, the effects of prestress are enhanced by the slenderness
ratio. They are thus likely to have a significant impact upon dynamics, even for relatively low prestressed
states far from the buckling stage. In the context of linear dynamics, the presence of prestress acts upon modal
parameters, with a stronger shifting effect for lower eigenfrequencies in practice.

As far as beams are concerned, the natural frequencies of flexural vibration increase (resp. decrease) when
the axial load is tensile (resp. compressive). The eigenfrequencies of Euler–Bernouli axially prestressed beams
have been analytically studied with various boundary conditions [1]. Some experimental/numerical
comparisons have also been done including nonlinear effects [2]. Mead [3] has used a semi-analytical method
to analyze some self-strained planar frames. Law et al. [4] have numerically shown some effects of axial
prestressing upon time responses. Some other studies focused upon prestressed concrete bridges [5,6].
Timoshenko beams, including transverse shear strains, have also been analyzed with analytical methods [7–9].
Yokoyama [10] compared the experimental eigenfrequencies of self-weighted beams (under gravity) with those
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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obtained from a finite-element model. Naguleswaran [11] considered beams subject to linearly varying axial
force. Ganesan et al. [12] used a finite element (FE) method to analyze the in-plane prestressed vibration as
well as the linear buckling of sandwiches beams under thermal environments with temperature-dependent
material properties.

Axially prestressed beams have obviously received much attention in the literature, and the references cited
above are far from being exhaustive. Nevertheless, the effects of predisplacement, which may be due to
prebending or initial imperfections, are hardly considered although some early works have analytically and
experimentally demonstrated its potential effect upon vibration [13–17].

As far as static stability is concerned, the non-negligible effect of initial displacement is rather well-known in
nonlinear buckling analysis and has been the subject of much research. More scarcely, some authors extended
their analyses to the effect upon dynamics. For instance, Perkins [18] investigated the linear vibrations of a
simply supported arch with initial curvature effects for a wide range of post-buckling loads. The author used a
Galerkin method and made a comparison with experimental measurements. Nayfeh et al. [19] analytically and
experimentally studied the natural frequencies and mode shapes of buckled beams (with the first buckling
mode) for hinged and clamped boundary conditions. Chen et al. [20] employed a Galerkin method to study the
vibration and buckling of circular arches under uniform initial bending stress, but its influence remained
obscure. For the design of microelectromechanical systems, Paul et al. [21] made an analytical and
experimental study of buckling and vibration of thin film sandwiches taking into account static predeflection.
Teng et al. [22] chose a numerical shooting method to analyze the vibration of thermally post-buckled beams.
Addessi et al. [23] proposed a Galerkin method to investigate the sensitivity of the modal properties in the
vicinity of the first buckling Euler load.

In fact to the author’s knowledge, results available in the literature including predisplacement effects on
structural dynamics are generally focused on post-buckling configurations, for which some static deflection
always exists even for straight beams. Surprisingly, prebending effects upon vibrations are hardly outlined for
low non-buckled prestressed states (and often neglected), particularly for thermally prestressed beams. Based
on a general FE procedure, the goal of this paper is to highlight the influence of predisplacement upon the
modal parameters of planar beams subject to moderate thermal prestress.

This study is motivated by the need of adequate numerical models for thermally prestressed dynamics,
which is of great importance within the framework of robust vibration control [24–26] or efficient structural
health monitoring based on modal diagnosis [27–29] with thermal compensation. Typical applications in civil
engineering are a bridge or a building subjected to climatic thermal variations [30–32] (for such structures, the
daily variation of natural frequency may reach several percent).

In this paper, a brief theoretical review is first given in order to clarify the general equilibrium equations of
structural vibrations superimposed on an arbitrary initial static state. In order to simply illustrate the influence
of prebending, the theory is applied to planar beams subjected to prestressed states of small strain and large
displacement. The equilibrium equations, which take into account the presence of predeformation in addition
to the classical axial prestress, are solved using a FE method. A brief numerical example is studied in order to
highlight some prebending effects induced by a thermal gradient through the thickness. Finally, a laboratory
test-case is driven inside a climatic chamber. Experimental and FE results are compared. Initial imperfections,
inevitably occurring in real-life structures, are included in the whole analysis.

2. General equations

In prestressed dynamics, three configurations must be distinguished: the reference configuration
(undeformed and unprestressed), the predeformed configuration (corresponding to the prestressed state),
and the total configuration (including superimposed dynamical deformations). Quantities referring to these
configurations will, respectively, be denoted with a subscript ‘‘ref’’, a subscript 0 and a tilde. The absence of
symbol will be left for superimposed dynamical quantities. In this paper, the reference configuration represents
the ideal geometry without initial imperfections, which are denoted by the subscript i. Fig. 1 illustrates these
geometrical configurations for a vibrating straight ideal beam subjected to prebending.

