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Abstract

In this article, we identify and quantify discontinuous compliance nonlinearities of hydraulic engine mounts. First,

asymmetric nonlinearities are identified in transient step-up and step-down responses by using a quasi-linear mount model

with parameters that are estimated from measured dynamic stiffness data. Second, an improved multistaged top chamber

compliance model is developed which confirms the existence of highly nonlinear region(s) during the step transitions as

well as during the decaying transients. Third, new semi-analytical solutions for both step-up and step-down responses have

been successfully constructed by using a linear time-varying system formulation that incorporates time-varying

compliance. Fourth, a mean displacement-dependent model is proposed for the bottom chamber compliance. It clearly

explains the stiffening effect in measurements under higher mean loads. Finally, competing quasi-linear, linear time-

varying and nonlinear formulations are comparatively evaluated for step and realistic excitations. Transient measurements

confirm the validity of models, as well as their applicability and limitations.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Hydraulic engine mounts are highly nonlinear devices and their cross-point dynamic stiffnesses (K)
significantly vary with the amplitude (X) and frequency (f) of sinusoidal excitation [1–4]. Their steady-state
characteristics have been extensively reported, usually in the form of K(f, X), based on experimental and
analytical studies [1–10]. However, under transient and realistic loading conditions, new nonlinear phenomena
emerge. These include asymmetric step responses [11,12] and the stiffening of chambers under increased mean
load. Such responses cannot be explained by the existing models [1–14]. Therefore, an in-depth study is needed
to investigate the discontinuous nature of the top and bottom chamber compliances. This is the main focus of
this article.

The following literature is reviewed with focus on nonlinear top chamber compliance (C1) and bottom
chamber compliance (C2) models and associated bench tests. Specific mount nonlinearities were first investigated
by Kim and Singh [2,3] who measured the nonlinear C1 and C2 as well as the inertia track resistance (Ri) of a
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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fixed decoupler mount from bench experiments. Colgate and Chang [4] tested several mounts under dual
sinusoidal excitations on an elastomer test machine and proposed two separate linear models for large and small
amplitudes. Royston and Singh [5] employed Kim and Singh’s model [3] as a localized nonlinearity and
examined its effect on the vibratory power transmission. Jeong and Singh [6] suggested a nonlinear time-domain
model based on a quasi-linear model with frequency- and amplitude-dependent parameters. Further, Geisberger
et al. [7] have tested fluid chamber compliances, inertia track and decoupler parameters. Jazar and Golnaraghi
[8,9] proposed a simplified nonlinear mathematical model in terms of the Duffing’s equation (continuous
nonlinearity). Foumani et al. [10] conducted a sensitivity analysis and concluded that C1 and inertia track
inertance Ii are the most influential parameters in the dynamic stiffness over the lower frequency range, while C1

and decoupler inertia md are more influential at higher frequencies. Tiwari et al. [11] refined the bench
experiments that were initially proposed by Kim and Singh [3] and further quantified C1 and C2 parameters
under several preloads. Also, they investigated the vacuum formation that was first observed by Kim and Singh
[2,3]. They [12] also examined the mount behaviors to several transient excitations and successfully predicted the
transient responses based on a nonlinear formulation with experimentally characterized parameters or functions.
Recently, we [13] proposed an efficient procedure that estimates the amplitude-sensitive parameters of a quasi-
linear model based on measured K(f, X) data.

Other nonlinear mechanisms, such as the decoupler switching actions and nonlinear fluid resistances, could
also be dominant under certain operational conditions. One may also refer to [7,11,12] for testing and
modeling procedures; for instance, one could measure nonlinear fluid resistances Ri(qi) and Rd(qd), where qi(t)
and qd(t) are the volumetric flow rates through the inertia track and decoupler, respectively. Lee and Kim [14]
have proposed an equivalent viscous damping expression for inertia track based on a nonlinear model.
Further discussion of such nonlinear issues is beyond the scope of this article.

