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Abstract

The radial vibration of a multilayered piezoelectric/magnetostrictive composite hollow sphere is investigated. In terms of
the Gaussian equations, two unknown time functions are first introduced to complete the solution of electric displacement
and magnetic induction. The solution for mechanical field involving two unknown time functions is obtained by means of
the superposition method, the state space method as well as the separation of variables method. By means of the electric
and magnetic boundary conditions and continuity conditions, two Volterra integral equations of the second kind with
respect to two time functions are derived. The interpolation method is employed to solve the Volterra integral equations.
The present solution is suitable for analyzing the transient responses of composite hollow sphere composed of piezoelectric
and magnetostrictive layers with arbitrary composite sequence. Numerical results are presented and discussed.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

By inspecting, examining and analyzing the transient responses of the practical structures, the structural
dynamic behaviors can be acquired more deeply and thoroughly. The transient responses of hollow sphere
have long been an important topic in science and engineering. As an important dynamic parameter, the
natural frequencies of spheres have been studied extensively. The study for this subject is also known as
natural vibrations or free vibrations. Nelson [1] studied the natural vibrations of laminated orthotropic
spheres in 1973, and Heyliger and Wu [2] further investigated the free vibration of layered piezoelectric spheres
in 1999. Comparing to free vibrations, due to further involving the forced dynamic load and the initial
conditions, the investigation for transient responses become more complicated. At the current stage, most
achievements in analytical solutions are obtained only for one-dimensional problem.

For purely elastic materials, the transient responses for homogeneous hollow spheres have been investigated
extensively [3-8]. The spherically symmetric transient responses for multilayered hollow spheres have also
been studied in Refs. [9,10].
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For purely piezoelectric materials, the transient responses of homogeneous and multilayered piezoelectric hollow
spheres under radial deformation have been investigated by Ding et al. [11] and Wang et al. [12], respectively.

Recently, the investigation for magneto-electro-elastic problem has been an increasing interested subject.
The composites composed of piezoelectric and magnetostrictive layers will exhibit magnetoelectric coupling
effect which is not present in each single-phase piezoelectric or magnetostrictive materials [13] and are
predicted to have important applications in various devices [14]. The static analysis and the free vibration of
magneto-electro-elastic rectangular plates have been carried out extensively [15-19]. The static analysis and
the free vibration of magneto-electro-elastic cylinder have also been studied by Wang and Zhong [20] and
Buchanan [21]. Wang and Zhong [22] also obtained the general solution of magneto-electro-elastic hollow
sphere for static problem. For elastodynamic problem, Hou and Leung [23] studied the transient responses of
single-layer magneto-electric-elastic hollow cylinder.

In this paper, the transient responses of multilayered magneto-electro-elastic hollow sphere composed of

piezoelectric and magnetostrictive layers are investigated. The solution approach is performed directly in time
domain.

2. Basic equations and their non-dimensional forms

Consider a composite hollow sphere composed of n layers. Suppose the inner and outer radii are,
respectively, ro = a and r, = b. The radius of the interface from inner to outer is denoted r;(i = 1,2,...,n — 1).
In the theoretical analysis, at internal and external surfaces, respectively, we consider the hollow sphere is
subjected to dynamic radial stresses P,(¢) and P(?) as well as time dependent electric potentials @,(¢) and @,(¢)
and magnetic potentials ¥,(¢) and V(7). The model is shown in Fig. 1.

In the spherical coordinate system (r, 0, ¢), for radial vibration problem of the hollow sphere, the nonzero
components of displacement, electric and magnetic potentials in the ith layer (r;,_; < r < r;) are u® = u?(r, 1),
@D = @O(r, 1) and PO = PYO(r, 1). If each layer characterizes material spherical isotropy and is polarized in
radial direction, then the constitutive relations of the ith layer are written as [24]

0) NS
) U0 (o Ouy’ o 0
0910—‘7(1) (‘7 } l _‘|' ¢l or I or 01 or ’

o — 260 ¥ w00 o0o? qu)aq’('
13 r €33 or €33 a 33 or
(oo’ 900" ;3vY
37, BT 9B
(oo 0@ o 0P? )
P I8y 3 or