We restrict our study to conservative systems, linear thermoelastic constitutive laws, static (or quasi-static)
prestressed states, and small superimposed vibrations. The prestress/predeformation effects are viewed by
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Fig. 1. (a) Reference Oref (straight bold line), predeformed O0 (bold dashed), total O (dashed) and imperfect Oi (thin line) configurations

for an idealized straight beam. (b) Zoom of the gray zone with the particle displacement decomposition.
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dynamics through the geometric nonlinearities of the prestressed state, possibly in large prestrain.
Furthermore, the hypothesis of a weak coupling between temperature and mechanical deformation is made,
in the sense that mechanically induced heating is neglected. The period of vibrational displacements is
supposed to be far smaller than temperature fluctuations in time, meaning that thermally induced vibrations
are not considered: ~T � T0 (temperature acts upon dynamics only through the prestressed state).

This section briefly reviews the formulations of governing equilibrium equations. Further theoretical details,
for instance, will be found in Refs. [33–35].

2.1. Total configuration equilibrium

The mechanical model requires at the beginning of the analysis the consideration of the large deformations
of the system. Based on a Lagrangian formulation, Hamilton’s principle for the total configuration writes

d
Z t2

t1

ð ~T � ~V � ~V extÞdt ¼ 0 with d~uðt1Þ ¼ d~uðt2Þ ¼ 0 and ~ujGu
ref
¼ ~̄u, (1)

where ~T is the total kinetic energy, ~V the total strain energy and ~V ext the external energy, given by

~T ¼
1

2

Z
Oref

rref ~u
�

� ~u
�

dO; ~V ¼
1

2

Z
Oref

~E : ~SdO; ~V ext ¼ �

Z
Oref

rref ~u � ~f dO�
Z
GT
ref

~u � ~̄TdG. (2)

Oref corresponds to the geometry of the ideal and undeformed structure. Gu
ref and GT

ref are its associated
boundaries (qOref ¼ GT

ref [ G
u
ref ) and, respectively, denote surfaces associated with essential (prescribed

displacement) and natural (prescribed stress) boundary conditions. Within the scope of linear thermoelasticity,
the stress–strain relationships are ~S ¼ K : ~E� jy0. ~u is the total displacement. ~E and ~S are, respectively, the
total nonlinear Green–Lagrange strain tensor and the second Piola–Kirchoff stress tensor. y0 is equal to
T0�Tref, the temperature difference with respect to the reference temperature (i.e. for which there is no thermal
stresses). ~f is the total external body force per unit mass. rref denotes the reference material density K and j,
respectively, denote the tensors of elasticity and thermal material properties. In the presence of initial
imperfections ui (which are supposed to be known), the Green–Lagrange strain tensor must include some
additional terms (see for instance Ref. [36] or [37]):

~E ¼ 1
2
ðr ~uþ r~uT þr ~uTr ~uþ ruTi r ~uþ r ~u

TruiÞ. (3)

This expression derives from the fact that initial imperfections are defined as static deformations without
stress or strain (Si ¼ Ei ¼ 0).

Because a Lagrangian formulation has been used, it should be outlined that all quantities and derivatives in
the above equations are written in terms of material coordinates in the reference configuration.

2.2. Linearized total and updated Lagrangian formulations

Now, the total displacement vector is decomposed as a sum of two components, one corresponding to
the prestressed state, and the other corresponding to small superimposed non-stationary perturbations
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Table 1

Definitions of notations involved in Eq. (4)

Formulation O;Gu;T ;r e (incremental strain) r(inc. stress) r r0

Total Oref ;G
u;T
ref ;rref

1
2
ðruþruT þ ðru0 þ ruiÞ

T
ruþ ruTðru0 þ ruiÞÞ K:e rref 2nd Piola–Kirchoff

Updated O0;G
u;T
0 ;r0

1
2
ðruþruTÞ C:e r0 Cauchy stress
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(see Fig. 1): ~u ¼ u0 þ u. The prestressed state variables are assumed to verify Hamilton’s principle (1) for the
static case. Keeping only quadratic terms in u (for the purpose of linearization), the following Hamilton’s
principle holds for the superimposed dynamic state with the following energy expressions:

T ¼
1

2

Z
O
r_u � _udO; V ¼

1

2

Z
O
e : rdOþ

1

2

Z
O
trðrur0ru

TÞdO,

V ext ¼ �

Z
O
ru � f dO�

Z
GT

u � T̄dG. ð4Þ

The definitions of notations involved in the above expressions are summarized in Table 1 and depend on the
choice of the formulation, namely the linearized total Lagrangian formulation or the linearized updated
Lagrangian formulation (for further details, see for example Refs. [33,34]). The former is obtained from a
direct linearization of the formulation exposed in Section 2.1. The latter can be obtained by applying a
transformation from Lagrange to Euler variables. The second term in the expression of V is the so-called
geometric stiffness energy. For thin structures, it corresponds to the effect of in-plane prestress (axial prestress
for beams).