2. Problem formulation

2.1. Scope and objectives

Although several nonlinear models have been proposed and validated to some extent, some key questions
still remain: Are the nonlinear models based on statically measured parameters [2,11] applicable to real-life
excitations or operational conditions? Which nonlinearities would be excited under transient conditions,
especially when a rapid change in the loading condition takes place, or when the preload Fm itself may also
vary with time? Further, how should we comparatively evaluate the competing linear, quasi-linear and
nonlinear formulations? Accordingly, we formulate the following objectives for this article: (1) Propose an
improved multistaged C1(p1) formulation to capture the asymmetric responses including dynamic stiffening
and softening (vacuum) effects, where p1 is the dynamic top chamber pressure. (2) Develop a new semi-
analytical model with time-varying C1(t) to predict the asymmetric step responses. (3) Propose a refined C2(xm)
formulation to explain the stiffening effect observed under increased mean loads, where xm is the mean
displacement. (4) Validate proposed nonlinear and semi-analytical linear time-varying formulations by
comparing predictions with measurements (and with quasi-linear models) under step and realistic excitations.

2.2. Fluid system formulation with nonlinear parameters

Consider the fluid system of Fig. 1 where control volumes are used to describe a free decoupler-type mount
[12]. System parameters include the fluid chamber compliances C1 and C2 of the top (#1) and bottom (#2)
chambers, stiffness kr and viscous damping br of the rubber element (#r), fluid resistance Ri and inertance Ii of
the inertia track (#i), inertance Id and resistance Rd of the decoupler (#d). A composite displacement excitation
xt(t) is applied under a mean load Fm. Here, we will summarize only those equations that are necessary for
further development of the nonlinear and semi-analytical models. Considering only the time-varying
components, the ‘‘virtual’’ driving point dynamic force F(t) could be defined as follows, where x(t) is the piston
displacement, mr is the mass of rubber element and Ar is the effective piston area:

F ðtÞ ¼ mr €xðtÞ þ br _xðtÞ þ krxðtÞ þ Arp1ðtÞ. (1)
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Fig. 1. Lumped fluid model of hydraulic mount with inertia track and decoupler.
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Continuity equations for the top and bottom chambers yield the following in terms of nonlinear
compliances C1(p1) and C2(xm) that will be discussed later. Here, p2(t) is the dynamic pressure in the bottom
chamber:

Ar _xðtÞ � qiðtÞ � qdðtÞ ¼ C1ðp1Þ _p1ðtÞ; qiðtÞ þ qdðtÞ ¼ C2ðxmÞ _p2ðtÞ. (2,3)

Momentum equations for the decoupler and inertia track (with nonlinear resistances) yield the following:

p1ðtÞ � p2ðtÞ ¼ Id _qd ðtÞ þ RdðqdÞqdðtÞ; p1ðtÞ � p2ðtÞ ¼ I i _qiðtÞ þ RiðqiÞqiðtÞ. (4,5)

Note that Eq. (4) dictates the ‘‘decoupled’’ state when the decoupler gap is open, and Eq. (5) is dominant
over the ‘‘coupled’’ state when the decoupler gap closes. The force transmitted to the rigid base FT

t(t) is often
viewed as a measure of mount performance in non-resonant tests [1]. Its dynamic component FT(t) is related to
F(t) as follows:

FT ðtÞ ¼ krxðtÞ þ br _xðtÞ þ Arp1ðtÞ ¼ F ðtÞ �mr €xðtÞ. (6)
3. Discontinuous compliance nonlinearity of top chamber

3.1. Asymmetric step responses

Since C2bC1 and the fluid springs k1 ¼ Ar
2/C1 and k2 ¼ Ar

2/C2 act in series [13], C2 dictates the
overall fluid path stiffness as well as the mean chamber pressure, while C1 plays a pivot role in influ-
encing the transient behaviors. Consider transient excitations with a rapid change in the mean load such
as the non-ideal step-up and step-down excitations that are shown later in Figs. 6(a) and 7(a). Owing
to the limitations of elastomer test machine, smoothened (and not abrupt) transitions with finite slopes
exist during the step-up and step-down events. Such excitations could be formulated as
x(t) ¼ Xampu(t�tstep)+Xm, where tstep is the nominal timing of step transition, Xamp is the step amplitude,
u(t) of unity amplitude denotes either the step-up-like function uup(t) or the step-down-like function udown(t),
and Xm is the offset in the displacement away from zero before the step event takes place. Significant
asymmetries were observed in the measured peak values of FT(t) and p1(t) responses [11,12], suggesting a
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softening (vacuum) nonlinearity of C1 during the expansion process, and a dynamic hardening of C1 during
the rapid loading (compressive) event.
3.2. Predictions using a quasi-linear model and comparisons with measurements