)
u,
D) = 2¢5) - +¢

()
B =245 "+¢
r

layer 1
layer 2
‘p) ’ '{/b
layern _ y
_

S <
interface 1—

interface 2 — %

interface n-1-

Fig. 1. Model of multilayered hollow sphere.
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where a(’)(] =r0,0), D,(’) and B’) are the components of stresses, electric displacement and magnetic
1nduct10n c/(,',{, eg'/), q({}, 932,4]% dnd m(;; are respectively, the elastic, piezoelectric, piezomagnetic, dielectr.ic,
electromagnetic and magnetic constants of the ith layer. In the absence of body force, electric charge density

and electric current density, the equations of motion of the ith layer are expressed as

¢ g — agg o 0 ul

or +2 r o’

10,0

2 0r [ ZD( )] 0,

10

53, 7B =0, )

where p is the mass density of the ith layer. The boundary conditions are expressed as

'\ a,t) = P(t), (b, t) = Py(2), (3)
V(a, 1) = d,(1), PV(at)= V1), “4)
Db, 1) = Dy(1), P(b, 1) = V(1) Q)

For perfectly bonded interfaces, the continuity conditions are written as

u)(~i+1)(ri, t) = uii)(”is t)! (1+1)(V,, t) = O-(l)(riy t) (l: 1’2,"'911_ 1)’ (6)
DUV, ) = DO(riy 1), BV, 0) = By, t) (i=1,2,...,n—1). (7)
(1) = 00, PV, =000 (=1,2,...,n—1). (8)

For dynamic problem, the initial conditions (¢ = 0) should be completed as
0,0 = UP), ir,0 =) (=12....n), ©)

where Ug)(r) and Vg)(r) are known functions of the radial coordinate r and a dot over a quantity denotes its
partial derivative with respect to time f.
For the sake of simplicity, the following non-dimensional variables and quantities are introduced as

. (i) Qj i) . p r i
o _ 4 () _ () _ _ i
uh =1 =—, =-, =— ([@=0,1,...,n),
b ¢ ¥, ¢ b b ( )
i (l) o) i
o =7 5? Jg‘) _ Oy O.(i) Top D(z _ Dﬁlr) B — Bﬁ?
ro *) H - (%) ° (*) 5 > o >
€33 €33 €33 Do By
(0] (0] V4 V4 Cy
(nba_iua (rbb_ib? Ta:J’ q’b:la :ia
@, @, 7, 7, b
i (i)
o _ Uy W = Vo b= P, ’, _ P
A Y DT o o
b Co C33 C33
(D)
o _ ‘n 0] ‘2 o A G _ %3
1P = "Gy ‘2P~ " BPT G 3T (4
33 C33
0 _ &3 () _ M33 0 _933 =i p?
P T T B TG0 Pk



H.M. Wang, H.J. Ding | Journal of Sound and Vibration 307 (2007) 330-348

0 @) () @)
MG o % o _d1 0 _9
1 — b 3 - - >

Dy " T By BT B

Dy
e S o A

dy=b cg?/sg?, Yo=">b c(;;)/m(;;), €y =\ /c(;;)/p(*).

() () (%)

333

(10)

In Eq. (10), the material constants ¢35, &35, M35, p®™ and the outer radius b are selected to normalize the
variables and quantities. It should be noted that for both piezoelectric and magnetostrictive materials, the
selected constants are not equal to zero. That is to say, the superscript “*”’ can be an arbitrary number

between 1 and . It should also be noted here that in the non-dimensional radial coordinates £;(i =0, 1, ...

1),

especially, we have &, = a/b and &, = 1. For the sake of convenience to understand by the readers, instead of
1, &, is still reserved in all following equations. By virtue of Eq. (10), Egs. (1) and (2) can be rewritten as

The boundary conditions Egs. (3)(5) and the continuity conditions Egs. (6)—(8) are rewritten as

u(H—l)(éi’ T) = u(i)(éi9 T),

VLT = dP(E 1),
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The initial conditions Eq. (9) are rewritten as

In Eq. (19) and, hereafter, a dot over a quantity denotes its partial derivative with respect to

dimensional time 7.
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3. Solution for mechanical field
3.1. The superposition method

The solutions of electric displacement and magnetic induction can be obtained from the last two of
Eq. (12) as

DO ) =0, B =0 (=1.2....n), (20)
where n®(t) and y(r) are unknown functions of time. With the aid of Eq. (17), we have
@) =) = ... = n"() = (), )
@) =P =... = ") = 1.
By means of Egs. (20) and (21), the last two of Eq. (11) can be rewritten as
o wu? oo an@ e )
¢ = 2An? A12¥ A13?+A14?’
@ (D) - Ou® . N
W g0 4007 01 0 (22)

