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Abstract

In this paper, we investigate the possibility of obtaining experimentally the reflection and transmission coefficients for

propagating bending waves in infinite thin plates caused by a reinforcing beam that is flexibly connected to the plate. A

reinforced plate spectral element including the attachment flexibility effect was derived and implemented computationally

for this purpose. The proposed technique was numerically verified by using a system consisting of a long simply supported

rectangular plate wave-guide. The system was modeled using the derived spectral element, which was validated by

comparison with a finite element model. The dynamic responses simulated at a few locations are used to compute the

reflection and transmission coefficients. Theoretical expressions of the reflection and transmission coefficients were

obtained by using a transfer matrix formulation for the plate and for the flexibly connected beam. The coefficients obtained

by using the proposed method are compared with the theoretical values and good agreement is found. The proposed

numerical model can be used to optimize the experimental conditions for extracting the reflection and transmission

coefficients. The reflection and transmission coefficients obtained with the proposed technique can be used, for instance, in

ray-tracing methods, which are currently under development.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Modal methods are widely used to predict the vibratory behavior of assembled structures such as stiffened
panels. However, the increase of the modal density with frequency limits the use of such methods to the low-
frequency range. For high frequencies, the statistical energy analysis (SEA) method provides an estimation of
frequency- and space-averaged vibratory levels for each sub-system [1]. However, the strong assumptions
necessary to the application of SEA and the accuracy of its predictions are not easy to evaluate a priori. Ray-
tracing methods, also called image methods, are alternative methods in which the vibratory field is represented
by plane waves propagating in every direction [2]. Interactions of the incident waves with the boundaries of
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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each sub-structure lead to reflected and transmitted fields, like in a billiard game. In this approach, reflection
and transmission coefficients are the key parameters for the system modeling.

For flat panels reinforced with beams, various models of these coefficients have been developed. A reference
configuration consists of an infinite plate reinforced by two infinite beams placed symmetrically with respect to
the middle surface of the plate. Assuming Kirchhoff’s model for the plate, Euler–Bernoulli’s model for the
beam, and rigid beam/plate connection, Cremer, [3], Heckl [4] and Ungar [5] have determined reflected and
transmitted fields resulting from an incident bending wave. This model has been used for active attenuation of
a plate flexural wave transmission [6]. Using a more general state vector formalism, these coefficients have
been determined by Kouzov [7], assuming that the reinforcing beam is modeled as a thin plate of finite width
rigidly connected to the plate.

A great number of stiffener models have been developed in the literature. However, they are often developed
to compute the plate response to acoustical or mechanical excitation, and the attention is generally not focused
on reflection and transmission coefficients. However, a short list of illustrative analytical models of stiffeners
can be drawn. They are based on assumptions related to the reinforcement itself (usually consisting of a beam
of complex cross-section), to the plate’s model and to the connection condition between the two.

Orthogonal sets of stiffeners placed on a plate can be taken into account in a global way by using the
grillage method as presented by Balendra and Shanmugam [8]. In this case, mechanical characteristics (density
and bending stiffness) of an equivalent orthotropic plate are determined in an approximate way. A simple
model of stiffener has been developed by Mead [9] for estimating the response of a periodic ribbed plate. The
plate is supposed to be supported elastically along parallel line supports describing the stiffeners. Each
stiffener is modelled as a line of rotationnal and translational springs. Another elementary rib model is
presented by Keltie [10]. In this study, stiffener is supposed to provide only purely inertial reaction and the
added stiffness added by the beam is ignored. Making use of the spatial Fourier transform, it is shown [11] that
a reinforcement placed on a plate generates both equivalent shear forces and equivalent bending moments.
These excitation sources are present in the right-hand term of the equation of motion of the plate and are
determined using the continuity conditions and the equations of motion of the stiffener itself. In this case, the
stiffener is generally modelled using a beam equation. For rigid beam/plate connection, this kind of approach
is applied in Ref. [12] assuming that equivalent forces act only on the plate, and in Ref. [13] assuming that both
equivalent forces and moments are acting on the plate. Such approach is well adapted and widely used to
model periodic ribbed structures (see [14] for a review). If the beam stiffener has no symmetry with respect to
the neutral plane of the plate, coupling between out-of-plane and in-plane coupling occurs, i.e., an incident
flexural wave can induce longitudinal waves in the plate. A complete set of stiffener’s equations based on the
theory of complex cross-section beams is presented by Langley and Heron [15]. It includes out- and in-plane
displacements in the plate and in the beam and takes into account shear deformation, rotary inertia and
warping of the beam cross-section. The connection between plate and beam can be modeled using 3D
elasticity. The case of a Midlin’s plate with symmetric stiffeners is presented in Ref. [16] by Zalizniak, Tsoa
and Wood.