What should be understood with the updated Lagrangian formulation is that every quantity (u, f, the operator
r(.),y) is written in terms of the Eulerian coordinates in the predeformed configuration. O0 corresponds to the
geometry of the prestressed structure (i.e. in its predeformed configuration, including initial imperfections). In the
context of FE methods, this means that the meshing should be done over the predeformed geometry. It should
also be noted that the coefficients of the constitutive tensors K and C used in the total and updated Lagrangian
formulations are rigorously not identical. To be more precise, as shown in Ref. [33], using the same coefficients for
both incremental laws can lead to significant differences in the case of large strain. However, under the conditions
of small strain—which will be the hypothesis adopted in the remaining of this paper—the use of identical material
coefficients yields practically the same results for both formulations.

3. Application to planar beams

In this section, the equations governing the dynamic equilibrium of a planar Euler–Bernouli beam are
derived from a total Lagrangian formulation. Based on a Von Karman approximation, small prestrain,
moderate prerotation and large predisplacement are assumed. This kind of model is one of the simplest
geometrically nonlinear models but its degree of nonlinearity will be high enough given our interest in
moderate prestress states in this paper. A FE method is chosen to solve the equations. The updated
Lagrangian formulation is also considered by approximating the predeformed geometry as a composition of
straight beam segments.

3.1. Basic assumptions and total configuration equilibrium

The beam axis, denoted x, is not necessarily a neutral axis. The axis corresponding to the direction of
transverse displacements is denoted z, as shown in Fig. 1. For a Euler–Bernouli beam, the kinematical
hypotheses are

~uðx; zÞ ¼ ~Uðx; zÞex þ ~W ðx; zÞez with
~Uðx; zÞ ¼ ~uðxÞ � z ~w;xðxÞ;

~W ðx; zÞ ¼ ~wðxÞ:

(
(5)
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The total axial displacement on the reference axis, ~u, and the transverse displacement, ~w, only depend upon
x. In the remainder of this paper, x derivatives will be denoted by (.),x. The kinematical assumption (5) implies
that ~Exz ¼ 0 (no shear strains). Besides, the assumption of plane stress yields

~Syy ¼ ~Szz ¼ ~Sxy ¼ ~Syz ¼ 0. (6)

Assuming a linearly elastic isotropic material, we have

~Sxx ¼ Eð ~Exx � ay0Þ, (7)

E and a are, respectively, the Young’s modulus and the coefficient of thermal expansion. Then, under the
assumption of small strain and large displacement, the terms ~U

2

;x and ~U ;xUi;x are commonly regarded as
higher-order effects, and thus neglected in Eq. (3) to finally give the following Von Karman axial strain:

~Exx ¼ ð ~u� z ~w;xÞ;x þ
1
2
~w2
;x þ wi;x ~w;x. (8)

Now, it can be shown that the application of Hamilton’s principle of Section 2.1 yields the equilibrium equations:

~N ;x þ
~̄tx ¼ rm

€~u� rmf
€~w;x;

~Q;x þ ðð ~w;x þ wi;xÞ ~NÞ;x þ
~̄tz ¼ rm

€~w

8<: (9)

with the following natural or essential boundary conditions at x ¼ 0, L:

~N ¼
R

A
~̄TxdA or ~u ¼ ~̄u;

~Qþ ð ~w;x þ wi;xÞ ~N ¼
R

A
~̄TzdA or ~w ¼ ~̄w

~M ¼
R

A
z ~̄TxdA or � ~w;x ¼

~̄b

8>>><>>>: at x ¼ 0;L, (10)

~N, ~M, and ~Q, respectively, denote the axial force, the moment and the transverse force resultants, given by

~N ¼
R

A
~SxxdA ¼ Hm ~u;x þ 1

2
~w2
;x þ ~w;xwi;x

� �
�Hmf ~w;xx �NT ;

~M ¼
R

A
z ~SxxdA ¼ Hmf ~u;x þ 1

2
~w2
;x þ ~w;xwi;x

� �
�Hf ~w;xx �MT ;

~Q ¼ ~M ;x þ ~̄m� rmf
€~uþ rf

€~w;x:

8>>>><>>>>: (11)

The following notations have been used:

ðHm;Hmf ;Hf Þ ¼

Z
A

Eð1; z; z2ÞdA; ðrm;rmf ;rf Þ ¼

Z
A

rref ð1; z; z
2ÞdA; ðNT ;MT Þ ¼

Z
A

Eay0ð1; zÞdA,

~̄tx ¼

Z
A

rref ~f x dAþ

Z
qA

~̄Tx ds; ~̄tz ¼

Z
A

rref ~f z dAþ

Z
qA

~̄Tz ds; ~̄m ¼

Z
A

rref ~f xzdAþ

Z
qA

~̄Txzds.

ð12Þ

A denotes the cross-sectional area in the reference configuration, and qA is its contour. The prestressed state
verifies Eqs. (9)–(12) for the static case.