(i)
+ A% 2 + A3y

65 21 é 22@ 62 .

where
AD = @ — g0 / 0, AD = (Dm — ¢Pg?) / .
A = )~ 00 O A = 0 D) f e
AR =—m [0, A=A =g [, A=) /O,
ch — S(Si)m(;) _ ggi)ggi). 23)
Substituting Eq. (22) into the first two of Eq. (11), we derive

) =2 = (@lp + i + 3V + (o) + gip(0),

‘ co U 4 24)
20 = 26 pu? + ¢33,V + e§pn(o) + gsp(a),
where
ciip = ciip + @ AN + A3,y = cop + (@741 + 45,
cip = 3p + (AN + A3,y = p + (€41 + ¢945)),
ey = (@A} + 4741, €5y = (AT + ¢ AT,
dip = (A5 + 4 A5). g5 = (453 + ¢ A5)). (252)
A . . , , ; 0
) =¢oy), Z0 =660, 50 =¢60, v= Sae (25b)
By employing the newly introduced symbols Eq. (25b), the first of Eq. (12) can be rewritten as
v 4 50 250 = 5020, (26)

By means of the new variable X,, mechanical boundary conditions Eq. (13) and the continuity conditions
Eq. (16) are rewritten as

Zl(~1)(£09 T) = gopu(f)a Zin)(fn,f) = énpb(r)ﬂ (27)

uC ) =uC0, ZNED =20 ) (=1,2,...,n—1). (28)
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The solution for mechanical field is carried out by the superposition method. The displacement and stresses
are divided into two parts as

u® = 44, 20 =304 30 50 =504 50 (29)

where 1), pAY) Zgg and u(’) ZE’;, Z(’) are named as the quasi-static and dynamic parts, respectively. The quasi-

rs?

static part satisfies the followmg equations:

(0(111)1) 120)”(” + Cm)v“(l) + e(l) ph(7) + q(l) x(2),

30
20 = 2yl 4 By + o)+ 4, o
vz 4 50 250 — o, (1)
Z(l)(f()a T) éopa(f)s Zg?)(éna t) = fnpb(r)a (32)
ugH_l)(éia T) = ufvi)(éia ‘C): Z£§+l)(éia T) = Z(r?(fn T) (l = 1: 29 e, — 1) (33)
Substituting Eq. (29) into Egs. (24), (26)—(28) and (19) and utilizing Eqs. (30)—(33) yields
2 = () + D) + vy, 2 =260 + v, (34)
Ve 4 50 250 = OS2 + i), (35)
)G =0, ZW(E.7) =0, (36)
g (G =u) G, 2D = 2T (=1,2,0,n=1), (37)
U (E0) = uy () —u(&0), @0 =) -0 (=12...n), (38)
3.2. Quasi-static part
The second of Eq. (30) can be rewritten as
Vuﬁi) = a(l? uf’) + a(’)Z(’) (’) () + a(') 4x(0), (39)
where
(1) (1) ()
afy =282 4y =, af} = (-j’)D . ay = (f)D : (40)
¢33p ¢33p €33p ¢33p
Substituting the first part of Eq. (30) into Eq. (31) and utilizing Eq. (39), we obtain
vz = a0y + 65D 4 4Dnr) + a0, (41)
where
() _ (i) (i) (l) (i) (i) _ (1)
ay; = 2(c ay), a 27 a -1,
21 11p T €12p + C13pdii 22 = “Ci3pdis @2)

) _ 2(6,(!) RUBPI) () 2((](') D49

ayy = Ci3p@3)s Oy = C13p%14)-

Eqgs. (39) and (41) can be rewritten in a matrix form as

VIXO(E, 0} = INOHXOE D) + (LOhn(r) + (HO}(2), 43)
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() (i)
4 a , a
(L0 ={ 08 AHD =4 (44)
a(') (l)
23 oy
The solution of Eq. (43) is

(X0, 1)) = [TUONAXE 1, 1)) + {GUOI(T) + {0V n(0)), (45)

where

A ud(&,7) ' PUBEO
X(l) . T = Si ’ N N(l) = 1.1 1? N
(XY} { =0, 1) [NY] 0 0

where

<
Cim1

) ¢ ) )
(0() = / T (HOYL, (46)
Ci—1

| W e |
[Tm(:)]:( ) . (GO@) = /5 CNTOO ML,

in which [T?V(&)] is a 2 x 2 matrix. {G?(¢)} and {Q”(¢)} are two 2 x 1 column matrices. By means of the
mechanical boundary conditions Eq. (32) and continuity conditions Eq. (33), (&, 7) can be finally obtained
in a form as

UD(E, 1) = 1Epa(0) + D Epy() + VM) + PO (), (47)

where (&) (i=1,2,3,4) are known functions of non-dimensional radial coordinate ¢. The detailed
procedure for the determination of u{)(, 1) is presented in Appendix A.

