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Abstract

The free vibration of a beam with one or more elastically mounted two-degree-of-freedom systems that translate and

rotate is considered in this note. The assumed-modes method is applied to formulate the equations of motion, and the

natural frequencies of the system are found by solving for the roots of a given characteristic determinant. If the number of

attached spring–mass systems is small, one can exploit the Sherman–Morrison–Woodbury determinant formula and

reduce the characteristic determinant to one of smaller size, which will be easier to code and more computationally efficient

to solve.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In Ref. [1] the present author developed a general approach to formulate the frequency equation for a beam
carrying miscellaneous attachments. Using the assumed-modes method [2] with N component modes, the free
vibration of such a combined dynamical system corresponds to the solution of a generalized eigenvalue
problem of order N �N, whose stiffness and mass matrices consist of diagonal matrices modified by the sum
of R rank-one matrices, where R correspond to the number of constraints or lumped attachments.
Manipulating this generalized eigenvalue problem, the free vibration can be calculated instead by solving a
much smaller characteristic determinant of order R� R, leading to considerable computational advantages.

The free vibration of a combined system consisting of a beam carrying an oscillator has received
considerable interests, and many researchers have studied this problem over the years [3–14]. However, all the
oscillators considered consisted of only a single degree-of-freedom, where the oscillator translates. In this
technical note, the free vibration of a beam carrying a two-degree-of-freedom elastic system is first considered,
where the system translates and rotates. The aforementioned elastic system can be used to model a vibration
absorber that executes angular and up-and-down motions. Fig. 1 shows such a combined system. The
oscillator is represented by a rigid rod of total mass m with its center of mass C at distances l1 and l2 from the
springs k1 and k2, respectively. The springs are attached at x1 and x2 along the beam. The rod has a mass
moment of inertia J about its center of mass, and its vertical translation at C and its rotation about C are given
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.06.063

9 607 4102; fax: +1 909 621 8967.

ess: philip_cha@hmc.edu

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.06.063
mailto:philip_cha@hmc.edu


ARTICLE IN PRESS

k1 k2

Jm,

l1 l2

x2

x1

 

),( txw

x

C

z

θ

Fig. 1. An arbitrarily supported uniform beam carrying a two-degree-of-freedom spring–mass system.
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by z and y. The system of Fig. 1 can be analyzed by using various approaches. In Ref. [15], Wu and Whittaker
used the analytical-and-numerical-combined method (ANCM) to determine the natural frequencies, and
compared their results with those obtained by using the finite-element method. While ANCM is an effective
technique to determine the natural frequencies of Fig. 1, the method is laborious to apply, and hence not
frequently employed. Moreover, it is applicable only if each two-degree-of-freedom system is replaced by two
equivalent springs using the method outlined in Ref. [15], which is rather complicated and nontrivial. In a later
paper, Wu [16] proposed two finite-element methods to determine the natural frequencies and mode shapes of
Fig. 1. More recently, Chen [17] applied the numerical assembly method (NAM) to determine the exact
natural frequencies of a beam with arbitrary boundary conditions carrying multiple two-degree-of-freedom
spring–mass systems. While the solution is exact, the approach is algebraically intensive to apply. In this
technical note, the natural frequencies of Fig. 1 are obtained by using the method developed in Ref. [1], which
is easy to apply and leads to a characteristic determinant that can be substantially reduced, as will soon be
shown.

2. Theory

Consider the free vibration of Fig. 1. Using the assumed-modes method [2], the lateral displacement of the
beam at point x can be expressed in the form of a finite series as follows:

wðx; tÞ ¼
XN

i¼1

fiðxÞZiðtÞ, (1)

where N represents the number of modes used in the expansion, fiðxÞ are the eigenfunctions of the bare beam
(or the beam without any attachment) that serve as the basis functions for this approximate solution, and ZiðtÞ

are the generalized coordinates of the beam. The total kinetic energy of the combined system is

T ¼
1

2

XN

i¼1

Mi _Z2i ðtÞ þ
1

2
m_z2 þ

1

2
J _y

2
, (2)

where Mi are the generalized masses of the unconstrained beam, and an overdot denotes a derivative with
respect to t. The total potential energy of the system is

U ¼
1

2

XN

i¼1

KiZ2i ðtÞ þ
1

2
k1½wðx1; tÞ � ðzþ l1yÞ�2 þ

1

2
k2½wðx2; tÞ � ðz� l2yÞ�2, (3)

where Ki are the generalized stiffnesses of the unconstrained beam. Substituting Eq. (1) into Eqs. (2) and (3)
and applying the Lagrange’s equations

d

dt

qT

q_Zi

� �
�

qT

qZi

þ
qU

qZi

¼ 0 for i ¼ 1; 2; . . . ;N, (4)
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d

dt

qT

q_z

� �
�

qT

qz
þ

qU

qz
¼ 0, (5)

d

dt

qT

q_y

� �
�

qT

qy
þ

qU

qy
¼ 0, (6)

the following equations of motion are obtained:

