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Abstract

The stability and free vibration analyses of a Timoshenko beam-column with generalized end conditions (i.e., with semi-

rigid flexural connections and lateral bracings at both ends) subjected to constant axial load (tension or compression), and

weakened by a cracked section along its span are presented. The magnitude and location of the weakened section are both

arbitrary and independent of each other. The magnitude of the crack is modeled as an intermediate flexural connection of

zero length producing a member with two-segments with rotational discontinuity at the weakened section but of identical

lateral deflection. The proposed model offers the option of considering the beneficial effects of an additional lateral bracing

located at the weakened section to alleviate the detrimental effects of the rotational discontinuity on the stability and

natural frequencies of the whole beam-column. The proposed model includes the following coupling effects: (1) shear and

bending deformations along the member’s span; (2) the translational and rotational masses of the member uniformly

distributed along its span; (3) constant axial load (tension or compression) applied at both ends; and (4) the shear forces

along the member induced by the applied axial load as the beam-column deforms according to two different approaches:

proportional to the bending rotation or to the total slope of the member axis. A flowchart is included that shows the steps

necessary to carry out the stability and free vibration analyses. Finally, to show the validity and simplicity of the proposed

method and equations five comprehensive examples are presented using the two approaches of the induced shear force and

the obtained results are compared to those calculated by other analytical methods including the finite element method.
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Nomenclature

A cross sectional area of the beam-column
As effective area for shear of the beam-

column ( ¼ kA)
C1,C2,C3,C4,C5,C6,C7,C8 constants required in

the modal shapes
E elastic modulus of the material
f natural frequency of the beam-column

(Hz)
G shear modulus of the material
I moment of inertia of the beam-column

cross section
K effective shear factor of the beam-column

cross section ( ¼ As/A)
ka, kb and kc stiffness of the flexural connections

at A, B and C, respectively (force–
distance/rad)

L beam-column span
m̄ mass per unit length of the beam-column

( ¼ rA)
M bending moment
P compressive axial load applied at the

ends of the beam-column
r radius of gyration of the beam cross

section
R slenderness parameter ( ¼ r/L)

Ra, Rb and Rc stiffness indices of the flexural
connections at A, B and C, respectively

Sa, Sb and Sc stiffness indices of the lateral
bracings at A, B and C of the beam-
column, respectively

t time
V shear force
x coordinate along the centroidal axis of

the beam-column
y total lateral deflection of the centroidal

line of the beam-column
Y(x) shape function of the total lateral deflec-

tion of the centroidal line of the beam-
column

g shear distortion
Y(x) shape function of the slope of the

centroidal line of the beam-column due
to bending only

y slope, due to bending of the centroidal
line of the beam-column

x ratio of the crack depth to the height of
the rectangular cross section

r mass per unit volume (density) of the
material of the beam-column

o natural angular frequency of the beam-
column (rad/s)
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1. Introduction

The effects of flexural cracking on the static and dynamic response of beams and beam-columns are of great
importance in earthquake, mechanical, bridge, and structural engineering. The stability and vibration of
beam-columns with a weakened cross section along the span has been extensively investigated by several
researchers. Anifantis and Dimarogonas [1] developed a general flexibility matrix to study the stability of
columns with a single edge crack subjected to follower forces. Cheng and Pantelides [2] studied the dynamic
behavior of Timoshenko beam-columns on elastic foundation with emphasis on the two approaches used in
this publication. Dimarogonas [3] presented the state-of-the-art review with over 500 references related to
crack effects on the dynamics of framed structures. Chondros et al. [4] and Chondros [5] analyzed the stress
field changes in the vicinity of the crack location using fracture mechanics methods. The changes in the stress,
strain and displacement distributions due to the crack were incorporated using a crack disturbance function.
The effect of the flexibility due to the crack was distributed along the length of the beam. Several comparisons
were made between the lumped crack flexibility and the continuous flexibility approach and the results were
matched with experimental results in aluminum beams tested in the University of Patras, Greece. Takahashi
[6] analyzed the static and vibration of non-uniform Timoshenko beams using the transfer matrix method.
Panteliou et al. [7] proposed a crack identification method based on the thermodynamic theory of damping.
They investigated analytically and experimentally the behavior of a homogeneous, isotropic, and elastic bar
with a single-edge surface crack. They found a correlation between the depth of crack and the damping factor.
Shifrin and Ruotolo [8] proposed a technique for calculating the natural frequencies of Euler–Bernoulli beams
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with an arbitrary number of cracks. Li [9–11] studied the buckling and vibration of stepped columns with
arbitrary number of cracks including the shear deformation effects. Wang et al. [12] presented, using the
Engesser’s model, the buckling loads of a Timoshenko column under intermediate and concentrated loads and
studied the shear deformation effects. Recently, Aristizabal-Ochoa [13] studied the influence of the shearing
forces and deformations on the static stability of Timoshenko beam-columns. Lee et al. [14] studied the effects
of an internal hinge along the span on the dynamic characteristics of clamped–clamped and clamped–pinned
Timoshenko beams including criteria to determine its optimal location for maximum natural frequency. Fan
and Zheng [15] studied the effects of multiple cracks on the stability of Timoshenko beam-columns based on
modified Fourier series. Chandra Kishen and Kumar [16] studied the buckling of cracked beam-columns
under eccentric axial loads using the finite element method. More recently, Wang et al. [17] studied the
buckling of a single cracked column according to Euler theory with different end conditions (i.e., free,
perfectly hinged, and clamped). Finally, Binici [18] studied the effect of the crack location on the natural
frequencies and modal shapes of an Euler–Bernoulli beam containing multiple cracks under constant axial
force. There are numerous analytical and experimental studies that deal with the static and dynamic behavior
of beam-columns. Unfortunately, due to space limitations it is not feasible to present herein a complete list of
references related to this subject.

On the other hand, there is not a single study on the static and dynamic stability of weakened Timoshenko
beam-columns with generalized end conditions that includes the combined effects of bending and shear
deformations, rotational and translational inertias of the member, and the shear component induced by the
applied axial force as the member deforms. Therefore, the main objectives of this publication are: (1) to
present a complete classical formulation on this subject; (2) to provide a practical approach to determine the
critical loads, natural frequencies, and the corresponding modes of a weakened Timoshenko beam-column
with generalized end conditions; and (3) to compare both the natural frequencies and buckling loads of slender
and short beam-columns obtained using different theories such as those by Bernoulli–Euler, Rayleigh, Shear
Beam, and Timoshenko. This paper is an extension of the Timoshenko beam-column with generalized end
conditions recently presented by Aristizabal-Ochoa [19] but it includes the detrimental effects of a single
weakened section and the beneficial effects of a lateral bracing located at the discontinuity. Five
comprehensive examples are presented and the obtained results compared to those obtained using other
methods to show: (1) the simplicity of the proposed model and corresponding equations; (2) the detrimental
effects of the magnitude and location of a crack; and (3) the effects of the shear force induced by the applied
axial load using two approaches (proportional to the bending rotation or to the total slope of the member axis
as proposed by Timoshenko and Gere [20]).
2. Structural model

Consider the beam-column ACB (shown in Fig. 1a) made of two segments AC and CB, end connections ka

and kb, and lateral springs or bracings Sa and Sb (whose dimensions are in force/distance) at extremes A and
B, respectively. The crack located at C at a distance a from end A is simulated with a concentrated flexural
spring kc. To study the effects of lateral bracing at the crack location C, the bracing Sc is included. The ratios
Ra ¼ ka/(EI/L), Rb ¼ kb/(EI/L), and Rc ¼ kc/(EI/L) are denoted as the flexural stiffness indices of the flexural
connections at A, B, and C, respectively. In addition, the ratios S̄a ¼ Sa=ðAsG=LÞ, S̄b ¼ Sb=ðAsG=LÞ, and
S̄c ¼ Sc=ðAsG=LÞ are denoted as the shear stiffness indices of the lateral bracings at A, B, and C, respectively.
The indices Ra, Rb, S̄a and S̄b allow the analyst to simulate any end support conditions applied to the beam-
column ACB, and Rc to simulate the magnitude of the flexural crack.