3.3. Dynamic solution

Substituting Eq. (34) into Eq. (35) and utilizing Eq. (47), we have

QCu) 204y @ a”d 0 dl’(f) 0 dpb(f)
+d T, i a i
652 f aé 52 d 2 f (é) f (é)
; T 0 d2y(z
49O | o)1 20). (48)
where
_— 2‘(1[1)0 + ‘(120 - ‘(120 o = ‘(321) (49)
:ul - C(,) s 1 p(l
33D
By means of separation of variables method, u(’)(i 7) can be assumed as
u)(E ) =¢'"? Z R (), (50)
m=1

where Q,,(7) is an undetermined function. RE,?(&) is a known function of £ which can be determined by in initial
parameter method [25]. And the following orthogonal property can be verified [26]:

n . éi . P
> / ERDEORD(E)AE = T, b
P inl

where 0,, 1s the Kronecker delta, and

S

(52)

n (z) (i) 2.0
I 22{ 2l R&’E@} SR R +p(”[éRf,’f(é)]2}

Simt
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In Eq. (52), p; = \/ @ + (%)2 (also see the first of Eq. (B.7) in Appendix B). w,,(m = 1,2,...,00) is a series of
the positive real roots of an eigenequation. For the convenience to the readers, the derivation for Rf,?(f) and
the eigenequation is shown in Appendix B.

Substituting Eq. (50) into Eq. (48) and utilizing Eq. (51), we obtain

2
Q

T 0200 = k(@) (m=1.2.....00). (53

where
Km(T) = LimPo(¥) + LomPp(1) + L3mii(T) + Lamj(7), (54)

| L T .
o 5(0) () (i) -
=737 /5 ORI (=1.23.4, (55)
The solution of Eq. (53) is
Q,,(0) . 1 /7 ,
Q,,(1) = 2,,(0) cos w,,T + sin w,;,T + o Km(0) sin w,,(t — OdL. (56)
m m J0

The substitution of Egs. (47) and (50) into Eq. (38) leads to

£ 3 RO = u(©) — FEpa(0) — 12(Ep(0) — FPEMO) — 1P(E)1(0),

m=1

% (57)
1 e g i YD (i) gy - )y 2y s i)y

£ 3 RNO0) = '@ = /(D0 =13 @ps(0) = 13(Di0) = /D)0

By the orthogonal property Eq. (52), the following equations can be derived from Eq. (57):
Qm(o) = Ilmpu(o) + I2mpb(0) + I3m’7(0) + 14111}{(0) + ISm: (58)

Qm(o) = Ilmﬁg(o) + 12111p[;(0) + 131117;](0) + 14171)'((0) + I6mo
where
1 I G A . 1 I~ . [C A .

Isy=—3Y p® UDERD(EE,  Tom = — -<,>/ 320 ERD(E)dE. 59
w= g 30 [ OPORNE T =30 [ RN (59

Noticing that #(t) and j(t) are involved in k,,(t) as shown in Eq. (54), the integration-by-parts formula is
employed to perform the integration of the terms involving second derivative in Eq. (56) and finally we obtain

20(5) = 20+ T(©) ~ Ly | H(Q) sin o — AL
- La@) — Lo /0 O sin (@ - 0L, (60)
where
Qp(t) = Iy, cos w,,T + i;ﬂ SIN W T + L1;p,(T) + Lompy(T)

~ Lipoom /0 PO sinom(c — OdL — Lo /0 PO sin (@ — AL, 61)

It should be noted here that Qy,,(7) is a known function of time. Till this section, #(r) and y(t) in Eq. (60) are
still unknown.
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3.4. Determination for n(t) and y(t)

In the following, boundary conditions and continuity conditions of the electric and magnetic fields will be
applied to determine #(z) and y(t). Substitution of Egs. (47) and (50) into the first of Eq. (29) yields

W0 = &7 RUOQuE) +1(Op, () + 19 Ops() + 1@ +1(On(0). (62)
m=1

Substituting Eq. (62) into Eq. (22) and then integrating it at each spatial interval [£,_1,&](i = 1,2...n), we
obtain 7 equations. By utilizing Eqs. (14), (15) and (18), the summation of the obtained n equations leads to