In order to quantify the above-mentioned multistaged nonlinearities, experiments were conducted using a
take-apart mount (designated as D). Parameters of this mount are as follows: kr ¼ 320e3N/m, br ¼ 0.5e3N s/
m, Ar ¼ 3.31e-3m2, Ri ¼ 3.45e7 kg/sm4, inertia track length li ¼ 0.236m, Ii ¼ 2.8le6 kg/m4, decoupler
damping bd ¼ 100N s/m, decoupler gap length lg ¼ 1.1e-3m, and md ¼ 6e-3 kg. The linearized nominal
chamber compliances are C10 ¼ 2.5e-11m5/N and C20 ¼ 2.4e-9m5/N. As a first estimate, effective top
chamber compliances C1e are approximated by using the quasi-linear model [13] to best curve-fit either the
step overshoot or decaying transient given various step excitations. Comparisons of predictions and
measurements in Figs. 2–5 show that the quasi-linear model (with a constant C1e) fails to concurrently predict
both the overshoot and the decaying transient of step responses due to significant changes in C1e during the
step transition.

Compare the estimated C1e values in Table 1(a) with the linearized C1 values in Table 1(b) that were
previously measured [11] at several Fm levels. Note that C1e of the step-up overshoot (from �3.7 to 0mm) is
consistent with the measured C1 under no preload. Conversely, C1e estimated from the step-down overshoot
(from 0 to �3.7mm) coincides with C1 measured under Fm ¼ �1200N (or xm ¼ �3.7mm). Meanwhile, C1e

values estimated from the decay transients are consistent for all step responses. Also, these C1e values (ranging
from 2.17e-11 to 2.99e-11m5/N) match well with the nominal C10 value (2.5e-11m5/N), which is a linearized
(and averaged) value based on several operational conditions [11]. The fact that C10 lies between the effective
C1e values estimated from step-up and step-down overshoots implies that: First, during the unloading (or step-
up) process, a dynamic softening effect occurs, which could be explained by the vacuum phenomenon due to a
release of dissolved gas under reduced pressure, as suggested by Kim and Singh [2] and Adiguna et al. [12].
Second, a dynamic stiffening effect takes place during the loading (or step-down) process. Third, a linear
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Fig. 2. Transient responses to non-ideal step-up (xm from �3.7 to �1.32mm) excitation. Key: , measurements; , predictions by

quasi-linear model with effective C1e (estimated using the decaying transients).
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Fig. 3. Transient responses to non-ideal step-up (xm from �3.7 to �1.32mm) excitation. Key: , measurements; , predictions by

quasi-linear model with effective C1e (estimated using the overshoot).
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Fig. 4. Transient responses to non-ideal step-down (xm from �1.32 to �3.7mm) excitation. Key: , measurements; , predictions

by quasi-linear model with effective C1e (estimated using the decaying transients).
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Fig. 5. Transient responses to non-ideal step-down (xm from �1.32 to �3.7mm) excitation. Key: , measurements; , predictions

by quasi-linear model with effective C1e (estimated using the overshoot).

Table 1

Estimated or measured top chamber compliance C1 values

(a) Effective C1e values estimated from responses to step-up and step-down excitations

Non-ideal displacement excitation C1e (m
5/N) from first overshoot value C1e (m

5/N) from decaying transient curve

Step-up from �3.7 to 0mm 7.63e�11 2.99e�11

Step-up from �3.7 to �1.32mm 5.28e�11 2.45e�11

Step-down from 0 to �3.7mm 1.09e�11 2.39e�11

Step-down from �1.32 to �3.7mm 1.26e�11 2.17e�11

(b) Measured C1 values from static tests

Condition Static load Fm (N) Measured C1 (m
5/N)

Above pa 0 7.29e�11

�800 1.05e�11

�1200 1.09e�11

�1200 2.5e�11 (C10)

Below pa C1 ¼ �7e�45 p1
7+2.5e�11 (here p1 is in Pa)

S. He, R. Singh / Journal of Sound and Vibration 307 (2007) 545–563550
region exists between the softening and hardening regions, during which a linearized (quasi-linear) model
should suffice [13].