The flexural stiffness indices Ra and Rb can vary from zero (for perfectly hinged ends) to infinity (for
perfectly clamped ends), whereas Rc can vary from zero (for a perfectly hinge with zero moment capacity, and
consequently discontinuous slope in the member at C) to infinity (for a perfectly uncracked section, and
consequently with continuous slope at C). The shear stiffness indices S̄a and S̄b also vary from zero (for
unbraced ends) to infinity (for fully braced ends with zero lateral displacement). Values of these indices
between zero and infinity represent semi-rigid flexural connections and partially braced lateral conditions,
respectively.
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Fig. 1. Structural model: (a) connections and properties of the two-segment beam-column and (b) differential element (forces, moments

and deformations).
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It is assumed that the beam-column ACB: (1) is made of a homogenous linear elastic material with
moduli E and G; (2) its centroidal axis is a straight line; (3) is loaded axially at the ends along its
centroidal x-axis with a constant load P (tension or compression); (4) its transverse cross section is
doubly symmetric (i.e., its centroid coincides with the shear center) with a total area A, an effective shear
area As and a principal moment of inertia I ¼ Ar2 about the plane of bending (r ¼ radius of gyration of the
cross section); (5) with a uniform mass per unit of length m̄ ¼ rA (r ¼ density of the material); and (6) all
transverse deflections, rotations, and strains along the beam are small, so that the principle of superposition is
applicable.

3. Governing equations and general solution

The transverse and bending equations of equilibrium of the Timoshenko beam-column differential element
shown in Fig. 1b are the following:

qV

qx
¼ �m̄

q2y

qt2
, (1)

qM

qx
¼ V þ m̄r2

q2y
qt2
� P

qy

qx
. (2)

The effects of the shear forces along the member induced by the applied axial load as the member deforms
and deflects are taken into account according to two different approaches: proportional to the bending
rotation y or to the total slope of the member axis qy=qx as proposed by Timoshenko and Gere [20].

3.1. Shear component proportional to bending rotation y

Assuming that

V ¼ AsGgþ Py (3)
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and knowing that: M ¼ EIqy=qx, g ¼ y� ðqy=qxÞ, and that E, G, I, A, As, m̄, and P remain constant along of
the member, Eqs. (1) and (2) become

AsG
qy
qx
�

q2y
qx2

� �
þ P

qy
qx
þ m̄

q2y

qt2
¼ 0, (4)

EI
q2y
qx2
� AsG y�

qy

qx

� �
� Py� m̄r2

q2y
qt2
þ P

qy

qx
¼ 0. (5)

Using separation of variables, the solutions to Eqs. (4) and (5) are: yðx; tÞ ¼ Y ðxÞ sinðotÞ and
yðx; tÞ ¼ YðxÞ sinðotÞ, respectively. Substituting these solutions into Eqs. (4) and (5), they become:

AsG
dY
dx
�

d2Y

dx2

� �
þ P

dY
dx
� m̄o2Y ¼ 0, (6)

EI
d2Y
dx2
� AsG Y�

dY

dx

� �
� PYþ P

dY

dx
þ m̄r2o2Y ¼ 0. (7)

Eqs. (6) and (7) are coupled together in Y(x) and Y(x) which represent the shape functions or the
proper functions associated with the lateral deflection and the section rotation along the member,
respectively.

The stability and free vibration analyses of a Timoshenko beam-column with a single weakened section
depend on 15 variables: E, G, L, a, P, m̄, o, r, As, ka, kb, kc, Sa, Sb, and Sc. However, these variables can be
grouped into the following 10 dimensionless parameters and indices: b2

¼ ðm̄o2Þ=ðEI=L4Þ (frequency
parameter); s2 ¼ ðEI=L2Þ=AsG (bending-to-shear stiffness parameter); F2 ¼ P=ðEI=L2Þ (axial-load para-
meter); R2 ¼ r2=L2 (slenderness parameter); Ra ¼ ka=ðEI=LÞ, Rb ¼ kb=ðEI=LÞ and Rc ¼ kc=ðEI=LÞ (flexural-
stiffness indices at extremes A and B, and at the weakened section C, respectively); S̄a ¼ Sa=ðAsG=LÞ, S̄b ¼

Sb=ðAsG=LÞ and S̄c ¼ Sc=ðAsG=LÞ (lateral shear-stiffness indices or bracings indices at extremes A and B, and
at the weakened section C, respectively).

Eqs. (6) and (7) when expressed in terms of the aforementioned parameters and indices are reduced to:

ð1þ F2s2Þ
dY
dx̄
�

d2Ȳ

dx̄2
� b2s2Ȳ ¼ 0, (8)

s2
d2Y
dx̄2
� ð1þ F 2s2 � b2s2R2ÞYþ ð1þ F 2s2Þ

dȲ

dx̄
¼ 0, (9)

where x̄ ¼ x=L and Ȳ ¼ Y=L.
The second-order differential Eqs. (8) and (9), which are coupled together, can be further reduced by

eliminating Y to the following single fourth-order differential equation:

d4Ȳ

dx̄4
þ 2O

d2Ȳ

dx̄2
þ �Ȳ ¼ 0, (10)

where

O ¼ ðb2s2 þ b2R2 þ F2 þ F 4s2Þ=2 (11)

and

� ¼ b4R2s2 � b2
� b2F 2s2. (12)

The solution to Eq. (10) is of the form

Ȳ ðx̄Þ ¼ c emx̄. (13)
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After substituting Eq. (13) into the governing Eq. (10), the following algebraic expression is obtained:

m4 þ 2Om2 þ � ¼ 0, whose solutions are: m ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�O�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � �
pp

and m ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Oþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � �
pp

or
m ¼ �ib; �a, where

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � �

pq
(14)

and

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Oþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � �

pq
. (15)

Therefore the following transfer functions are obtained from the above equations:

Ȳ ¼ C1 sinðbx̄Þ þ C2 cosðbx̄Þ þ C3 sinhðax̄Þ þ C4 coshðax̄Þ, (16)

Y ¼ lC1 cosðbx̄Þ � lC2 sinðbx̄Þ þ dC3 coshðax̄Þ þ dC4 sinhðax̄Þ, (17)

V̄ ¼ �
b2s2

b
C1 cosðbx̄Þ þ

b2s2

b
C2 sinðbx̄Þ þ

b2s2

a
C3 coshðax̄Þ þ

b2s2

a
C4 sinhðax̄Þ, (18)

M̄ ¼ �lbC1 sinðbx̄Þ � lbC2 cosðbx̄Þ þ daC3 sinhðax̄Þ þ daC4 coshðax̄Þ, (19)

where

l ¼
b2 � b2s2

bð1þ F2s2Þ
, (20)

d ¼
a2 þ b2s2

að1þ F2s2Þ
(21)

and C1, C2, C3, and C4 ¼ constants determined using boundary conditions.
Note: If e40 the following changes must be made in Eqs. (16)–(21): a for ia; sin a for sinh a; and cos a for

cosh a (where i ¼
ffiffiffiffiffiffiffi
�1
p

). These solutions are identical to those presented by Karnovsky and Lebed [21].