½Ms�€qþ ½Ks�q ¼ 0, (7)

where the system mass and stiffness matrices are

½Ms� ¼

½Md� 0 0

0 m 0

0 0 J

2
64

3
75, (8)

½Ks� ¼

½Kd� þ k1/1/
T
1 þ k2/2/

T
2 �k1/1 � k2/2 �k1l1/1 þ k2l2/2

�k1/
T
1 � k2/

T
2 k1 þ k2 k1l1 � k2l2

�k1l1/
T
1 þ k2l2/

T
2 k1l1 � k2l2 k1l

2
1 þ k2l22

2
64

3
75 (9)

and the vector of generalized coordinates is given by

q ¼

g

z

y

2
64
3
75. (10)

Vector /i consists of the eigenfunctions evaluated at the attachment location, xi, as follows:

/i ¼ ½f1ðxiÞ; . . . ;fjðxiÞ; . . . ;fNðxiÞ�
T (11)

and matrices ½Md� and ½Kd� are both diagonal, whose ith diagonal elements are given by Mi and Ki (the ith
generalized mass and stiffness of the unconstrained beam), respectively. Assuming harmonic motion,

q ¼ q̄ ejot, (12)

where the vector of the amplitudes of the generalized coordinates is defined as

q̄ ¼

ḡ

z̄

ȳ

2
64
3
75. (13)

Eq. (7) becomes

ð½Ks� � o2½Ms�Þq̄ ¼ 0, (14)

whose bottom two equations are

ðk1 þ k2 �mo2Þz̄þ ðk1l1 � k2l2Þȳ ¼ ðk1/
T
1 þ k2/

T
2 Þḡ (15)

and

ðk1l1 � k2l2Þz̄þ ðk1l21 þ k2l
2
2 � Jo2Þȳ ¼ ðk1l1/

T
1 � k2l2/

T
2 Þḡ. (16)

Solving Eqs. (15) and (16) simultaneously for z̄ and ȳ in terms of ḡ, one obtains

z̄ ¼
k1ðk2l22 þ k2l1l2 � Jo2Þ/T

1 þ k2ðk1l21 þ k1l1l2 � Jo2Þ/T
2

d
ḡ (17)

and

ȳ ¼
k1ðk2l1 þ k2l2 �ml1o2Þ/T

1 � k2ðk1l1 þ k1l2 �ml2o2Þ/T
2

d
ḡ, (18)
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where

d ¼ Jmo4 � ðk1J þ k2J þ k1l21mþ k2l22mÞo2 þ k1k2ðl1 þ l2Þ
2. (19)

The top matrix equation of Eq. (14) is

ð½Kd� þ k1/1/
T
1 þ k2/2/

T
2 � o2½Md�Þḡ� ðk1/1 þ k2/2Þz̄þ ðk2l2/2 � k1l1/1Þȳ ¼ 0, (20)

which can be simplified to

ð½Kd� � o2½Md� þ a1/1/
T
1 þ a2/1/

T
2 þ a3/2/

T
1 þ a4/2/

T
2 Þḡ ¼ 0, (21)

where

a1 ¼ k1 �
k2
1ðk2l22 þ k2l1l2 � Jo2Þ þ k2

1l1ðk2l1 þ k2l2 �ml1o2Þ

d
, (22)

a2 ¼
�k1k2ðk1l21 þ k1l1l2 � Jo2Þ þ k1k2l1ðk1l1 þ k1l2 �ml2o2Þ

d
, (23)

a3 ¼
�k1k2ðk2l22 þ k2l1l2 � Jo2Þ þ k1k2l2ðk2l1 þ k2l2 �ml1o2Þ

d
, (24)

a4 ¼ k2 �
k2
2ðk1l21 þ k1l1l2 � Jo2Þ þ k2

2l2ðk1l1 þ k1l2 �ml2o2Þ

d
. (25)

The natural frequencies, o, of the system are obtained by setting the determinant of the coefficient matrix of
Eq. (21) equal to zero

detð½Kd� � o2½Md� þ ½U�½V�TÞ ¼ 0, (26)

where

½U� ¼ ½a1/1 a2/1 a3/2 a4/2� (27)

and

½V� ¼ ½/1 /2 /1 /2�. (28)

Note that ½U� and ½V� are both of size N � 4, and that the coefficient matrix of Eq. (21) consists of a matrix
½Kd� � o2½Md� modified by a finite sum of dyads.