3.3. Nonlinear time-varying C1(p1) model

Using p1(t) as a dynamic indicator of operating conditions, the dual-staged C1(p1) model [12] is extended to
describe the discontinuous nonlinear formulation under vacuum, linear (where C10 is the measured compliance
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under nominal static load) and dynamic loading conditions as

C1ðp1Þ ¼

C10 � aV pnV

1 ðtÞ; p1ðtÞo0 ðvacuum regionÞ;

C10; 0pp1ðtÞppa ðlinear regionÞ;

C10 � aS½p1ðtÞ � pa�
nS ; paop1ðtÞ ðstiffening regionÞ:

8><
>: (7)

Here, empirical coefficients aV and aS as well as polynomial order indices nV and nS could be estimated from
static measurements [11]. For instance, empirical coefficients for the sample mount (D) are obtained as
aV ¼ 7e-45, aS ¼ 1.55e-33, nV ¼ 7 and nS ¼ 4. The linearized C10 ¼ 2.5e-11m5/N dictates the decaying
response, and pa ¼ 101 kPa is the limiting (atmospheric) pressure beyond which significant stiffening effect will
occur.

3.4. Predictions by nonlinear model and comparisons with measurements

Considering the complexity introduced by at least two localized nonlinearities such as C1(p1) and C2(xm),
closed-form solutions for p1(t) or FT(t) are not feasible. Hence, numerical integration based on the 4/5 order
Runge–Kutta algorithm is utilized to simultaneously solve all nonlinear governing equations in time domain.
Numerical results should provide insights into interactions between nonlinear elements or processes, which are
then expected to lead to semi-analytical treatments. Predicted step-up responses of the fixed decoupler mount
using both the multistaged C1(p1) and a constant C10 are compared with measurements in Fig. 6. Note that the
constant C10 formulation is clearly not sufficient to capture the vacuum phenomenon featured by the flattened
regions in FT(t) and p1(t) responses. Predicted time-varying C1(t) of Fig. 6(d) suggests two response regions
including a highly nonlinear initial stage where C1 is a function of time, and a second decaying stage where C1

is almost constant (and linear).
Predicted step-down responses of the fixed decoupler mount are compared with measurements in Fig. 7;

predictions are again based on the multistaged C1(p1) and constant C10 models. Dynamic stiffening
phenomena are observed during the step-down process, resulting in higher peaks in FT(t) and p1(t) responses.
Also, the time-varying C1(t) based on the C1(p1) model shows significant and yet smooth reduction during the
step-down transition. Although significant vacuum phenomenon is predicted by the nonlinear model,
measurements imply that the stiffening effect dominates the transient response. Hence, the step-down response
could be approximately predicted (in a piecewise manner) by first employing the time-varying C1(t) model with
hardening characteristics and then utilizing a quasi-linear model with nearly constant C10 in the decaying
region.

4. Construction of semi-analytical solutions to step responses

4.1. Conceptual time-varying C1(t) model

A careful comparison between the step-up displacement excitation x(t) of Fig. 6(a) and time-varying C1(t) of
Fig. 6(d) suggests that C1(t) could be empirically related to the excitation velocity _xðtÞ. Similar conclusion
could also be drawn for step-down responses by comparing x(t) of Fig. 7(a) with C1(t) of Fig. 7(d) and
neglecting the less dominant vacuum effect. Such an interrelationship is conceptually illustrated next.

Assume that gas of mass M and gas constant R is entrained in the top chamber. Also, assume an isothermal
process (constant temperature T) during the step transients. Application of the ideal gas law at any instant
results in the following equations where Vgas(t) and pgas(t) are the gas volume and pressure, respectively (with
MRT remains constant):

pgasðtÞ ¼
MRT

VgasðtÞ
; dpgas ¼ �

MRT

V2
gasðtÞ

dVgas. (8a,b)

During the rapid step transition, the fluid exchange between two chambers is negligible due to high inertia
track resistance. Thus, we assume a closed system and define an effective (and constant) fluid bulk modulus Bf

[15]. Further, assume that only a small amount of entrained gas exists so that the top chamber volume could
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be approximated by V f 0 at the operating point. An infinitesimal change dVf is found by applying the Hooke’s
law as

dV f ¼ �
V f 0

Bf

dpf . (9)

The effective C1e(t) could now be derived as follows, where pf(t) and pgas(t) correspond to the pressures of
fluid and gas components, respectively.