3.2. Shear component proportional to the total slope qy=qx

Assuming that

V ¼ AsGgþ P
qy

qx
(22)

and knowing that M ¼ EIqy=qx, g ¼ y� ðqy=qxÞ, and that E, G, I, A, As, m̄, and P remain constant along of
the member, Eqs. (1) and (2) become

AsG
qy
qx
�

q2y

qx2

� �
þ P

q2y
qx2
þ m̄

q2y
qt2
¼ 0, (23)

EI
q2y
qx2
� AsG y�

qy

qx

� �
� m̄r2

q2y
qt2
¼ 0. (24)

Eqs. (23) and (24) lead to the Engesser’s formula [22] which is cited by Timoshenko and Gere [20] (p. 133).
Using separation of variables in the same way as in the first approach, Eqs. (23) and (24) are reduced to

AsG
dY
dx
�

d2Y

dx2

� �
þ P

d2Y

dx2
� m̄o2Y ¼ 0, (25)
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EI
d2Y
dx2
� AsG Y�

dY

dx

� �
þ m̄r2o2Y ¼ 0. (26)

Introducing the aforementioned dimensionless parameters and indices, Eqs. (25) and (26) become

dY
dx̄
� ð1� F2s2Þ

d2Ȳ

dx̄2
� b2s2Ȳ ¼ 0, (27)

s2
d2Y
dx̄2
�

dȲ

dx̄
þ ðb2s2R2 � 1ÞY ¼ 0. (28)

Note that by eliminating Y in Eqs. (27) and (28), the fourth-order differential Eq. (10) can be obtained. The
solution and the corresponding transfer functions have the same form as Eqs. (16)–(19). However, O, e, d, and
l must be exchanged for the following expressions:

O ¼
b2s2 þ b2R2 þ F2 � b2R2s2F2

2ð1� F2s2Þ
, (29)

� ¼
b4R2s2 � b2

1� F 2s2
, (30)

l ¼
ð1� F2s2Þb2 � b2s2

b
, (31)

d ¼
ð1� F 2s2Þa2 þ b2s2

a
. (32)

3.3. Crack model on a Timoshenko beam-column

The crack is modeled as a local flexibility in an arbitrary location of the member and it is assumed that affects
only the close vicinity of such location. Therefore, a rotational discontinuity in the member can be modeled as a
torsional spring of local flexibility kc (force–distance/rad, kc) and calculated using the fracture mechanics
approach. Chondros [5] presented an expression for a single-sided open crack in rectangular beams. Zheng and
Fan [23] presented formulas ready to use not only for rectangular and circular-solid-sectional beams, but also
for rectangular and circular-hollow-sectional beams taking into account shallow cracks (those whose
penetration depth is in the solid region only) and deeper cracks (in which the crack goes into the middle hollow-
sectional region). Technical literature about the flexibility function induced by the crack is extensively available
in most international publications; nonetheless, due to space limitations this paper only considers a particular
case: open cracks. For instance, the case of a crack that opens and closes due to vibration (breathing cracks [5])
is out of the scope of this paper. Then, the cracked member is modeled by two Timoshenko beam-column
segments as shown by Fig. 1a. The deflected shapes and section rotations of each segment are as follows.

For segment AC (i.e., for 0px̄pa/L)

Ȳ 1 ¼ C1 sinðbx̄Þ þ C2 cosðbx̄Þ þ C3 sinhðax̄Þ þ C4 coshðax̄Þ, (33)

Y1 ¼ lC1 cosðbx̄Þ � lC2 sinðbx̄Þ þ dC3 coshðax̄Þ þ dC4 sinhðax̄Þ, (34)

V̄ 1 ¼ �
b2s2

b
C1 cosðbx̄Þ þ

b2s2

b
C2 sinðbx̄Þ þ

b2s2

a
C3 coshðax̄Þ þ

b2s2

a
C4 sinhðax̄Þ, (35)

M̄1 ¼ �lbC1 sinðbx̄Þ � lbC2 cosðbx̄Þ þ daC3 sinhðax̄Þ þ daC4 coshðax̄Þ. (36)

For segment CB (i.e., a/Lpx̄p1):

Ȳ 2 ¼ C5 sinðbx̄Þ þ C6 cosðbx̄Þ þ C7 sinhðax̄Þ þ C8 coshðax̄Þ, (37)
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Y2 ¼ lC5 cosðbx̄Þ � lC6 sinðbx̄Þ þ dC7 coshðax̄Þ þ dC8 sinhðax̄Þ, (38)

V̄ 2 ¼ �
b2s2

b
C5 cosðbx̄Þ þ

b2s2

b
C6 sinðbx̄Þ þ

b2s2

a
C7 coshðax̄Þ þ

b2s2

a
C8 sinhðax̄Þ, (39)

M̄2 ¼ �lbC5 sinðbx̄Þ � lbC6 cosðbx̄Þ þ daC7 sinhðax̄Þ þ daC8 coshðax̄Þ, (40)

where O, e, d, and l depend on the selected approach as described above. Eqs. (33)–(40) are given in terms of
eight constants: (C1–C8) which must be determined from the following boundary and compatibility
conditions. Boundary Conditions are

at x̄ ¼ 0:

V̄ 1ð0Þ þ S̄aȲ 1ð0Þ ¼ 0, (41a)

M̄1ð0Þ � RaY1ð0Þ ¼ 0 (41b)

and at x̄ ¼ 1:

V̄ 2ð1Þ � S̄bȲ 2ð1Þ ¼ 0, (41c)

M̄2ð1Þ þ RbY2ð1Þ ¼ 0. (41d)

Compatibility conditions are

at x̄ ¼ a=L (at the crack location):

Ȳ 1ðaÞ ¼ Ȳ 2ðaÞ ðdeflection compatibilityÞ, (41e)

dY1ðaÞ

dx̄
¼ RC ½Y2ðaÞ �Y1ðaÞ� ðspring equilibriumÞ, (41f)

V̄ 1ðaÞ ¼ V̄2ðaÞ þ S̄CȲ 1ðaÞ ðshear equilibriumÞ, (41g)

dY1ðaÞ

dx̄
¼

dY2ðaÞ

dx̄
ðbending equilibriumÞ. (41h)

Using Eqs. (16)–(19) in the eight conditions described by Eqs. (41a)–(41h), the following homogeneous set
of eight algebraic equations are obtained:

D11 D12 D13 D14 0 0 0 0

D21 D22 D23 D24 0 0 0 0

0 0 0 0 D35 D36 D37 D38

0 0 0 0 D45 D46 D47 D48

D51 D52 D53 D54 D55 D56 D57 D58

D61 D62 D63 D64 D65 D66 D67 D68

D71 D72 D73 D74 D75 D76 D77 D78

D81 D82 D83 D84 D85 D86 D87 D88

2
666666666666664

3
777777777777775

C1

C2

C3

C4

C5

C6

C7

C8

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

¼ 0, (42)

where D11 ¼ �b2s2=b; D12 ¼ S̄a; D13 ¼ b2s2=a; D14 ¼ S̄a; D21 ¼ �Ral; D22 ¼ �lb; D23 ¼ �Rad; D24 ¼ da;
D35 ¼ �ðb