3.2. Prestressed dynamics (total Lagrangian formulation)

From Section 2.2, the total displacement components are decomposed as ~u ¼ u0 þ u and ~w ¼ w0 þ w. The
expression of Table 1 for the total Lagrangian incremental strain yields the linearized incremental
Green–Lagrange axial strain, which writes after neglecting terms U0,xU,x and Ui,xU,x, of higher-order effects:

exx ¼ ðu� zw;xÞ;x þ w0;xw;x. (13)

It can be verified that the above expression can also be obtained from a direct linearization of Eq. (8).
Now, we have

e : r ¼ exxsxx ¼ EðexxÞ
2; trðrur0ru

TÞ ¼ ux;xs0xx
ux;x þ w;xs0xx

w;x. (14)
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The first term of the right member of the second equality also involves terms of higher order effects and can
be neglected (physically, this means that the effect of axial prestress is supposed negligible on the
superimposed axial displacement). Using Eqs. (13) and (14) in (4), the following expressions of energies are
finally obtained:

T ¼ 1
2

R L

0 rmð _u
2 þ _w2Þdxþ 1

2

R L

0 rf _w
2
;x dx�

R L

0
_urmf _w;x dx;

V ext ¼ �
R L

0 ut̄x dx�
R L

0 wt̄z dxþ
R L

0 w;xm̄dx� u
R

A
T̄x dAþ w

R
A

T̄z dA� w;x

R
A

zT̄x dA
� �L

0
;

V ¼ 1
2

R L

0 Hmu2
;x dxþ 1

2

R L

0 Hf w2
;xx dx�

R L

0 u;xHmf w;xx dxþ 1
2

R L

0 N0w
2
;x dx;

þ
R L

0
u;xHmðw0;x þ wi;xÞw;x dx�

R L

0
w;xHmf ðw0;x þ wi;xÞw;xx dxþ 1

2

R L

0
Hmðw0;x þ wi;xÞ

2w2
;xdx:

8>>>>>><>>>>>>:
(15)

The application of Hamilton’s principle gives the equilibrium equations for prestressed dynamics. These
equations are not shown here for conciseness, but it can be verified that they exactly correspond to a direct
linearization of Eqs. (9)–(12).

The incremental strain energy V is dependent on two prestress variables: the ‘‘classical’’ axial preload N0,
and the predisplacement derivative w0,x+wi,x. Hence for dynamics, the predisplacement due to prebending is
summed with that due to initial imperfections. The above expression of V shows that the presence of
predisplacement induces some coupling between the axial and transverse superimposed displacements, and
that its effect will be completely characterised by the product (w0,x+wi,x)w,x. This means that how a given
mode will be affected by predisplacement will depend on how its own shape will be related to the shape of the
predeformed geometry.

3.3. Numerical method

3.3.1. FE interpolation

The above equations are solved using a FE method. In a conventional manner, a linear interpolation is
chosen for the axial displacement u as well as the geometry. Hermitian interpolation functions are used for
approximating the transverse displacement w. Then, on a reference element, u and w are discretized as follows:

u ¼ Ne
uu

e; w ¼ Ne
ww

e (16)

with

Ne
u ¼

1� x
2

1þ x
2

� �
; ueT ¼ ue

1 ue
2

D E
; weT ¼ we

1 �we
1;x we

2 �we
2;x

D E
,

Ne
w ¼

1

4
ð1� xÞ2ð2þ xÞ �

Le

8
ð1� x2Þð1� xÞ

1

4
ð1þ xÞ2ð2� xÞ �

Le

8
ð�1þ x2Þð1þ xÞ

� �
. ð17Þ

x is the reference coordinate varying from �1 to +1. The subscripts i (i ¼ 1, 2) denote the local node
number. Le is the element length. Elements have three degrees of freedom per node associated to u, w, �w,x.
Obviously, the same choice of interpolating functions is made in the prestressed state analysis, for u0 and w0.

3.3.2. Prestressed state computation

The prestressed state is obtained by solving the static nonlinear system (9), denoted as K0U0 ¼ F0 after FE
discretization. K0 ¼ K0(U0) is dependent on U0. However, this system may be efficiently solved with an
iterative algorithm of Newton–Raphson type [38,39], by computing successive incremental displacement given
by: R(U0+dU) ¼ 0 where R ¼ F0�K0U0 is the residue. A first-order Taylor expansion of R leads to the
following system:

K
j�1
T dU ¼ Rj�1, (18)

where KT is the tangential stiffness matrix, defined by KT ¼ qðK0U0Þ=qU0 ¼ K0 þ qK0=qU0. The superscript

j�1 denotes the step number in the iterative process and indicates that K
j�1
T and Rj�1 are calculated from the

solution U
j�1
0 of the previous step. The next step j is given by U

j
0 ¼ U

j�1
0 þ dU.
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3.3.3. Dynamics

After discretizing expressions (15) and assembling, the application of Hamilton’s principle yields the
algebraic system:

M €Uþ KU ¼ F, (19)

where K and M are symmetric matrices. U is the vector of unknown degrees of freedom. F is the vector of
external loads. In this paper, we will focus on eigenmodes, given by ðK� o2MÞU ¼ 0.