C1eðtÞ ¼
dV gas þ dV f

dp1

����
���� ¼ ðV

2
gasðtÞ=MRTÞdpgas þ ðV f 0

=Bf Þdpf

dp1

. (10a)
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By assuming dpgas ¼ dpf ¼ dp1 during the transient event, we simplify Eq. (10a) as

C1eðtÞ ¼
V2

gasðtÞ

MRT
þ

Vf 0

Bf

. (10b)

Linearize the nonlinear C1e(t) formulation at the operating condition (say at t ¼ t0) using the Taylor’s-series
expansion, and designate Dt ¼ t�t0 as the duration of step event:

C1eðtÞ ¼ C10 þ
dC1eðtÞ

dt
Dt. (11a)

Since the bulk modulus of gas alone is much lower than that of the effective fluid bulk modulus (Bg5Bf ), it
is assumed that dVgasbdVf so that dVgasEAr dx. Thus,

dC1eðtÞ

dt
¼

2V gas;0

MRT

dV gas

dt
¼

2Vgas;0Ar

MRT
_xðtÞ, (11b)
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C1eðtÞ ¼ C10 þ
2V gas;0ArDt

MRT
_xðtÞ. (11c)

Here, Vgas,0 is the gas volume in the top chamber at the operating point. Although the compliance due to
rubber element is not considered in our derivation, its contribution is already included in the constant C10 (via
effective Bf) and thus it should not have much influence on the time-varying component. Further, the time-
varying C1e(t) could be related to the excitation velocity, as observed in Figs. 7 and 8. Such an approximation
of C1e(t) using _xðtÞ would lead to an alternate and yet simplified nonlinear modeling technique as compared to
the multistaged C1(p1) formulation, since no prior knowledge is needed for the dynamic p1(t) response. Also,
Eq. (11) suggests that the discontinuous nonlinearity of C1e(t) becomes dominant only under significant
change in _xðtÞ. This observation is consistent with earlier findings [13,16] that a quasi-linear model is sufficient
to predict responses to simple transients such as the triangular excitations. Despite the assumption that a
certain (though small) amount of entrained gas exists in the fluid chamber, additional released gas during the
expansion process (depending on the operational conditions) will lead to further softening with an increased
value of Cle(t). Likewise, the effect of dissolved gas during the loading procedure will enhance the hardening
effect with a lower Cle(t) value. Finally, given all the assumptions and simplifications made in the derivation as
well as the difficulty in obtaining an accurate estimate of Vgas,0 and M, a direct comparison of the analytical
prediction based on Eq. (11) with experiments will be difficult. Therefore, Eq. (11) is used as a conceptual
model that explains the nonlinear C1(t) phenomenon though it leads to a semi-analytical study in the next sub-
section.

4.2. Time-varying C1 formulation based on smoothening junction approximations

Recall that the experimentally implemented step functions of Figs. 6 and 7 are not ideal transients.
Consequently, these excitations could be approximated using the smoothening functions suggested by Kim et
al. [17]. This would allow us to develop analytically tractable formulations for step excitations and C1e(t)
(based on the implication of Eq. (11)). We approximate the unit step-up excitation uup(t) by using three types
of smoothening functions [17]. Define t ¼ t�tstep as the shifted time with respect to the step event; the
transition factor d could be adjusted to tune the slope of smoothened step transition, as a large value of d
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would yield a close approximation of the ideal step function. First, define the unit hyperbolic-tangent-type
step-up approximation as

uup;1ðtÞ ¼ tanhðdtÞ þ x½1� tanhðdtÞ2�d, (12a)

_uup;1ðtÞ ¼ 2d½1� tanhðdtÞ2�½1þ tanhðdtÞdt�. (12b)

Second, the unit arc-tangent-type step-up approximation is

uup;2ðtÞ ¼
2

p
arctanðdtÞ þ

2dt

p½1þ ðdtÞ2�
, (13a)

_uup;2ðtÞ ¼
4d½1þ 2ðdtÞ2�

p½1þ ðdtÞ2�2
. (13b)

Third, the unit hyperbolic-cosine-type step-up approximation is

uup;3ðtÞ ¼ tanhðdtÞ; _uup;3ðtÞ ¼ d� tanhðd tÞ2d. (14a,b)

Fig. 8 compares three smoothening functions given d ¼ 100. Observe that the overall patterns of uup(t) and
_uupðtÞ resemble those of x(t) and C1(t) seen earlier in Figs. 6 and 7, although the magnitude of _uupðtÞ seems to
be higher than that of C1(t). This suggests that an additional factor is needed to control the peak value of
_uupðtÞ. Likewise, the unit step-down displacement excitations and their derivations are defined as
udown,i(t) ¼ �uup,i(t) and _udown;iðtÞ ¼ � _uup;iðtÞ, where i ¼ 1, 2, 3. The step excitations could be further tuned
to achieve realistic magnitudes and yet shifted by a mean component (as seen in realistic vehicle
measurements).