2s2=bÞ cos b� S̄b sin b; D36 ¼ ðb
2s2=bÞ sin b� S̄b cos b; D37 ¼ ðb

2s2=aÞ cosh a� S̄b sinh a; D38 ¼

ðb2s2=aÞ sinh a� S̄b cosh a; D45 ¼ �lb sin bþ Rbl cos b; D46 ¼ �lb cos b� Rbl sin b; D47 ¼ da sinh aþ
Rbd cosh a; D48 ¼ da cosh aþ Rbd sinh a; D51 ¼ sinðbaÞ; D52 ¼ cosðbaÞ; D53 ¼ sinh ðaaÞ; D54 ¼ cosh ðaaÞ;
D55 ¼ � sinðbaÞ; D56 ¼ � cosðbaÞ; D57 ¼ � sinh ðaaÞ; D58 ¼ � cosh ðaaÞ; D61 ¼ �lb sinðbaÞ þ Rcl cosðbaÞ;
D62 ¼ �lb cosðbaÞ � Rcl sinðbaÞ; D63 ¼ da sinh ðaaÞ þ Rcd cosh ðaaÞ; D64 ¼ da cosh ðaaÞ þ Rcd sinh ðaaÞ;
D65 ¼ �Rcl cosðbaÞ; D66 ¼ Rcl sinðbaÞ; D67 ¼ �Rcd cosh ðaaÞ; D68 ¼ �Rcd sinh ðaaÞ; D71 ¼

�ðb2s2=bÞ cosðbaÞ � S̄c sinðbaÞ; D72 ¼ ðb
2s2=bÞ sinðbaÞ � S̄c cosðbaÞ; D73 ¼ ðb

2s2=aÞ cosh ðaaÞ � S̄c sinh ðaaÞ;
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D74 ¼ ðb
2s2=aÞ sinh ðaaÞ � S̄c cosh ðaaÞ; D75 ¼ ðb

2s2=bÞ cosðbaÞ; D76 ¼ �ðb
2s2=bÞ sinðbaÞ; D77 ¼ �ðb

2s2=aÞ
cosh ðaaÞ; D78 ¼ �ðb

2s2=aÞ sinhðaaÞ; D81 ¼ �lb sinðbaÞ; D82 ¼ �lb cosðbaÞ; D83 ¼ da sinhðaaÞ; D84 ¼

da coshðaaÞ; D85 ¼ lb sinðbaÞ; D86 ¼ lb cosðbaÞ; D87 ¼ �da sinhðaaÞ; and D88 ¼ �da coshðaaÞ.
Eq. (42) represents both the free-vibration and the stability eigenvalue problems of a Timoshenko beam-

column with generalized end conditions and with a weakened section along the span. By making the
determinant of the 8� 8 matrix equal to zero, the undamped natural frequencies (o) or the buckling loads
(Pcr) of the member AB can be determined directly for a given value of the applied axial force or for a given
frequency, and the corresponding modes of vibration or buckling modes from Eqs. (33)–(40) once the
corresponding eigenvectors (C1–C8) are determined. The static buckling loads and modes are determined also
from Eq. (42) by making o ¼ 0 in the eigenvalue problem.

The five comprehensive examples that follow show the validity and simplicity of the proposed methods and
Eqs. (33)–(42) using the two approaches described above. The first and second approach mentioned on each
example refers to the effect of shearing forces induced by the axial load considering either the bending rotation
only or the total slope, respectively. The objective of comparing both approaches is to assess the influence of
the coupling effect of shear and axial force in the dynamic and stability behavior of Timoshenko beam-
columns with a local flexibility at an arbitrary location. The first and second examples deal with the static
stability (under tension and compression axial loads) of columns made of concrete and pultruded fiber
reinforced polymer (PFRP), respectively. The results obtained are compared with different results from
literature: Timoshenko and Gere [20], Wang et al. [17], the computational package SAP2000 [24], Aristizabal-
Ochoa [13] and [25], and Roberts [26]. The third and fourth examples deal with the dynamic behavior of beams
and beam-columns made of concrete and glass fiber reinforced polymer (GFRP), respectively. These two
examples show the coupling effect between axial load and frequency as well as rotational inertia, shear
deformations, and axial load. The results are compared with Aristizabal-Ochoa [27] and SAP2000 [24]
according to different theories available in literature: Bernoulli–Euler, Rayleigh, Shear Beam, and
Timoshenko. Finally, the fifth example compared the proposed model with experimental data available in
the literature. All the examples are based on the assumption that the crack remains open, and in such a way
nonlinearities due to the compressive stresses over a closing crack surface are avoided.

4. Proposed examples

4.1. Static stability of a partially restrained slender concrete column with a weakened section (step by step

solution)

Using the left-side of the flowchart shown in Fig. 2 analyze a partially restrained square concrete column
(500� 500mm) with a weakened section at L/3 from the bottom assuming the following properties: E ¼ 12 kN/
mm2; G ¼ 5 kN/mm2; A ¼ 2.5� 105mm2; As ¼ 2.075� 105mm2; I ¼ 5.208� 109mm4; m̄ ¼ 0.600 kg/mm;
L ¼ 6000mm; Sa ¼ 15 kN/mm; Sb ¼ 25 kN/mm; ka ¼ 7.30� 107 kN-mm/rad; and kb ¼ 1.34� 107 kN-mm/
rad. Determine: (I) the first three static compression buckling loads and corresponding shapes assuming that
the magnitude of the flexural spring at the weakened section has a stiffness kc ¼ 1.04� 107 kN-mm/rad and (II)
the fundamental compression buckling load assuming that the column is pinned–pinned at both ends (i.e.,
ka ¼ kb ¼ 0, Sa ¼ Sb ¼N). Compare the obtained results with those reported by Wang et al. [17].

Solution
(I)
 The static buckling loads are determined numerically using an iterative procedure (the Regula-falsi
method is used herein) by making the determinant of Eq. (42) equal to zero and o ¼ 0. An initial trial
value of the critical load P is chosen and then the value of determinant is calculated. What follows are the
steps necessary to carry out the stability analysis:
Step 1: Calculation of dimensionless parameters:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

AsGL2

s
¼ 0:0409; R ¼

ffiffiffiffiffiffiffiffiffi
I

AL2

r
¼ 0:0241; S̄a ¼

SaL

AsG
¼ 0:0867; S̄b ¼

SbL

AsG
¼ 0:1446;
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Fig. 2. Flowchart utilized in the stability and free vibration analyses.

Table 1

Example 1: steps 2 and 3

Buckling load O e (� 10�8) b a (� 10�5) l d (� 10�5) det (� 10�13) Pcr (kN)

Eq. (11) Eq. (12) Eq. (14) Eq. (15) Eq. (20) Eq. (21) Eq. (42)

1st mode 5.9427 �1.2685 3.4475 3.2669 3.3816 3.2669 �1.9900 20,238

2nd mode 13.8834 �1.2996 5.2694 2.1634 5.0450 2.1634 �6.6098 46,150

3rd mode 20.3251 �1.3238 6.3757 1.8046 5.9926 1.8046 �42.0067 66,328

L.G. Arboleda-Monsalve et al. / Journal of Sound and Vibration 307 (2007) 89–11298
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Table 2

Example 1: step 4

Buckling load C1 C2 C3 C4 C5 C6 C7 C8

1st mode 1 �1.18 �43,275.35 1.50 0.39 0.17 �43,275.35 1.50

2nd mode 1 0.08 �248,039.38 2.67 1.94 5.10 �248,039.38 2.67

3rd mode 1 2.96 �1,225,798.27 13.34 �1.38 �0.88 �1,225,798.27 13.34

x/
L

-3
0

-2
Y (x)

0-1 2 3

1.00

0.75

0.50

0.25

1

Fig. 3. Example 1: buckling shapes of a weakened beam-column at x/L ¼ 1/3 calculated using 1st approach, 2nd approach, and SAP2000

[24]: ( ) 1st mode, ( ) 2nd mode, and ( ) 3rd mode.