For clarity, K is dependent on N0 and w0+wi and may be decomposed as KðN0;w0þ

wiÞ ¼ Klin þ KsðN0Þ þ KLðw0 þ wiÞ, defined as follows:

1

2

Z L

0

Hmu2
;x dxþ

1

2

Z L

0

Hf w2
;xx dx�

Z L

0

u;xHmf w;xx dx ¼
1

2
UTKlinU;

1

2

Z L

0

N0w2
;x dx ¼

1

2
UTKsU,Z L

0

u;xHmðw0;x þ wi;xÞw;x dx�

Z L

0

w;xHmf ðw0;x þ wi;xÞw;xx dxþ
1

2

Z L

0

Hmðw0;x þ wi;xÞ
2w2

;x dx ¼
1

2
UTKLU. ð20Þ

Klin represents the small displacement stiffness matrix, usual in linear analysis. Ks is the geometric stiffness
matrix, dependent on the axial prestress level. KL is a matrix due to the presence of predisplacement. The
whole matrix Kmay be not definite positive when buckling occurs but as stated earlier, we are interested in low
prestressed states far from the buckling stage.

In fact, the above matrix K may be directly obtained from the prestressed state computation because it
exactly corresponds to the tangential stiffness matrix, previously defined. The procedure described in Section

3.3.2 is strictly equivalent to a linearization process around the step j�1, which means that K
j�1
T is constructed

in the same way as K : Kj�1
T ¼ Klin þ KsðN

j�1
0 Þ þ KLðw

j�1
0 þ wiÞ. In other terms, the stiffness matrix K involved

in (19) is equal to the tangential stiffness matrix K
j
T of the final step j, when convergence is reached: K ¼ K

j
T .

3.4. Note upon the updated Lagrangian formulation

In the presence of prebending, deriving the equilibrium equations from an updated Lagrangian formulation
would require the theory of curved beams. For the sake of simplicity in this paper, the predeformed beam will
be considered as a composition of straight beam elements (a proof of convergence when the number of
elements tends to infinity can be found for the static case in Ref. [33]). Because we are interested in small
prestrain states far from buckling situations, it is expected that relatively few elements will be required for a
good convergence.

Let a straight beam element have a local axis x. This element is oriented in the global plane denoted (X,Z).
The local elementary degrees of freedom Ue are related to the global ones through the transformation matrix
Te defined by

Ue ¼ TeUe
g; Te ¼

q 0

0 q

" #
; q ¼

cos j sin j 0

� sin j cos j 0

0 0 �1

264
375; j ¼ dX0x. (21)

No predisplacement terms appear in the updated Lagrangian formulation (see Table 1) because the
predeformation is implicitly taken into account through the geometry meshed in its prestressed state. Hence,
what has been presented in Section 3.3.3 can easily be extended to obtain the updated formulation, whose
elementary matrices are now given by

Me
g ¼ TeTMeTe; Ke

g ¼ TeT ðKe
lin þ Ke

sÞT
e; Fe

g ¼ TeTFe, (22)

whereMe;Ke
lin;K

e
s; andF

e have already been defined. The matrix Ke
L, due to the presence of predisplacement in

the total Lagrangian formulation, must not be taken into account in the updated stiffness matrix. The
geometric stiffness matrix Ke

s remains because it corresponds to the effect of axial prestress, as shown in
Eqs. (4). In the updated matrices defined by Eqs. (22), we have assumed that the changes in cross-section and
density between the reference state and the predeformed state were negligible (dA0 ’ dA and r0 ’ rref ), which
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is an acceptable approximation due to the small strain hypothesis. After assembling, the system to be solved is
finally Mg

€Ug þ KgUg ¼ Fg.
The updated Lagrangian formulation might yield some better convergence properties for general nonlinear

analyses [33], may be computationally more effective [40] and simpler to implement in a FE code [34] because
the terms in u0+ui do not appear any more (the predeformation being implicitly included through the
consideration of the predeformed geometry). Nevertheless in the present study, we are not interested in solving
highly nonlinear problems and one advantage of the total Lagrangian formulation may be that the
predeformation effects appear explicitly through terms in u0+ui, which leads to somewhat more physical
insight.
4. A numerical example

A simple but illustrative example of a beam subjected to some significant thermal prebending is given. One
considers a straight beam with neutral axis x (Hmf ¼ rmf ¼ 0) and constant properties Hm, Hf, rm, and rf

along x. It is assumed that no initial imperfections are present (wi ¼ 0). The horizontal beam is simply
supported at both extremities: the transverse displacement and the moment are equal to zero at x ¼ 0 and L,
as well as the axial displacement.

The static preload considered is a vertical thermal gradient along the beam thickness such that NT ¼ 0 and
MT 6¼0, i.e. the thermal force and the thermal moment defined by Eqs. (12) are, respectively, zero and non-
zero. For instance, such a case occurs with a temperature varying linearly from +y0/2 at the top (z ¼+h/2) to
�y0/2 at the bottom face (z ¼ �h/2) (E and a being constant). From Eqs. (9) to (11), it can be seen that this
choice of thermal load should mainly produce prebending because the axial prestress only results from the
nonlinear coupling between the axial and transverse predisplacements.