Since the time resolution was uniform in experiments, we employ the finite difference method to get an
approximation of the first derivative, i.e. _uðtÞ ¼ ðdu=dtÞ � ðDu=DtÞ ¼ ððuiþ1 � uiÞ=DtÞ. Figs. 9 and 10 show that
measured step excitations and their first derivatives (though normalized) compare well with the proposed
smoothening functions.
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Based on Eq. (11), empirical time-varying C1(t) expressions are proposed below for step-up excitations using
three smoothening functions from Eqs. (12) to (14):

C1;up;1ðtÞ ¼ 2d½1� tanhðdtÞ2�½1þ tanhðdtÞdt�rC10 þ C10, (15)

C1;up;2ðtÞ ¼
4d½1þ 2ðdtÞ2�

p½1þ ðdtÞ2�2
rC10 þ C10, (16)

C1;up;3ðtÞ ¼ d½1� tanhðdtÞ2�rC10 þ C10. (17)

Here, C10 is the nominal C1 value corresponding to the linearized operational conditions. In addition to d,
which dictates the shape and slope of the smoothened x(t), we introduce r as a tuning factor to control the
peak value or the magnitude of C1(t). Physically, r would describe the extent of nonlinearity witnessed during
the step transient. Nonlinear predictions based on C1(p1) from Figs. 5 and 6 show an increase in the
normalized peak value of C1(t)/C10 by up to 6–10 times during the step-up transient, and a reduction in C1(t)/
C10 by about 1/3–1/4 during the step-down transient. Meanwhile, typical dx/dt values for smoothened
functions in Fig. 8 could go up to 400 or even higher. Therefore, a typical r value is around 0.01 though it
should be empirically tuned. Finally, time-varying C1(t) expressions are formulated for step-down responses in
a similar manner:

C1;down;1ðtÞ ¼ �2d½1� tanhðdtÞ2�½1þ tanhðdtÞdt�rC10 þ C10, (18)

C1;down;2ðtÞ ¼ �
4d½1þ 2ðdtÞ2�

p½1þ ðdtÞ2�2
rC10 þ C10, (19)

C1;down;3ðtÞ ¼ �d½1� tanhðdtÞ2�rC10 þ C10. (20)
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4.3. Step response using a semi-analytical linear time-varying model

Recently we proposed closed-form solutions to ideal step inputs by using a simplified linear (dynamic
stiffness type) model [16]. Our analytical predictions correlated reasonably well with measurements except at
the first overshoot, where significant asymmetries exist due to the multistaged C1(p1) nonlinearity [12,16]. Since
C1(t) is the dominant nonlinearity for step transients, the conceptual model of Eq. (11) provides an efficient
way to empirically estimate C1e(t) explicitly from _xðtÞ excitations. This also suggests that the C1e(t) expressions
of Section 4.2 could be incorporated into a linear model thus leading to a new semi-analytical linear time-
varying formulation. Compared with the ‘‘true’’ nonlinear C1(p1) model, the semi-analytical solutions could be
used to predict only the asymmetric step responses (close to step transitions). Further, such a modeling
technique could utilize the effective parameters that are estimated by the quasi-linear model [13] based on
measured dynamic stiffness data. Thus, the system identification process should be greatly simplified.

The semi-analytical step-up response of transmitted force is derived as follows:

F T ;upðtÞ ¼ gðtÞ 1þ
z1ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22ðtÞ

q ½mðtÞ � vðtÞ�e�st sin½odðtÞt� þ ½m2ðtÞ � 1�e�st cos½odðtÞt�

8><
>:

9>=
>;, (21a)

where the time-varying mean stiffness function g(t) is defined as

gðtÞ ¼ kr þ
A2

r

C1ðtÞ þ C2
. (21b)

And, the expressions for corresponding time-varying natural frequencies on(t) and damping ratios z(t) are

on1ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kr

Ii½A
2
r þ krC1ðtÞ�

;

s
on2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I iC1ðtÞ
;

s
(21c,d)

z1ðtÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i ½A
2
r þ C1ðtÞkr�

KrI i

;

s
z2ðtÞ ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i C1ðtÞ
I i

:

s
(21e,f)

Further, the two time-varying ratios are defined as

mðtÞ ¼
on2ðtÞ
on1ðtÞ

; vðtÞ ¼
z2ðtÞ
z1ðtÞ

. (21g,h)

Finally, the damped natural frequency od(t) and decaying exponential index s are

s ¼ z2ðtÞon2ðtÞ; odðtÞ ¼ on2ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22ðtÞ

q
. (21i,j)

Note that the index s, which dictates the exponentially decaying transient, is independent of C1(t). This
explains why the decaying curve predicted using the simplified linear model tends to describe the measured
transients reasonably well [16].