Table 3

Example 1: critical loads, proposed method using both approaches and SAP2000 [24]

Mode Pcr (kN)

Proposed method SAP2000 [24]

1st approach 2nd approach

1 20,238 20,230 20,235

2 46,150 46,067 46,108

3 66,328 66,292 66,307
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Ra ¼
kaL

EI
¼ 7:0084; Rb ¼

kbL

EI
¼ 1:2865; a=L ¼ 1=3; Rc ¼

kcL

EI
¼ 0:9985.

Step 2: Calculation of o, e, b, a, l and d corresponding to each buckling mode according to Eqs. (11),
(12), (14), (15), (20) and (21) using the first approach (shear component proportional to the bending
rotation) or according to Eqs. (29), (30), (14), (15), (31) and (32) using the second approach (shear
component proportional to the total slope). Because of the low bending-to-shear ratio in this particular
example, the results obtained using both approaches are practically identical to each other. Table 1 lists
these values for the first three modes of buckling using the first approach.
Step 3: The process of making the determinant of Eq. (42) equal to zero is carried out numerically
(iterative). The values of the determinant and the corresponding buckling loads Pcr for the first three
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Table 4

Example 1: calculated results according to proposed model, Timoshenko and Gere [20], and Wang et al. [17]

Rc Pcr/P*

Proposed method Timoshenko and Gere [20] Wang et al. [17]

Sc ¼ 0 Sc ¼ 8 Sc ¼ 16 Sc ¼ 0 Sc ¼ 8 Sc ¼ 16 Sc ¼ 0 Sc ¼ 8 Sc ¼ 16

N 1 2.57 4 1 2.5 4 1 NA NA

1 0.3 2.25 4 NA NA NA 0.3 NA NA

0 0 2 4 NA NA NA 0 NA NA

Table 5

Example 2: beam-column properties

Column EI (� 107) (kN-mm2) GAs (� 103) (kN) P* (kN) P*/GAs

200� 200� 10mm, L ¼ 4.50m, major axis [26] 78.50 5.34 382.60 0.07

102� 51� 6.35mm, L ¼ 0.40m, minor axis [26] 0.45 1.34 278.20 0.21

152� 152� 6mm, L ¼ 8.00m [30] 26.70 2.77 41.17 0.01

152� 152� 6mm, L ¼ 1.00m [30] 26.70 2.77 2635.18 0.95

152� 152� 6mm, L ¼ 0.40m [30] 26.70 2.77 16,469.90 5.95
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modes are listed in the last two columns of Table 1. Notice that the values of the determinant are
practically zero.
Step 4: Using again Eq. (42) the corresponding eigenvectors (i.e., values of C1–C8 for each buckling mode)
are calculated. Table 2 lists these values for the first three modes of buckling.
Step 5: Using Eqs. (33) and (37) the shapes of each mode of buckling are determined. Fig. 3 shows these
shapes calculated using both methods and using the SAP2000 program [24] modeling the column with 50
elements. Table 3 lists the critical loads corresponding to each buckling mode. The agreements in the
buckling loads and mode shapes are excellent.
(II)
 To verify the proposed equations, the column was analyzed as simple supported at both ends (i.e.,
pinned–pinned column with ka ¼ kb ¼ 0 and Sa ¼ Sb ¼N) and with a weakened section at mid-height
and the results were compared to those calculated by: (a) Timoshenko and Gere [20, pp. 72–73], and
(b) Wang et al. [17]. These two models neglect the shear effects on the buckling load (i.e., Bernoulli–Euler
model). When the bending-to-shear parameter s is dropped from Eq. (10) the same solutions are obtained
regardless of the shear component approach under consideration. Table 4 lists the calculated results
obtained by the proposed method and those by Timoshenko and Gere [20, pp. 72–73] and by Wang et al.
[17] methods. The buckling loads are normalized with respect to P*( ¼ p2EI/L2

¼ 17,133.63 kN) for three
different values of lateral bracing (ScL/P* ¼ 0, 8 and 16) and for three different levels of cracking at mid-
height (Rc ¼ 0, 1, and N).
The proposed method is more general than that by Wang et al. [17] since it includes the effects of: (1) the
shear deformations along the span of each element; and (2) lateral bracing located at the cracked section. As
expected, the lateral bracing at mid-height increased the buckling load by a factor of four in this particular
example.

4.2. Static stability analyses under tension and compression of a series of columns made of pultruded fiber

reinforced polymer

Using the left-side of the flowchart shown in Fig. 2 analyze five columns made of PFRP assuming the
properties listed in Table 5. Determine: (I) the first three static buckling loads (tension and compression for
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Table 6

Example 2: critical loads, pinned-pinned columns (Rc ¼N)

Column Mode P+ (kN)a P�(kN)b

1st approach 2nd approach SAP2000 [24] 1st approach

(a) (b) (c) (d)

200� 200� 10mm, L ¼ 4.50m, major axis [26] 1 357.98 357.01 352.11 �5697.72

2 1239.53 1189.48 1176.56 �6579.64

3 2379.56 2093.45 2077.22 �7719.28

102� 51� 6.35mm, L ¼ 0.40m, minor axis [26] 1 236.26 230.37 232.21 �1576.09

2 721.78 607.93 611.67 �2061.87

3 1279.52 872.85 877.09 �2619.41

152� 152� 6mm, L ¼ 8.00m [30] 1 39.93 40.56 40.58 �2810.54

2 155.47 155.45 155.65 �2925.62

3 330.94 326.84 327.70 �3100.71

152� 152� 6mm, L ¼ 1.00m [30] 1 1649.58 1350.45 1351.37 �4419.85

2 4188.28 2193.55 2195.95 �6957.94

3 6833.25 2480.31 2483.36 �9603.74

152� 152� 6mm, L ¼ 0.40m [30] 1 5506.64 2371.19 2371.65 �8276.60

2 12,181.11 2658.23 2658.79 �14,951.13

3 18,915.38 2719.19 2719.77 �21,685.32

aP+ denotes compression axial load.
bP� denotes tension axial load.

Table 7

Example 2: critical loads, pinned–pinned columns (Rc ¼ 1)

Column Mode P+ (kN)a P�(kN)b

(P*/

AsG) 6¼0

(P*/AsG) 6¼0 (P*/

AsG) ¼ 0

Wang et al.