The beam has been discretized with 100 elements in order to ensure convergence (though less is needed). The
numerical procedure is as follows. First, the static prestressed state is computed from the nonlinear model
presented in Section 3.1 using the method in Section 3.3.2. Second, the eigenproblem of Section 3.3.3 is solved
based on the computed prestressed state.

x and ~w are, respectively, non-dimensionalized with respect to L and r, where r is the radius of gyration
defined by r2 ¼ Hf

�
Hm. The resulting non-dimensional parameters of the problem can then be given by

maxðw0Þ=r;N0L2=Hf ;MT L2=rHf . In this particular example, the beam predeflection greatly looks like a shape
of sin px/L type (max(w0)/r is thus given by the predeflection at center) so that an approximate solution found
by Kim et al. [16] may hold for the nth eigenfrequency:

f n

f ref

	 
2

’ 1þ
1

n2p2
N0L2

Hf

þ
1

2

w0jL=2

r

	 
2

dn1, (23)

where fref denotes the nth eigenfrequency without preload (MT ¼ 0) and d is the Kronecker symbol.
Fig. 2 shows the non-dimensional axial prestress and vertical predisplacement at center versus the thermal

moment parameter MTL2/rHf ranging from 0 to 6. The displacement remains less than 70% of the radius of
gyration, which is small compared to the length L (less than 0.5%). This prestressed state is rather badly
approximated by a linear state of small strain and small displacement (dashed line in Fig. 2). Although the
difference in w0 is rather small between the linear and nonlinear theories (difference due to a stiffening effect,
well-known in nonlinear mechanics), the nonlinear axial prestress N0 is not negligible for prestressed
dynamics, as shown further. Note that if a linear theory is used, there is strictly no axial prestress.

Fig. 3 plots the change in the first eigenfrequency versus MTL2/rHf. The eigenfrequency based on the
complete nonlinear prestressed state (including N0 and w0) is compared with the same state but with w0 ¼ 0,
arbitrarily neglected, in order to demonstrate the effect of prebending. It can be observed that the presence of
prebending has a stiffening effect, significantly increasing the first eigenfrequency (+10% for MTL2/rHf ¼ 6).

The eigenfrequencies based on a linear prestressed state (N0 ¼ 0 in this example), also shown in Fig. 3, may
lead to noticeable errors (2%). In the worst situation, the prestressed state would be computed with a linear
theory (giving N0 ¼ 0 here) and the eigenfrequencies would be computed without prebending, so that no
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change in eigenfrequencies could numerically be observed in that example. In that case, the error incurred on
the first frequency would reach 16%.

The curve obtained with the updated formulation presented in Section 3.4 is also plotted on Fig. 3 (based on
the complete nonlinear prestressed state). The meshed geometry corresponds now to the predeformed beam.
Results exhibit a perfect agreement with the total Lagrangian formulation, which validates the prebending
effects observed above. Besides, these results are in good agreement with the analytical results obtained from
Eq. (23) (dashed–dot line in Fig. 3).
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The eigenfrequencies of modes 2 and 3 are given in Fig. 4. Neglecting nonlinearities of the prestressed state
still leads to errors, smaller as the order of modes increases (1.5% and 0.7% for modes 2 and 3, respectively).
However, prebending effects upon these modes are quite negligible. This insensitiveness to predisplacement is
confirmed by the analytical formula (23) and was also observed in Refs. [18,19] when investigating the natural
frequencies of simply supported buckled beams.

It must be outlined that modal shapes are not shown here for conciseness because they are standard for a
simply supported beam (of sin npx/L type) and negligibly affected by prestress and prebending (at least, for
the loading range considered here).

5. Experimental validation

In this section, a laboratory test-case for the study of flexural modes of a clamped planar beam thermally
prestressed is presented. In a previous work [41], the experimental setup was satisfactorily tested on an axially
prestressed straight beam, but with negligible predisplacement effects on modes. In this paper, a beam sensitive
to the effect of prebending is considered. Experimental and FE eigenfrequencies are compared.

5.1. Experimental setup

The experimental device is depicted in Fig. 5. A vertical test beam is clamped at both ends on a workbench
made of four vertical thick columns and two horizontal decks. This workbench is made of steel, whereas the
beam is made of aluminum. The whole apparatus is set inside a climatic chamber with controlled ambient
temperature.

Because steel and aluminum do not have the same coefficient of thermal expansion (1.17e�5 and
2.30e�5K�1, respectively), a temperature change will naturally induce a significant axial prestress inside the
beam. Because no external axial body force neither axial surface traction are present during the experiments
(gravity effects are shown to be negligible), this quasi-static prestress N0 is constant along the beam—see
Eq. (9)—even though a temperature gradient might exist along the beam.