Likewise, the step-up response of the dynamic top chamber pressure is derived as

p1;upðtÞ ¼ l 1þ
x1½m̂ðtÞ � v̂ðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z22ðtÞ
q e�st sin½odðtÞt� þ ½m̂

2
ðtÞ � 1�e�st cos½odðtÞt�

8><
>:

9>=
>;, (23a)

where time-invariant static gain l, natural frequency $n1 and damping ratio x1 are

l ¼
Ar

C2
; $n1 ¼

ffiffiffiffiffiffiffiffiffiffi
1

I iC2

s
; x1 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffi
R2

i C2

I i

s
. (23b2d)
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Note that the l expression confirms that the mean chamber pressure is governed by C2 due to C2bC1. Here,
the two time-varying ratios of parameters are defined as

m̂ðtÞ ¼
on2ðtÞ
$n1

; v̂ðtÞ ¼
z2ðtÞ
x1

. (23e,f)

Alternately, the p1,up(t) response could also be predicted by using the quasi-linear model [13] as follows,
whose parameters could be related to the parameters of an analogous mechanical model [13]; definitions and
derivations of top chamber fluid spring k1, effective inertia track fluid mass mie and effective inertia track fluid
damping bie are explained in our earlier work [13]:

p1;upðtÞ ¼
k1ðtÞ

Ar

z2ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22ðtÞ

q sin½odðtÞt� þ cos½odðtÞt�

8><
>:

9>=
>;e�st, (24a)

k1ðtÞ ¼
A2

r

C1ðtÞ
¼ k10

C10

C1ðtÞ
; on2 ¼

ffiffiffiffiffiffiffiffiffiffi
k1ðtÞ
mie

s
; z2ðtÞ ¼

bie

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðtÞmie

p , (24b2d)

s ¼
bie

2mie
; odðtÞ ¼ on2ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22ðtÞ

q
. (24e,f)

Similarly, the semi-analytical method could be extended to calculate the step-down responses by using
C1,down(t) in place of Cl,up(t), and by taking the negative correspondents of step-up responses, i.e.
FT,down(t) ¼ �FT,up(t) and p1,down(t) ¼ �p1,up(t).
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4.4. Comparison of results and validation

The semi-analytical predictions are quantitatively compared with measurements in Figs. 11 and 12 for step-
up and step-down responses, respectively. Also, predictions based on the linear time-invariant model with
constant C10 are displayed. Unlike the ‘‘true’’ nonlinear fluid model described by Eqs. (1)–(7) with multistaged
C1(p1), our semi-analytical solutions are based on effective parameters that are estimated using the quasi-
linear model [13]. Comparisons demonstrate that the semi-analytical model indeed captures both the
asymmetric nonlinearities during the step event and the subsequent decaying transients.

5. Discontinuous compliance nonlinearity of bottom chamber

5.1. Features of a realistic displacement profile

Fig. 13 shows a realistic displacement profile, which was measured at the mount location in a front wheel
drive vehicle during a typical gearshift event. This transient record contains approximately three seconds of
data, and several oscillatory displacements (from 7 to 12Hz, probably due to wheel hop and/or engine
mounting system resonances) are superimposed on the time-varying mean xm(t) that increases from �4 to
�10.5mm in a piecewise liner manner, corresponding to a shift in the preload Fm from �1200 to �4000N. The
piecewise linear xm(t) is formulated as

xmðtÞ ¼ xm;j�1 þ
xm;j � xm;j�1

tj � tj�1
ðt� tj�1Þ. (25)
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Here, a constant mean displacement slope Gi ¼ (xm,j�xm,j�1)/(tj�tj�1) is assumed within each jth segment.
A critical slope Gc4Gi could be empirically chosen to distinguish Gi from the rapid step excitations. Refer to
Fig. 13 for an example case where Gc ¼ 3mm/s is chosen for the realistic profile. Next, we will focus on the
stiffening effect of C2 induced by xm(t).