(1) — (1) = Ki1pu(0) + K129y(0) + K137(0) + K1z + 3 Kisn@u(0),

m=1

o0 (63)
Yp(0) — (1) = K21p, () + Koopp(t) + Ko3n(c) + Koay(t) + zl K55 Qin(7),
where
n & . .
Kj = Z( A /ﬁ O+ A;Q[ rE) V& 1)})
n & . . .
ko= Y (27 [ 00a+ R0 9]
Gi-1
=2 (22 [ rva e aglpver 0] + 432 - 1)
& R & &)
(50 [T 100 O 0 () () !
Z( Ay [ o a2l -190] + 48 (2= 1) ).
n . i . . 1
K, = Z(z,q_gll) /5; (3RO + Aj(’z) {; 2ROE) — 5;11/2R(z)(51 I)D G=12). (64)
Substituting Eq. (60) into Eq (63), we have
Bin(r) + Biay(z) + i Jo[Bramt(0) + Biamy(O] sin wp(x — OdL = Y (1),
(65)
Byin(t) + By (1) + Z Jo [B23mt(0) + Boam (O] sin wp(z — AL = Ya(2),
where
Yi(t) = ¢p(1) — ¢,(1) — K11p,(v) — Kiapy(7) — il K15mQ1m(2),
Yo(v) = Yp(0) = Y,(v) — K21py(v) — Kaopy(t) — il Ko5mQ1m(2),
By =K;3+ io: Kismlzm, Bio = Kis+ i Kismlam, (66)

m=1 m=1

o0 o0
By =Koz + Y Koswlsm, By =Ko+ Y Kosplam,

m=1 m=1
Bizm = —0nKisplam  Blam = —0nKispdam,

BZ3m = _me25m13ma B24m = _me25mI4m-
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Eq. (65) can be solved efficiently and quickly by the recently developed recursive formula [27,28]. After #(t)
and y(t) are obtained, the mechanical, electric and magnetic fields can then be determined completely at
the end.

4. Numerical results and analysis
4.1. Free vibration

It should be particularly noted here that the positive real roots w,,(m =1,2,...,00) obtained from
eigenequation (B.18) (Appendix B) are just the non-dimensional natural frequencies of the radial mode of the
piezoelectric/magnetostrictive composite hollow sphere for open-circuit boundary conditions. Especially, replacing
the magnetostrictive layer with piezoelectric layer, we then obtain the natural frequencies of the radial mode of the
multilayered piezoelectric composite hollow sphere. If we further set the piezoelectric coefficients equal to zero, the
eigenequation then become that for multilayered elastic composite hollow sphere. By means of the presented
eigenequation (B.18), we demonstrated the natural frequencies of the radial mode for hollow elastic and
piezoelectric spheres. As expected, the results are in excellent agreement with achievements of Refs. [2,29].

In the following, the free vibration of a three-layer piezoelectric/magnetostrictive composite hollow sphere is
considered. The material constants are listed in Table 1 [19] and the stacking sequence is taken as BaTiOj[inner]/
CoFe>O4middle]/BaTiOs[outer] (called BFB). In the computation, the geometric parameters of the three-layer
composite hollow sphere are assumed as &, = 0.5, & = 0.7, & = 0.8 and &3 = 1.0. For the sake of convenience
for the reader to trace the work, the first forty radial modes are shown in Table 2. We should further mention here
that the natural frequencies in Table 2 are normalized by the material constants of BaTiO; layer. The
normalization task can be easily performed by replacing the superscript “*” in Eq. (10) with “1”.

Table 1
Material constants

Parameter Unit BaTiO3 CoFe,04
e GPa 166.0 286.0

e GPa 77.0 173.0

3 GPa 78.0 170.5

33 GPa 162.0 269.5

esl C/m? —44 0.0

33 C/m? 18.6 0.0

q1 N/(Am) 0.0 580.3

q33 N/(Am) 0.0 699.7

£33 C?/(Nm?) 12.6 x 107° 0.093 x 10~°
g3 Ns/(VC) 0.0 0.0

ma Ns?/C? 10.0 x 107° 157 x 107°
p kg/m? 58x107° 53%x 1072
Table 2

Nondimensional frequencies of radial mode of BFB composite hollow sphere

Radial mode w

1-5 2.21752 7.61030 14.12029 21.68019 28.17973
6-10 35.65199 42.56315 49.47783 56.96941 63.48143
11-15 71.13973 77.79372 85.02930 92.24738 98.91485
16-20 106.57212 113.08169 120.59392 127.49995 134.43715
21-25 141.92621 148.44424 156.11163 162.75817 170.00976
26-30 177.21681 183.89465 191.55001 198.05731 205.58007
31-35 212.47468 219.42494 226.90524 233.42717 241.09819