One considers a beam of length L ¼ 1m and 0.03m depth (the length L is given without the additional ends,
5 cm each, used for clamping). As sketched in Fig. 5, the beam profile is circular on one face (straight on the
other), so that no straight neutral axis exists (Hmf 6¼0 and rmf 6¼0). The thickness varies from 0.03m at
extremities to 0.01m at center. The cross-section is rectangular. The material properties are E ¼ 7.24e+10Pa,
r ¼ 2790 kgm�3, a ¼ 2.30e�5K�1 (aluminum 2017).
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Table 2

Experimental and numerical free–free eigenfrequencies

Mode Free–free Clamped–free

Exp. Num. Exp. Num. Num. C ¼ 3e5

1 40.3 39.9 (1.0%) 9.4 9.3 (1.1%) 9.3 (1.1%)

2 152.2 150.9 (0.9%) 72.1 73.1 (1.4%) 72.3 (0.3%)

3 341.3 342.3 (0.3%) 208.4 213.0 (2.2%) 209.2 (0.4%)

Clamped–free eigenfrequencies: experimental, numerical with a perfect clamping, and numerical with an adjusted torsional spring

(C ¼ 3e5Nm).
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Those characteristics have been experimentally checked with some static bending tests (not shown for
conciseness) and by comparing FE and experimental free–free eigenfrequencies, given in Table 2. The
clamped–free frequencies have also been studied in order to characterise the experimental clamped boundary
condition, imperfectly obtained with tightening jaws. This explains some slight differences between the
experimental and numerical clamped–free eigenfrequencies (see Table 2). A torsional spring may be used in the
model to approximate the real boundary condition as M ¼ C(w,x). A good match is found with a value of
C ¼ 3e5Nm.

As depicted in Fig. 5, the test beam has been instrumented with one accelerometer, located at a node of the
fourth flexural eigenmode in order to avoid nodes of modes 1–3. A pair of aluminum strain gages with thermal
compensation has also been bonded to the beam center. Under the assumption of small strain, those
gages provide a measure of the compensate strains �� ¼ E�0xx � a�y�0 at the upper (+) and lower (�) sides.
Some temperature sensors have helped checking that gage measurements were closely related to thermal
variations.

It must be outlined that for the experiment, the uniformity of temperature on the cross-section of the beam
can be assumed. In thermal engineering, the validity of this assumption may be evaluated by a Biot number
less than 0.1: Bi ¼ he/ko0.1 (h: heat exchange coefficient, e: beam thickness, k: thermal conductivity—
k ¼ 134Wm�1K�1). Though h is not known in the experiment, its value should be greater than
450Wm�2K�1 (with e ¼ emax ¼ 0.03m) in order to have Bi40.1, which exceeds with no doubt the actual
value of h, given the weak convection inside the climatic chamber.
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Then, under the assumption that the product ay0 is constant on the cross-section, it can be shown that the
curvature and the axial prestress are, respectively, obtained from the difference and the half-sum of strains:

w0;xx ¼
�� � �þ

e
; N0 ¼ Hm

�þ þ ��

2
, (24)

where e is the beam thickness at the measuring point. N0 can thus be experimentally obtained without
requiring any temperature sensor. Besides, only one measure at a given point is necessary, because it remains
axially constant as stated earlier.

Tests are carried out inside the climatic chamber, first by stabilising the ambient temperature for 3 h, and
then by heating for 27 h with a slope of +1 1C per hour. The beam is acoustically excited by a loudspeaker
with a white noise input. Strain and temperature measurements are saved every one second. Acceleration
measurements are automatically triggered every 30min, for 250 s with a 1280Hz sampling frequency, which is
sufficient for the analysis of modes 1–3 (the eigenfrequency of the third mode is below 500Hz).

Some experimental results are given in Fig. 6. They clearly show that the first eigenfrequency decreases as
the average temperature increases versus time, whereas the axial prestress and the curvature decrease (note
that the prestress is taken negative when compressive).

5.2. Results

5.2.1. Prestressed state

The knowledge of N0 and w0(x)+wi(x) is a crucial step. First, the initial imperfections wi(x) must be
measured. This has been done with an optical displacement sensor. The measured profile is depicted in Fig. 7.
The initial imperfection between both ends is about 5.5mm. Measurements have been fitted with a polynomial
(of degree 3), as shown in Fig. 7, and then derived and interpolated on each node.

The computation of the prestressed state would a priori require the knowledge of the complete temperature
field inside the beam, which is a problem beyond the scope of this paper. However, in the test-case considered,
there is no prebending load (i.e. no load for the equilibrium equation governing the transverse displacement).
In particular, the thermal moment MT is zero because the temperature is cross-sectionally constant as stated
earlier. This means that the knowledge of N0 is sufficient to determine the whole predeformed state, because
the problem can be understood as a beam subjected to an axial preload enforced as a boundary condition at
one extremity (x ¼ L for instance).

Realistic boundary conditions should take into account the fact that (i) the clamped boundary condition is
not perfect, (ii) tightening jaws are not perfectly perpendicular to the beam and make some angles with respect
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F. Treyssède / Journal of Sound and Vibration 307 (2007) 295–311 307
to the beam axis, denoted b̄1 and b̄2 at x ¼ 0 and L, respectively, and (iii) an additional displacement w̄ may be
induced because of an alignment defect of the jaws. Finally, some adequate boundary conditions used for the
prestressed state computation may be given by

u0 ¼ w0 ¼ 0 and M0 ¼ �Cð�w0;x � wi;x � b̄1Þ at x ¼ 0;

N0 ¼ N̄ ;w0 ¼ w̄ and M0 ¼ �Cð�w0;x � wi;x � b̄2Þ at x ¼ L:

(
(25)

N̄ is the axial prestress measurement obtained from strain gages. w̄ is set to zero because the jaws position has
been carefully adjusted to the imperfect beam in the experiment. C is the torsional stiffness already defined
above. It should be noted that numerical tests have shown that a value of C ¼ 3e5Nm produces a negligible
change of the prestressed state compared to a perfect clamping (C-N), but has been kept for a certain
consistency with dynamics.