[17]

SAP2000

[24]

1st

approach

2nd

approach

1st

Approach

(a) (b) (c) (d) (e) (f)

200� 200� 10mm, L ¼ 4.50m, major axis

[26]

1 145.78 145.68 149.75 149.77 145.03 �5485.79

2 698.09 687.69 789.19 789.35 680.25 �6038.09

3 2038.00 1843.64 2813.76 2815.80 1828.25 �7378.00

102� 51� 6.35mm, L ¼ 0.40m, minor axis

[26]

1 101.25 100.71 108.90 108.89 103.3 �1441.25

2 433.64 401.84 573.84 573.96 445 �1773.63

3 1116.76 809.92 2045.96 2047.45 998.19 �2456.76

152� 152� 6mm, L ¼ 8.00m [30] 1 16.02 16.01 16.11 16.12 16.02 �2786.02

2 82.49 82.42 84.93 84.95 82.45 �2852.49

3 275.61 273.14 302.81 303.04 273.55 �3045.60

152� 152� 6mm, L ¼ 1.00m [30] 1 800.29 751.62 1031.10 1031.50 751.65 �3570.29

2 2735.42 1835.04 5425.67 5436.70 1835.61 �5505.42

3 6074.21 2423.81 19,255.20 19,394.06 2424.92 �8844.21

152� 152� 6mm, L ¼ 0.40m [30] 1 3062.04 1937.52 6446.65 6446.90 1937.66 �5832.04

2 8415.05 2561.21 33,972.43 33,979.35 2561.91 �11,185.05

3 16,991.01 2708.11 121,124.96 121,212.89 2709.00 �19,761.01

aP+ denotes compression axial load.
bP� denotes tension axial load.
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Fig. 4. Example 2: buckling shapes of a pinned–pinned beam-column under tension and compression calculated using 1st approach

(P+ and P�), 2nd approach (P+), and SAP2000 [24] (P+): (a) Rc ¼N; (b) Rc ¼ 1: ( ) 1st mode, ( ) 2nd mode, and ( ) 3rd

mode.
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o ¼ 0) and mode shapes of a pinned–pinned column assuming that Rc ¼N and 1 at x/L ¼ 0.25 from the
bottom end. Compare the results obtained using both approaches with those presented by Roberts [26], Wang
et al. [17], Aristizabal-Ochoa [13] and [25], and also with those using SAP2000 computer program [24]
(modeled with 50 segments along the column height L); and (II) the first three buckling loads and modes
(under tension and compression) for a clamped–pinned column whose properties are listed in Table 5 (row 5)
assuming that Rc ¼N and 1 at x/L ¼ 0.25 from the fixed end.

Solution:
(I)
 In Table 5 are the values of EI, GAs, Euler load (P* ¼ p2EI/L2) and the ratio P*/GAs for each of the
columns under analysis. Tables 6 and 7 show the results of the first three buckling loads (tension and
compression) obtained using both approaches, and those using the SAP2000 program [24] (modeled with
50 segments along the column height L) for Rc ¼N and 1 at x/L ¼ 0.25, respectively. Fig. 4 shows the
corresponding buckling modes. Based on the results shown in Fig. 4 and those listed in Tables 6 and 7, the
following conclusions can be drawn:
(1) The compressive and tensile critical loads listed in Table 6 [columns (a) and (d)] obtained with the first

approach of the proposed model for the case of Rc ¼N (uncracked column) are practically identical
to those calculated using the expression: Pcr ¼ PE=ð1þ Pcr=GAsÞ which yields the following
quadratic expression: P2

cr þ GAsPcr � GAsPE ¼ 0 whose solution for a pinned–pinned column is:

Pcr ¼ ðGAs=2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4PE=GAsÞ

p
� 1

� �
. This equation is referred as Haringx’s formula and detailed

by Bazant [28] for the compression buckling load and most recently presented by Aristizabal-Ochoa
[25] for both compression and tension loads, as shown above. Notice that the 1st mode compressive
critical loads listed in Table 6 [column (a)] are also those reported by Roberts [26]. The compressive
critical loads listed in Table 6 [columns (b) and (c)] obtained using the second approach and the
SAP2000 program [24] (modeled with 50 segments along the column) are similar to those obtained
using the first approach if the column is very slender (see case of 152� 152� 6mm, L ¼ 8000mm). On
the other hand, the results are quite different (lower buckling loads) using the second approach and
SAP2000 [24] [see columns (b) and (c), Table 6] from those using the first approach especially when the
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Table 8

Example 2: critical loads, clamped-pinned columns (Rc ¼N and 1)

Column Mode Rc ¼N Rc ¼ 1

P+ (kN)a P+ (kN)a P+ (kN)a P� (kN)b P+ (kN)a P+ (kN)a P+ (kN)a P� (kN)b

1st

approach

2nd

approach

SAP2000

[24]

1st

approach

1st

approach

2nd

approach

SAP2000

[24]

1st

approach

152� 152� 6mm,

L ¼ 0.40m

1 7268.12 2445.13 2445.75 �6089.36 6985.11 2309.40 2309.56 �4102.07

2 14,049.21 2666.00 2666.83 �12,895.27 9003.84 2564.38 2565.05 �11,053.71

3 20,813.46 2720.92 2721.80 �19,664.05 17,025.93 2708.17 2709.04 �19,589.87

aP+ denotes compression axial load.
bP� denotes tension axial load.
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column is short. This discrepancy is due to the fact that the second approach and the SAP2000 [24]
program include the effects of shear deformations using a much more conservative approach. These
results confirm that the first approach is more accurate whereas the second approach yields more
conservative buckling loads [20, p. 135]. These features are further discussed by Aristizabal-Ochoa [13]
and also shown by the results of the weakened Timoshenko beam-column analyzed herein.

(2) The compressive and tensile critical loads obtained with the proposed method for the case of Rc ¼ 1
and including the shear effects are listed in Table 7 [columns (a), (b) and (f)]. Also in columns (c) and
(d) are listed the compressive critical loads for the case of Rc ¼ 1 but neglecting shear effects
(Bernoulli–Euler column) obtained using the proposed method and that by Wang et al. [17]. The
results are practically identical to each other. Again, those calculated using the second approach and
the SAP2000 program [24] are similar to those obtained using the first approach for the slender
column (see case of 152� 152� 6mm, L ¼ 8000mm). However, the results are quite different (lower)
from those using the proposed method when the column is short.

(3) The buckling load capacities in tension and compression are reduced substantially by the shear
effects, particularly in short columns. For example, column 152� 152� 6mm with L ¼ 0.40m and
Rc ¼ 1 at x/L ¼ 0.25, its 1st mode compressive critical load, calculated using the first approach, is
reduced from 6447 to 3062 kN and its tensile critical load is also reduced from infinity to 5832 kN
when the shear effects are included. Therefore, it is very important to include the shear effects in short
columns.

(4) Fig. 4 shows that the buckling modes of all five cases studied of a column pinned–pinned are not
influenced by the shear effects and the selected approach in both cases of Rc ¼N and 1. The effect of
a crack at x/L ¼ 0.25 is that of a slope discontinuity at the crack. Similar to Fig. 3, the buckling
modes [determined using Eqs. (33) and (37)] using both approaches and to those obtained using the
SAP2000 program [24] are in perfect agreement.
(II)
 In Table 8 are the buckling loads (compression and tension for Rc ¼N and 1) and Figs. 5 and 6 show the
corresponding buckling shapes of the first three modes for the clamped–pinned column according to the
proposed method. The compression buckling loads and modes according to the SAP2000 program [24]
are also included for comparison. This program and the second approach do not have the capability of
determining the tension buckling modes since they do not include the effects of the shear force component
of the applied axial force according to the ‘‘modified’’ approach (using the bending rotation) as proposed
by Timoshenko and Gere [20]. This has been discussed recently by Aristizabal-Ochoa [13,25] on the
stability of elastomeric bearings under tension presented by Kelly [29].
Figs. 5 and 6 show clearly that for clamped–pinned columns, the buckling modes in compression and
tension are quite different from each other and are highly sensitive to the shear effects just mentioned.
In addition, the values of the compression buckling loads calculated using the first approach are also quite
different to those obtained using the second approach and the SAP2000 program [24]. These differences in the
modal shapes of Fig. 5 were not observed in the case of the pinned–pinned column (Fig. 4) and that of the
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Fig. 5. Example 2: buckling shapes of a clamped–pinned beam-column under compression: (a) Rc ¼N; and (b) Rc ¼ 1: ( ) 1st mode,

1st approach; ( ) 2nd mode, 1st approach; ( ) 3rd mode, 1st approach; ( ) 1st mode, 2nd approach and SAP2000 [24];