36-40 247.73682 255.00107 262.19613 268.88318 276.53498
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4.2. Dynamic response

The dynamic responses of a three-layer piezoelectric/magnetostrictive composite hollow sphere subjected to
dynamic pressure at the internal surface are performed in this section. As an illustrative example, the stacking
sequence and the configuration as well as the geometric parameters of the composite hollow sphere in free
vibration case will be reused. Furthermore, the boundary conditions are prescribed as

pa(r) =e ™ — 1! pb(f) = 09
¢, (1) =0, () =0, (67)
lpa(‘l:) =0, ‘/jh(r) =0,

where o is angular frequency of dynamic load. The histories of dynamic pressure load acting at the internal
surface p,(t) for different as are shown in Fig. 2. Apparently, as time increases, dynamic load approaches to
—1. Particularly, the dynamic pressure load for the limit case @ — oo just denotes the constant pressure shock
load p,(t) = —H(t), where H(t) is Heaviside function of time. '

In the demonstration, we suppose the composite hollow sphere is initially at rest, i.e., ug)(f) =0 and
vg)(é) =0(=1,2,3). Also, in the computation, the first 40 terms in the series Eq. (50) are adopted.
In the following figures and Table 3, all the numerical results are normalized by the material constants of
BaTiOs layer.
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Fig. 2. Histories of dynamic pressure at the internal surface for different ws.

Table 3
Peak values for different dynamic loads

Dynamic load u(é, 1) a(& 1) ag (&, 1)
u(0.5, 1.3) (0.5, 7.0) 0,(0.7, 2.9) 60(0.5, 1.3) 50(0.5, 7.0)

Put) = e F—1 0.5449 0.5691 —0.3616 0.9370 0.9661
Pu(t) =" —1 0.7231 0.7185 —0.5161 1.3303 1.3192
Pa(t) =101 0.7943 0.7916 —0.7157 1.4979 1.4918
Pu(t) =01 0.8253 0.8432 —1.0978 1.5708 1.6135
Pu(t) = e7100° 0.8240 0.8471 —1.1027 1.5678 1.6226
Pu(t) = —H(1) 0.8216 0.8491 —1.0633 1.5621 1.6274




H.M. Wang, H.J. Ding | Journal of Sound and Vibration 307 (2007) 330-348 341

Fig. 3 shows the histories of radial displacement u at the internal surface (¢ = 0.5) for « = 2, 5 and 50,
respectively. Clearly, although the dynamic pressure load grows smoothly, the responses of u peaks
periodically. Also, the amplitude of the peaks increases gradually with increase in o.

Histories of o, at the two interfaces (¢ = 0.7 and 0.8) for different o’s are depicted in Figs. 4 and 5. From the
curves, we find that the responses of radial stresses at the two interfaces vary dramatically. Such phenomena
are known as caused by the stress wave propagation in the radial direction.

Figs. 6 and 7 present the transient responses of gy at the internal surface (£ = 0.5) and the external surface
(¢ = 1.0). Obviously, for the same a, peak values of the hoop tensile stresses at the internal surface are much
lager than those at the external surface. Also, at internal and external surfaces, respectively, amplitude of
peaks increases gradually with increase in o.

Table 3 lists some peak values in the composite hollow sphere subjected to different dynamic loads. As
mentioned above, physically, with increase in o, dynamic pressure load p,(t) =e™* — 1 will approach
gradually to p,(t) = —H(z). This is clearly supported by numerical results in Table 3.

Figs. 8 and 9 illustrate the distributions of non-dimensional electric potential ¢» and magnetic potential y at
7 = 1.0 and 5.0, respectively. The calculated electric and magnetic potentials for each time keep zero stably at the

Fig. 3. Histories of radial displacement u at the internal surface £ = 0.5.