5.2. Stiffening effect of bottom chamber

The bottom chamber is intentionally designed (using thin rubber membrane [11]) to yield a large C2 to
accommodate fluid displaced from the top chamber. Given the complex shape, researchers [1] have assumed a
linearized (constant) C2 value, which is obtained from measurements at a certain operating point. For
instance, a nominal value C20 of 2.4e-9m5/N was measured for mount D and it seems to work well for
triangular excitations under a preload Fm of 1200N. Note that Fm (or xm) plays a pivot role on the chamber
compliances [2,9,10]. First, Fm determines the operating point about which the nonlinear compliances are
estimated. Second, Fm dictates the mean fluid pressure (under the static equilibrium) since C2bC1 and the
global compliance of the fluid system is dictated by C2. For example, the mean pressure measured by Adiguna
et al. [12] is virtually equal to the atmospheric pressure when Fm o800N. However, under real-life operational
conditions with a time-varying Fm (or xm), the bottom chamber membrane expands to accommodate more
displaced fluid by the top chamber, and it may gradually loose its property as a very compliant accumulator.
Hence, the value of C2 is reduced under higher Fm (or xm) and this leads to an increase in the mean chamber
pressure, as observed from measurements in Fig. 14. By employing xm(t) as an indicator of the operational
conditions, a piecewise C2(xm) model is suggested for the jth segment as follows:

C2ðxmÞ ¼ C2;j�1 þ
xmðtÞ � xm;j�1

xm;j � xm;j�1
ðC2;j � C2;j�1Þ. (26a)

A simplified time-varying C2(t) is found below by combining Eqs. (25) and (26a), and the incorporation of
C2(t) leads to nonlinear fluid system model:

C2ðtÞ ¼ C2;j�1 þ
C2;j � C2;j�1

tj � tj�1
ðt� tj�1Þ. (26b)

5.3. Comparison of results and validation

The measured realistic profile of Fig. 13 is implemented in the elastomer test machine as displacement
excitations to both fixed and free decoupler hydraulic engine mounts with responses measured in time domain.
A comparative study is then conducted using perditions from three competing formulations: (i) quasi-linear
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model [13], (ii) nonlinear fluid model with a constant C20, and (iii) ‘‘true’’ nonlinear C2(xm) model. For the
fixed decoupler mount, Fig. 14 confirms that the mean pressure built-up effect can only be captured by the
C2(xm) model though the quasi-linear model is capable of predicting most transient responses. Next,
measurements conducted on the free decoupler mount are compared with two nonlinear models (with nominal
C20 and C2,e(xm) formulations), as illustrated in Fig. 15; the quasi-linear model is not intentionally chosen
since it would not adequately describe the decoupler nonlinearity. Observe that the stiffening effect of C2

becomes increasingly dominant under higher Fm. Finally, predictions match well with measurements when the
effectiveC2,e(Fm43000N)EC20/5.

6. Conclusion

In this article on discontinuous compliance nonlinearities we have made several contributions to the state of
the art in hydraulic engine mounts and related fields. First, asymmetric nonlinearities in responses are
identified and clarified under step-up and step-down excitations by using a quasi-linear formulation (with
parameters estimated from dynamic stiffness data [13]). An improved multistaged C1(p1) model is then
developed which confirms the existence of highly nonlinear region(s) during the step transition(s) as well as
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during the decaying transient(s). Further, an analytical model has been developed to conceptually explain a
relationship between the effective time-varying Cle(t) and excitation velocity _xðtÞ. This leads to new
approximations of Cle(t) based on alternate smoothening functions. New semi-analytical solutions for step-up
and step-down responses have been successfully constructed by using a linear time-varying system formulation
that incorporates estimated Cle(t). Further, a mean displacement-dependent compliance C2(xm) model for the
bottom chamber has been proposed. It clearly explains the stiffening effect in measurements under higher
mean loads. Finally, competing quasi-linear, linear time-varying and nonlinear formulations have been
comparatively evaluated for step and realistic excitations. Transient measurements confirm the validity of
models, as well their applicability and limitations. The benchmark evaluation of this article should aid the
analysts in deciding which mount formulation to employ in vehicle models along with efforts that are needed
in determining linear and nonlinear parameters as well as errors that might be committed by simplified
approaches.
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