The coefficient matrix of Eq. (21) is of size N �N. To ensure sufficient accuracy, N is generally large, and
expanding the determinant of the coefficient matrix becomes computationally intensive. Fortunately,
mathematicians have studied the determinant of a general matrix modified by a finite sum of dyads.
In particular, if an invertible matrix ½A� is modified by a matrix product ½U�½V�T, then the Sherman–
Morrison–Woodbury determinant formula [18] can be used to compute the newly modified matrix as follows:

detð½A� þ ½U�½V�TÞ ¼ det½A� detð½I� þ ½V�T½A��1½U�Þ. (29)

Incidentally, using a general determinant formula and after some algebraic manipulations, Gürgöze [19] also
obtained the results of Eq. (29), which can be utilized to substantially reduce the computational effort needed
to obtain the natural frequencies of the combined system. Thus, instead of expanding the coefficient matrix of
Eq. (26) of size N �N, one can exploit Eq. (29) and evaluate the determinant of a smaller matrix. Specifically,
by setting ½A� ¼ ½Kd� � o2½Md� (which is invertible), Eq. (26) becomes

det½A� detð½I� þ ½V�T½A��1½U�Þ ¼ 0. (30)

Note that since ½A� is diagonal, its determinant is trivial to obtain. Moreover, the second determinant of Eq.
(30) reduces to size 4� 4. For 45N, Eq. (30) proves more computationally efficient to solve. Finally, the
natural frequencies, o, satisfy Eq. (30) and can be determined either graphically or numerically using any
standard root solver routine such as fsolve in MATLAB or the subroutine zeroin in EISPACK.
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3. Results

The eigenfunctions used in the assumed-modes method depend on the boundary conditions of the bare
beam. For a uniform fixed–free beam, its normalized (with respect to the mass per unit length, r, of the beam)
eigenfunctions are given by

fiðxÞ ¼
1ffiffiffiffiffiffi
rL
p cosh bix� cos bixþ

sin biL� sinh biL

cos biLþ cosh biL
ðsinh bix� sin bixÞ

� �
, (31)

where biL satisfies the following transcendental equation:

cos biL cosh biL ¼ �1. (32)

For a uniform fixed–fixed beam, its normalized eigenfunctions are given by

fiðxÞ ¼
1ffiffiffiffiffiffi
rL
p cosh bix� cos bixþ

cos biL� cosh biL

sinh biL� sin biL
ðsinh bix� sin bixÞ

� �
, (33)

where biL satisfies the following transcendental equation:

cos biL cosh biL ¼ 1. (34)

The generalized masses and stiffnesses of either the fixed–free or fixed–fixed beam are

Mi ¼ 1 and Ki ¼ ðbiLÞ
4EI=ðrL4Þ, (35)

where E is the Young’s modulus, I is the moment of inertia of the cross-section of the beam, and biL satisfies
either Eq. (32) or (34), depending on if the beam is fixed–free or fixed–fixed.

To validate the present approach, the natural frequencies of a uniform fixed–free or fixed–fixed beam with
an elastically mounted two-degree-of-freedom system are determined, and the results are compared to those
obtained by using the ANCM and the finite-element method published in Ref. [15]. The dimensions and
material constants for the beam are identical to those used in Ref. [15], namely: Young’s modulus
E ¼ 2:069� 1011 Nm�2, mass per unit length r ¼ 15:3875 kgm�1, moment of inertia of the cross-section
I ¼ 3:06796� 10�7 m4, and length L ¼ 1:0m. The system parameters for the elastically mounted two-degree-
of-freedom system are: mass m ¼ 1:53875 kg, mass moment of inertia J ¼ 1:53875 kgm2, spring stiffnesses
k1 ¼ k2 ¼ 6:34761� 106 Nm�1, distances of k1 and k2 from the center of mass l1 ¼ 0:06667m and
l2 ¼ 0:13333m.

Consider first a fixed–fixed beam carrying a two-degree-of-freedom spring–mass system located at x1 ¼

0:2m and x2 ¼ 0:4m. Table 1 shows the first five natural frequencies of the combined system, obtained using
ANCM, the finite-element method [15], and the scheme outlined in this note. Note the excellent agreement
among the different approaches. Consider next a fixed–free beam with an elastically mounted two-degree-of-
freedom system located at x1 ¼ 0:8m and x2 ¼ 1:0m. Table 2 shows the first five natural frequencies obtained
using the various methods. Note again how well the approaches track one another.
Table 1

The first five natural frequencies of Fig. 1

oi (in rad s�1Þ ANCM [15] FEM [15] Proposed method

o1 273.8904 273.8565 273.8892

o2 1388.6244 1388.5937 1388.6073

o3 2880.5511 2879.7694 2880.0323

o4 4222.2172 4221.9181 4221.9610

o5 7837.1068 7837.4548 7836.9696

The beam is fixed–fixed, and the attachment locations for the elastically mounted system are x1 ¼ 0:2m and x2 ¼ 0:4m. For the proposed

method, 10 modes are used (N ¼ 10).
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Table 3

The locations and system parameters of the three two-degree-of-freedom spring–mass systems

Physical properties i ¼ 1 i ¼ 2 i ¼ 3

xi
1 (m) 0.1 0.4 0.8

xi
2 (m) 0.3 0.6 1.0

li
1 (m) 0.07 0.06 0.12

li
2 (m) 0.13 0.14 0.08

ki
1 ¼ ki

2 ðNm�1Þ 60 600 6000

mi (kg) 1.6 1.6 1.6

Ji ðkgm2Þ 1.6 3.2 4.8

The superscript i denotes the ith spring–mass system.