0.5

0.0

-1.0

15 1 | 1 | 1 | 1 | 1

Fig. 4. Histories of radial stress o, at the interface & = 0.7.
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Fig. 5. Histories of radial stress o, at the interface ¢ = 0.8.
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Fig. 6. Histories of hoop stress oy at the internal surfaces & = 0.5.
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Fig. 7. Histories of hoop stress oy at the external surfaces & = 1.
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both internal and external surfaces, which agree with the prescribed electric and magnetic boundary conditions.
The correctness of the numerical results is thus clarified in this respect. By inspecting the curves, we notice that in
dynamic pressure disturbed composites, the electric and magnetic potentials in both BaTiO; and CoFe,O, layers
are not equal to zero. The magneto-electro-elastic coupling effect is thus exhibited directly in this respect.

5. Summary

The radial vibration of a piezoelectric/magnetostrictive composite hollow sphere is successfully transformed
to two Volterra integral equations with respect to two functions of time. The present approach method
is suitable for piezoelectric/magnetostrictive composites with arbitrary stacking sequence. Numerical
experiments of an internal dynamic pressure disturbed three-layer BaTiO;/CoFe,O4/BaTiO; composite
hollow sphere are presented and some general dynamic behaviors are illustrated. The achievements should be
useful in predicting and analyzing the dynamic behaviors of the piezoelectric/magnetostrictive composites.
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Appendix A
The determination for u)(¢, 1) is presented in this Appendix.

By means of the new introduced column vector {X?(¢, 1)} in the first of Eq. (44), the continuity conditions
Eq. (33) can be rewritten as

XOE, D) = X9 0) (=12,...,n—1) (A1)
Repeatedly utilizing Egs. (45) and (A.1), we obtain
(X0C,0) = [HUX D, 0} + (MO + (W Yy(0) ((=1,2,....m), (A.2)

where

(1) = (71, [Tfi?]—H,[TWéj)l (m=12....0,
o =i (A.3)
(MO = Y (TG, (W) = Z [T HO™ (),

m=1 m=1

in which 1'[1 _,0 denotes continued multiplication symbol. [HD]is a 2 x 2 matrix. {M?Y} and {W"} are two
2x1 column matrices. Setting i = n in Eq. (A.2) and utilizing the boundary conditions Eq. (32), we have

) (n) Q) ) (n) (n)
el R g | vl B3 (Vg RS 1 R
From the second of Eq. (A.4), we obtain
W0, ) = [Eapy(0) — HI Eop,() = MY n(@) = W] /Y. (A5)
By means of Eq. (A.1), Eq. (45) can be rewritten as
X0} = [TOOIX V1, D} + (GO + { QPO (x), (A.6)

By utilizing Eq. (A.2), we have
(X0, ) = [TYONHT"HX D (o, D} + (M n(r) + (WD) (o)
+H{GOI(D) + {QV(O(v)), (A7)
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Eq. (A.7) can be rewritten in detailed form as

ud(E,7) T‘{?(@ He ] (8T HEDT (400
(&) 9@ U@ |\ [ HSD HED || Copa(®)

MY i ') 07')
T i (TOF ey (KO 1O ha@ | (AS)
M; w3 Gy(©) 07'(¢)

Then #{7(¢,7) can be obtained from the first of Eq. (A.8). By means of Eq. (A.5), #\)(¢,7) is finally
obtained as

U(&7) = [P(OPa) +/5ps(@) + 7M@) + 1), (A.9)

where

i H
T(l)(f)—‘r H(2l2 1) H22 H(l b}

(n)

T%)}

MGE éo{ [Hﬁ’;” ﬁéf) "
f(l)((f) H(”) [H(ll1 l)T(llf(é) + H(' I)T(')(f)],

+ 199

706 = 100|600+ w22 g

(i) (=1 (i=1)
H(n) G2 (é) + M2 - H(n) H21 ] 5

+ 1)

. . . - W . - W
1@ =10 | 00@) + Wi - 1O S HY oY@+ i~ O o Hay ])]' .

It should be mentioned here that all the elements in matrix [7" D(£)] can be obtained in explicit form by
applying the Cayley—Hamilton theorem. Thus, f?(&) (i = 1,2,3,4) are known functions of ¢.