( ) 2nd mode, 2nd approach and SAP2000 [24]; and ( ) 3rd mode, 2nd approach and SAP2000 [24].
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Fig. 6. Example 2: buckling shapes of a clamped–pinned FRP column under tension (1st approach): (a) Rc ¼N; and (b) Rc ¼ 1:

( ) 1st mode, ( ) 2nd mode, and ( ) 3rd mode.
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slender concrete column of Example 1 (Fig. 3). However, the compressive buckling loads listed in Tables 6–8
indicate that the values obtained using the second approach and the SAP2000 program [24] are quite different
from those calculated with the first approach, except for the slender columns (i.e., those with a total height
over 4.50m whose behavior is controlled by bending rather than shear).
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Table 9

Example 3: steps 2 and 3 (P ¼ 0)

Mode of vibration O e b a l d Frequency (Hz)

Eq. (11) Eq. (12) Eq. (14) Eq. (15) Eq. (20) Eq. (21)

1st 0.0746 �66.2763 2.8663 2.8402 2.8277 2.8792 11.62

2nd 0.3686 �327.2690 4.2968 4.2102 4.1694 4.3403 25.82

3rd 1.1795 �1046.4937 5.7923 5.5849 5.4897 5.8988 46.18

Table 10

Example 3: step 4 (P ¼ 0)

Mode of vibration C1 C2 C3 C4 C5 C6 C7 C8

1st 1 �0.07 �0.63 0.80 0.78 0.24 �1.20 1.22

2nd 1 1.88 �1.22 1.42 0.85 2.95 �3.50 3.43

3rd 1 �16.26 7.03 �5.70 4.26 �7.61 �22.34 22.29
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4.3. Dynamics of a partially restrained square concrete column with a weakened section (step by step solution)

Using the right-hand side of the flowchart shown in Fig. 2 determine the variation of the natural frequencies
corresponding to the first three modes of vibration with the applied axial load P for the partially restrained
square concrete column (500� 500mm) of Example 1 assuming that has a weakened section at x ¼ L/3 with
kc ¼ 1.04� 107 kN-mm/rad. Analyze the column using both approaches.

Solution:
To determine the effects of the applied axial load on the natural frequencies and modal shapes the

determinant of Eq. (42) must be made equal to zero for different values of P. The natural frequencies must be
determined numerically using an iterative procedure (the Regula-falsi method is used herein) to carry out such
analysis. An initial trial value of the natural frequency is chosen and then the value of determinant is
calculated. What follows are the steps necessary to carry out the dynamic analysis.

Step 1: Calculation of dimensionless parameters: R, S̄a, S̄b, Ra, Rb, a/L and Rc. These are identical to those
in Example 1. However, the parameter F corresponding to the applied axial load is varied from the critical
load in compression (resulting in o ¼ 0) to some value of P in tension (chosen arbitrarily as P ¼ �10,000 kN
for this example).

Step 2: Calculation of o, e, b, a, l and d corresponding to each mode of vibration according to Eqs. (11),
(12), (14), (15), (20) and (21) using the first approach or Eqs. (29), (30), (14), (15), (31) and (32) using the
second approach. These values are listed in the first six columns of Table 9 for the particular case of P ¼ 0. As
in Example 1, the results obtained using both approaches are practically identical to each other, because of the
low bending-to-shear ratio.

Step 3: The process of making the determinant of Eq. (42) equal to zero is carried out numerically
(iterative). The values of frequency in Hz (f ¼ o/2p) are listed in the last column of Table 9.

Step 4: Using again Eq. (42) the corresponding eigenvectors (i.e., values of C1–C8 for each mode of
vibration) are calculated. Table 10 lists these values for the first three modes of buckling for the particular case
of P ¼ 0.

Step 5: Each mode of vibration is determined using Eqs. (33) and (37). Fig. 7 shows the modal shapes
calculated using Eqs. (33) and (37) by both approaches and also the modal shapes obtained using the SAP2000
program [24] for the particular case P ¼ 0. The modal shapes using the three methods are in excellent
agreement with each other.

Fig. 8 shows the variation of the natural frequency with the applied axial load (tension and compression)
using the first approach. Table 11 lists the values of the frequencies obtained using both approaches and
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a model of the column with 50 elements using the SAP2000 program [24] for P ¼ 0, showing that for this
particular case the results from both approaches and the FEM model are within 1.1%.

It is important to emphasize that the first approach [i.e., that based on Eqs. (3)–(21) that assumes that the
shear component induced by the applied axial load is proportional to the bending rotation] is the only one
capable to capture buckling under tension. The second approach and the SAP2000 program which uses the
Bernoulli–Euler beam do not capture the phenomenon of buckling under tension.
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Table 11

Example 3: natural frequencies (Hz), proposed method using both approaches and SAP2000 [24]

Mode Frequency (Hz) (P ¼ 0)

Proposed method SAP2000 [24]

1st approach 2nd approach

1 11.62 11.62 11.62

2 25.82 25.82 25.89

3 46.18 46.18 46.69

Table 12

Example 4: natural frequencies (Hz) of a pinned-free member

Beam length, L (m) Mode Rc ¼N Rc ¼ 1

Flexural beam PMa PMa PMa Shear-beam [27] PMa

s ¼ 0 and R6¼0 s6¼0 and R6¼0 s ¼N and R 6¼0 s6¼0 and R 6¼0

(a) (b) (c) (d) (e) (f)

4.00 1 0.0304 0.0303 0.0293 0.1141 0.1141 0.0169

2 0.0985 0.0974 0.0873 0.1962 0.1962 0.0829

3 0.2056 0.2012 0.1630 0.2770 0.2770 0.1423

1.00 1 0.4865 0.4610 0.3284 0.4546 0.4546 0.2281

2 1.5765 1.3843 0.6882 0.7808 0.7808 0.6579

3 3.2893 2.6332 1.0284 1.0993 1.0993 1.0133

0.40 1 3.0406 2.3223 1.0176 1.0903 1.0904 0.8844

2 9.8533 5.8721 1.5704 1.5819 1.5819 1.5704

3 20.5582 9.8350 2.0041 2.0414 2.0414 1.9112

aPM denotes proposed model.
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4.4. Effects of rotational inertia, shear deformations, and axial load on the free vibration of a weakened pinned-

free GFRP beam

Using the first approach and assuming the following properties for a pinned-free beam: E ¼ 24.05932kN/mm2;
G ¼ 3.03728kN/mm2; A ¼ 2664mm2; As ¼ 912mm2; I ¼ 11,097,568mm4; and m̄ ¼ 0.0067932kg/mm, cracked
at mid-span with Rc ¼ 1; determine: (I) the natural frequencies corresponding to the first three modes of vibration
for three different span lengths (L ¼ 4.0, 1.0 and 0.4m). Compare the obtained results for the uncracked beam
(i.e., Rc ¼N) using the proposed model (including the simultaneous effects of flexural and shear deformations,
translational and rotational inertias) with those modeled as a flexural member (Bernoulli–Euler), and as a shear
beam (as suggested by Aristizabal-Ochoa [27] including the effects of the beam rotational inertia); (II) the modal
shapes corresponding to the first three-modes of vibration for two different span lengths (L ¼ 4.0 and 0.4m) for
the uncracked beam; and (III) the variation of the first three natural frequencies with the applied axial load
(tension and compression) for the uncracked beam with Rc ¼ 1 at mid-span.