Table 2

The first five natural frequencies of Fig. 1

oi (in rad s�1Þ ANCM [15] FEM [15] Proposed method

o1 143.4354 143.4206 143.4308

o2 324.3061 324.2268 324.2986

o3 1526.9812 1526.8963 1526.9820

o4 3330.0140 3326.6748 3327.5687

o5 4281.0266 4279.7603 4280.3173

The beam is fixed–free, and the attachment locations for the elastically mounted system are x1 ¼ 0:8m and x2 ¼ 1:0m. For the proposed

method, 10 modes are used (N ¼ 10).
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The formulation outlined in Section 3 can be easily modified to analyze the free vibration of a beam carrying
multiple, say S, two-degree-of-freedom systems. In this case, Eq. (26) still remains valid, except now

½U� ¼ ½a11/
1
1 a12/

1
1 a13/

1
2 a14/

1
2 . . . a

S
1/

S
1 aS

2/
S
1 aS

3/
S
2 aS

4/
S
2 � (36)

and

½V� ¼ ½/1
1 /1

2 /1
1 /1

2 . . ./
S
1 /S

2 /S
1 /S

2 �, (37)

where the superscript designates the spring–mass system number, and /
j
1 and /

j
2 are the vector of

eigenfunctions evaluated at x
j
1 and x

j
2, the attachment locations for the jth spring–mass. The aj

i are given by
Eqs. (22)–(25), where the physical parameters correspond to those of the jth elastically mounted two-degree-
of-freedom system, i.e., for the jth spring–mass, m, J, k1, k2, l1 and l2 of Eqs. (22) to (25) are replaced by m j ,
J j, k

j
1 , k

j
2 , l

j
1 and l

j
2 . Note that ½U� and ½V� are both of size N � 4S. Depending on S, the natural frequencies

can be obtained by solving either Eq. (26) (of size N �N) or Eq. (30) (of size 4S � 4S), whichever size is
smaller. Consider a fixed–free beam carrying three two-degree-of-freedom spring–mass systems. The locations
and physical properties of the spring–mass systems are listed in Table 3, and they are identical to those of
Table 3 in Ref. [15]. Table 4 shows the first five natural frequencies obtained by using the various schemes.
Note how well the natural frequencies agree with each other, validating that the proposed technique can be
extended to study the free vibration of a beam carrying multiple two-degree-of-freedom spring–mass systems.

The approach described in Ref. [1] is general and can be extended to analyze the free vibration of an
arbitrarily supported beam carrying one more elastically mounted two-degree-of-freedom systems. Unlike
ANCM, it does not require one to replace the each spring–mass system by two equivalent springs, the
technique of which is non-trivial. The method outlined in this note is straightforward to apply, simple to code,
and leads to a characteristic determinant whose roots can be solved either graphically or numerically. It can
also be easily extended to accommodate a beam with arbitrary boundary conditions.



ARTICLE IN PRESS

Table 4

The first five natural frequencies of a beam carrying three two-degree-of-freedom spring–mass systems

oi (in rad s�1Þ ANCM [15] FEM [15] Proposed method

o1 231.9466 231.9355 231.9355

o2 1415.7972 1415.8251 1415.8221

o3 3962.8895 3962.9617 3962.8968

o4 7765.4563 7765.8580 7765.3729

o5 12836.626 12838.743 12836.568

The beam is fixed–free, and the spring–mass system parameters are shown in Table 3. For the proposed method, 10 modes are used

(N ¼ 10).

P.D. Cha / Journal of Sound and Vibration 307 (2007) 386–392392
4. Conclusions

This technical note deals with the free vibration of an arbitrarily supported beam with one or more
elastically mounted two-degree-of-freedom systems. The assumed modes method and the Lagrange’s
equations lead to a characteristic determinant whose roots correspond to the natural frequencies of the system.
Exploiting the Sherman–Morrison–Woodbury determinant formula, one can reduce the size of the
characteristic determinant that needs to the solved. The proposed approach is systematic to apply and easy
to code. Numerical experiments validated the proposed scheme, and excellent agreements were found between
the proposed method and those published in the literature.
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