Appendix B

Derivation for RS,’?(&) and the eigenequation is shown in this appendix.
The substitution of Eq. (50) into the second of Eq. (34) leads to

E0E D) =Y O (B.1)
m=1
where
al(&) = PAV)RI(E), (B.2)
POV) = Cglgbv + 2‘(121) - 63;D/2 (B.3)
Then by means of Eq. (B.1), the following equations can be derived from Eqs. (36) and (37):
o (&) =0, aW(E)=0 (m=12,...,00), (B.4)
REDE) = ROE), oit(E) =old(E&) m=1,2, .. 00 i=12...n). (B.5)

By observing the differential form of Eq. (48), we know that Rﬁ,?(é) must be a linear combination of
J (ki) and Y, (ki) and we assume

Rﬁ;[/,)(é) = D(li)‘]u,-(kimé) + D(2i) Y/‘i(kimé)’ (B6)
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where D(li) and D(Zi) are undetermined constants, J, () and Y, () are Bessel functions of the first and second

kinds of order y;, and
/ WO
u; = lazz + (%)23 kim = 75 (B7)

where w,, is a series of positive real numbers. Substitution of Eq. (B.6) into Eq. (B.2) yields
a'(&) = DY POV, (ki) + DS POV) Y, (). (B.8)
Setting ¢ = &,_; in Egs. (B.6) and (B.8), we have

RO(E_) = DT (kimi—1) + DYy (kimi1)
o) = DV POV, (kiméioy) + DY POV Y, (kim&iy). (B.9)

Then D(li) and Dg) can be determined from Eq. (B.9). Substitution of the obtained D(li) and D(Zi) into
Egs. (B.6) and (B.8) yields

(Z)(©)) =[SV Kim, OUZ) (1)), (B.10)
where
| RO | S ins &) SV ki, ©)
(i) — n D (Je . = . : 1
{(Z3(©) { o0(2) } [SO (K, )] [ k&) SOk 0 (B.11)
and
S(lil)(kim, f) = [PY(i, kim, éj_l)J,u,-(kimé) - PJ(is kims éi—l)Yu,-(kimi)]/Ai’
SOGKins &) = [ kim&i- ) Yy kim€) = ¥ (kim0 (KkinE)] /A,
S iy &) = [Py (i, Kims &1 )P Ky €) = Py, Ky €1 )Py iy iy O]/ A, B.12)

S Kins &) = [ (kim0 Py G Ko, &) = ¥y (K4 )P iy ey €/ A,
Ai = Py (i, kims Simi) y,(Kim&iz1) — Py, Kims Ei2) Yy (Kim&iz1),
PJ(ia kima f) = P(i)(v)Jﬂ,(kimé): PY(ia kilm é) = P(i)(v) Y,u,(kimé)-

In Eq. (B.10), {Zf,?(éi_l)} is just the so-called initial parameter. By means of the newly introduced symbol
{ZD(&)}, Eq. (B.5) can be rewritten as

(ZUD(E)) =20} (=1.2,....n—1). (B.13)

Setting ¢ = &; in Eq. (B.10) and repeatedly applying Eq. (B.13), we obtain

1

(2@ = T[SV kim. NZL)CEo)} (1= 1.2....m), (B.14)

J=i

where H}zl() denotes the continued multiplication symbol. With the aid of the second of Eq. (B.7), we know
that all the elements in H}:I[S(’)(kjm, ¢;)] must be the functions of w,, and we define

87> £))) = [0 ()] (B.15)

1

1
Jj=
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Here [0Y(k;,)] is a 2 x 2 matrix. Then Eq. (B.14) is rewritten as
(Z3E =[0V(@IZ,)C)} ((=1,2,....n). (B.16)
Setting i = n in Eq. (B.16) and utilizing Eq. (B.4), we obtain

RYE) | _ [0 ehen)] [ rIE) (B.17)
0 0% (@) O%(wm) 0o '

From the second of Eq. (B.17), the existence of nonzero solution leads to
O () = 0. (B.18)
Eq. (B.18), a transcendental equation, is the eigenequation from which a series of positive real roots

wn(m=1,2,...,00) can be obtained. After w,,(m = 1,2,...,00), arranged in an ascending order, have been
obtained, Eq. (B.10) can then be rewritten in the following form with the aid of Egs. (B.13) and (B.16):

RO(©) SO Kim: &) SO kim, &) [0 (@m) O V(@) ] [ RD(E)
(0) = | (i) (i-1) (1 N . (B.19)
7 (&) SO Kins &) SD ki ©) | | OS5 ) 05 () 0

From the first of Eq. (B.19), Rﬁ,’?(f) is then obtained as
RIE) = [0 (@m)S) (Kims €) + O () S (keims ENRD(E). (B.20)

It should be noted here that Rg,ll)(éo) in Eq. (B.20) is a common constant for every layer and can be taken as

Rf,l)(fo) = 1 in the numerical calculation. Thus RE,?(&) is determined completely.
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