Solution:
(I)
 Table 12 lists the natural frequencies corresponding to the first three modes of vibration for the three span
lengths under consideration with the member modeled as a flexural member (Bernoulli–Euler theory),
using the proposed model (including the simultaneous effects of flexural and shear deformations,
translational and rotational inertias), and as a shear beam (as suggested by Aristizabal-Ochoa [27]
including rotational inertia). The values listed in columns (b)–(d) are according to the proposed method as
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Fig. 9. Example 4: vibration shapes of a pinned-free GFRP beam: (a) 1st mode, L ¼ 4.00m; (b) 2nd mode, L ¼ 4.00m; (c) 3rd mode,

L ¼ 4.00m; (d) 1st mode, L ¼ 0.40m; (e) 2nd mode, L ¼ 0.40m; and (f) 3rd mode, L ¼ 0.40m: ( ) Timoshenko, ( ) Bernoulli,

( ) Rayleigh, and ( ) shear building [27].
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indicated: (1) s ¼ 0 and R 6¼0, [i.e., neglecting shear deformations but including rotational inertia
(Rayleigh theory)]; (2) s 6¼0 and R6¼0 [i.e., including shear deformations and rotational inertia
(Timoshenko theory)]; and (3) s ¼N and R 6¼0 [i.e., neglecting flexural deformations but including
rotational inertia (shear-beam theory)]. Column (f) lists the values according to the proposed method with
s 6¼0 and R 6¼0 (Timoshenko theory) and Ra ¼ 1 at mid-span. Based on the results listed in Table 12, the
following conclusions can be drawn:
(i) The values listed in columns (a) and (b) are very similar to each other for the slender beam

(L ¼ 4.00m) only. For shorter members (L ¼ 1.0 and 0.4m), the results listed in column (a) which are
based on the classic Bernoulli–Euler theory are different from those listed in column (b) which are
based on Rayleigh theory and quite different from those listed in column (c) which are based on
Timoshenko theory. These differences become even larger in the higher modes of vibration in which
the effects of rotational inertia and shear deformations become significant. These effects are discussed
by Aristizabal-Ochoa [19].
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(ii) The values listed in column (d) are identical to those of column (e) calculated using the formula
presented by Aristizabal-Ochoa [27] for shear beams with the rotational inertia effects included.

(iii) As expected, a flexural crack along the member and away from its ends, reduce significantly its
natural frequencies, particularly the 1st mode frequency in slender members, as indicated by the
values listed in column (f).

(iv) Fig. 9a–f show the modal shapes corresponding to the first three modes of vibration for two different
span lengths (L ¼ 4.0 and 0.4m, respectively) calculated using Bernoulli–Euler, Rayleigh, Shear Beam,
and Timoshenko (i.e., the proposed model) theories. Fig. 9a–c show that the first three modes of
vibration calculated using Bernoulli–Euler, Rayleigh and Timoshenko theories are very similar to each
other for the slender beam (L ¼ 4.0m) only. In slender members the dynamic behavior is controlled by
flexural deformations and translational inertia and the effects of shear deformations and rotatory inertia
are not significant, particularly in the lower modes of vibration. For the short member (L ¼ 0.40m),
however, the frequencies and modal shapes (Fig. 9d–f) are controlled by shear deformations and rotatory
inertia, this is why the results obtained using the models of Timoshenko and that of the shear beam are
practically identical to each other. These effects were also discussed by Aristizabal-Ochoa [19].
(II)
 Fig. 10 shows the variation of the first three natural frequencies with the applied axial load (tension and
compression) for a hinged-free beam of L ¼ 400mm with a weakened section at mid-span (Rc ¼ 1). The
values indicated along the vertical axis are the natural frequencies when the axial load is zero. The values
indicated along the horizontal axis are the static buckling loads in tension (negative) and compression
(positive). In general, compression loads reduce the natural frequencies. Tension loads increase the
natural frequencies up to some peak values, and then they are reduced dramatically. In this particular
example, at a tension load of P ¼ 2850 kN the 1st mode natural frequency becomes a maximum
(f ¼ 0.3984Hz), and at a tension load of P ¼ 3696 kN the member reaches tension buckling and the 1st
mode natural frequency is reduced to zero.
4.5. Simply supported aluminum rectangular beam (experimental comparison)

In order to compare the proposed model with more results available in literature, the particular case of a
simply supported aluminum beam, tested by Chondros et al. [4] and Chondros [5] in the University of Patras,
Greece, is studied using the first approach and compared with the experimental results. The properties of the
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member are as follows: E ¼ 72 kN/mm2; G ¼ 26.67 kN/mm2; A ¼ 152.4mm2 (rectangular section:
6� 25.4mm); As ¼ 126.5mm2; I ¼ 8193.5mm4; m̄ ¼ 4.267� 10�4 kg/mm; and L ¼ 235mm.

The flexibility induced by the crack was calculated according to Chondros [5] following the fracture
mechanics formulation (for a rectangular section assuming open crack):

kc ¼
EI

6phð1� n2ÞFI ðxÞ
, (43)

where FI(x) is defined as

FI ðxÞ ¼ 0:6272x2 � 1:04533x3 þ 4:5948x4 � 9:9736x5 þ 20:2948x6 � 33:0351x7

þ 47:1063x8 � 40:7556x9 þ 19:6x10. ð44Þ

The variable x into Eq. (44) is the ratio of the crack depth to the height of the rectangular cross section.
Note that the results presented in Fig. 11 agree well with those reported by Chondros et al. [4] and Chondros

[5] assuming local flexibility and with those obtained from the experimental test performed on the aluminum
beam.
5. Summary and conclusions

The stability and free vibration analyses of a Timoshenko beam-column with generalized end conditions
(i.e., with semi-rigid connections and lateral bracings at both ends) and weakened by a cracked section along
its span are presented. The magnitude and location of the weakened section are both arbitrary and
independent of each other. The magnitude of the crack is modeled as an intermediate flexural connection of
zero length producing a member with two-segments with rotational discontinuity at the crack location but of
identical lateral deflection. It is shown that the buckling loads in tension and compression are reduced
substantially by the shear effects, particularly in short beam-columns. As expected, the lateral bracing located
at the weakened section alleviates the detrimental effects of the crack. Therefore, it is very important to include
these effects. The proposed model and equations are general including the following effects: (1) the coupling
between the shear and bending deformations along the member’s span; (2) the coupling between the
translational and rotational masses of the member uniformly distributed along its span; (3) static axial loads
(tension or compression) applied at the ends; and (4) shear forces along the member induced by the applied
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axial loads as the beam-column deforms according to two different approaches proposed by Timoshenko and
Gere [20].

The effects of shear deformations on the stability and natural frequencies of slender beam-columns can be
neglected and models based on the Bernoulli–Euler theory give acceptable results. However, for intermediate
and short span members these effects must be included since they reduced their buckling loads and natural
frequencies. It was found that the method based on Eqs. (3)–(21) (denoted as the first approach in this paper
that assumes that the shear component induced by the applied axial load is proportional to the bending
rotation) is more accurate and the only one capable to capture the phenomenon of buckling under tension in
members with low shear stiffness. The second approach presented herein (that assumes that the shear
component induced by the applied axial load is proportional to the total slope of the member axis) and the
SAP2000 [24] which uses the Bernoulli–Euler beam do not capture the phenomenon of buckling under tension.
Finally, results obtained from the stability and natural vibration analyses of short beam-columns using the
first approach differ greatly from those obtained using the second approach and the SAP2000 program [24].
For this reason, the first approach which is identical to the ‘‘modified’’ method (Haringx column) proposed by
Timoshenko and Gere is strongly recommended in the stability and free vibration analyses of structures made
of beam-columns.
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