Now, the determination of b̄1 and b̄2 requires the measurement of the predeformed beam in its
clamped–clamped configuration. This has been realised with the displacement sensor for two thermal states:
one at the beginning, for N0 ¼ �0.40 kN and w0,xx(L/2) ¼+2.81e�2m�1, and another nearly at the end of
the test for N0 ¼ �7.66 kN and w0,xx(L/2) ¼ �2.82e�2m

�1. The predeformed profiles are given in Fig. 8.

Values of b̄1 ¼ �0:5e� 3 rad and b̄1 ¼ �1:5e� 3 rad were shown to give a good agreement of the FE model
with the experimental data, as shown in Fig. 8. This agreement is further confirmed by Fig. 8, which also
provides a comparison of the evolutions of experimental and FE curvatures at center throughout the test
(evolutions being given with respect to the axial prestress instead of time).
5.2.2. Eigenfrequencies

In this test-case, the sensitivity of modal shapes with the prestressed states in the FE model was found to be
quite negligible. Hence, we will exclusively focus on eigenfrequencies. For the computations, the following
boundary conditions are applied:

u ¼ w ¼ 0 and M ¼ �Cð�w;xÞ at x ¼ 0;L. (26)

Some numerical tests have been realised in order to verify the influence of the torsional spring. Those tests
demonstrate that there is no difference, with (C ¼ 3e5Nm) or without (C-N) spring, in the relative change
Df/fref discussed later. The only effect of the spring in FE computations is a constant offset from the no spring
case. This offset just enables a better match of numerical frequencies with the experiment, as already shown in
Table 2.

Fig. 9 depicts the change in the first eigenfrequency with the axial prestress during the test. In the
experiment, a decrease from 127.5 to 119.5Hz is observed. The comparison between experimental and
numerical results clearly demonstrates the stiffening influence of prebending: if only the axial prestress is
considered in the computation of this eigenfrequency, a significant difference with experiment is found. If
prebending is correctly included, the agreement becomes quite good. The relative change in frequency with
respect to the reference frequency (corresponding to the beginning of the test) decreases to 6% at the end of
the experiment, which is also found with the FE model based on a complete prestressed state. Without
prebending, the numerical results give an erroneous change of about �11%.
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The evolutions of eigenfrequencies of modes 2 and 3 are given in Fig. 10. The mode 2 (resp. 3) varies from
264.7Hz (resp. 467.8Hz) to 245.0Hz (resp. 445.3Hz), yielding a relative change of 7.3% (4.8%) at the end of
the experiment. Even if prebending is neglected in the FE model, there is still a good agreement of numerical
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results with the experimental relative change Df/fref. This indicates that those modes are not very sensitive to
prebending. A slight deviation can yet be observed for the eigenfrequency of mode 2 without prebending. For
mode 3, the FE eigenfrequencies exhibit a small offset, less than 1%, due to the approximation of the
boundary condition. But as far as the relative change is concerned, the agreement between the experiment and
the model is satisfactory.

For the thermal loads considered in this experiment, the influence of predisplacement is thus only significant
for the first mode. This is explained by the fact the sensitiveness to predisplacement of a given eigenfrequency
depends on how its associated mode shape compares to the predeflection shape, combined with a stronger
prestressing effect for lower eigenfrequencies. This phenomenon is coherent with results already observed,
numerically or computationally, for vibrating buckled beams [16–19].

6. Conclusions

In the context of damage detection and structural health monitoring with thermal compensation, very small
changes in modal parameters are sufficient to mask the presence of a disorder (or, inversely, to make a false
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detection). This motivates the need of accurate models for prestressed dynamics. Based on a general theory,
this paper proposes a numerical procedure that seems to be satisfying for beams. In the approach developed,
the initial imperfections, prebending and geometrical nonlinearities of the prestressed state must all be
included in the analysis, because they are shown to have a non-negligible impact upon eigenfrequencies. Those
requirements are also likely to apply in the general framework of prestressed dynamics, concerning more
complex structures such as frames or plates. This paper gives a background for further studies dealing with
such structures.

From the numerical and experimental results above, when the beam predeformation is neglected, the axial
prestress has a stronger shifting effect for lower eigenfrequencies. Nevertheless, this statement might not be
true anymore in the presence of significant predisplacement, which tends to modify the shifting effects of axial
prestress upon some isolated modes (the first one in the cases presented) due to a stiffening effect. In practice,
neglecting predeflection and initial imperfections in eigenfrequency computations may lead to errors of several
percents, even when the predisplacement remains relatively small compared to the beam length (always less
than 0.5% in the examples of this paper).
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