Besides in-plane and out-of-plane wave coupling, the elasticity of the connection between the plate and the
stiffener beam is another important characteristic of junctions. In practice, the reinforcing beam can be welded
or fixed on the plate using screws, rivets or glue. Such technical realizations induce a flexibility of the
connection between the two substructures. The exact conditions of the connection between the two are often
not well known and can vary in an important way, leading to an important scattering of the vibratory
response. Uncertainties on the connection characteristics are, in practice, a major source of discrepancies
between numerical predictions and measurements. Measurements and experimental characterization of
flexible joints appear much less in the literature than analytical or numerical models. However, experimental
values and models of equivalent stiffness of junctions would be very useful, since they are very difficult to
model. Experimental methods have been developed for measuring reflection and transmission coefficients for
bending waves in beams by Pavic [17] and by Feng [18]. The case of coupled longitudinal and flexural motion
and the case of dissipative junctions are presented by Gautier and Moulet [19]. This kind of measurement has
not been extended to 2D configurations, such as stiffened plates.

This last point provides the motivation for the present analysis, in which the authors investigate the
possibility of experimentally obtaining reflection and transmission coefficients for propagating bending waves
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in infinite thin plates caused by a reinforcing beam that is flexibly connected to the plate. For this purpose,
and in order to reduce the amount of algebra, a spectral element formulation, as presented by Doyle in
Ref. [20], is used to compute simulated responses of a measurement configuration. After the introduction, the
spectral element method is used in Section 2 to model the structural discontinuity constituted by the
reinforcing beam elastically connected to the plate. Validation of the proposed spectral element is provided in
Section 3 using comparisons with the finite element method. Theoretical reflection and transmission
coefficients are presented in Section 4. The proposed measurement method and its numerical simulation are
provided in Section 5.
2. Spectral element formulation

Starting with the Kirchhoff plate equation,

Dr2r2wðx; yÞ � o2rhwðx; yÞ ¼ F ðx; yÞ, (1)

where D ¼ Eh3/12(1�u)2, h is the thickness, u is the Poisson ratio, r is the density, and w(x, y) represents the
transverse displacement of the plate. Assuming a boundary condition in one direction, say the y direction, the
solution along the orthogonal direction x is written in terms of propagating waves [21]. When the plate is
simply supported along two parallel sides, assuming a sinusoidal solution along y, the transverse displacement
can be written as

wðx; yÞ ¼
XN

n¼1

Ane
�ik1nx þ Bne

ik1nx þ Cne
�k2nx þDne

k2nx
� �

sinðkynyÞ. (2)

The wavenumbers can be computed by replacing Eq. (2) in Eq. (1), and using the following properties of the
sine function: d2 sinðkynyÞ=dy2 ¼ �k2

yn sinðkynyÞ and d4 sinðkynyÞ=dy4 ¼ k4
yn sinðkynyÞ. It is important to

mention here that these properties are essential in developing the method, and they only hold for the simply
supported plate. For other boundary conditions, the solution along the y direction involves a sum of
trigonometric and hyperbolic functions on y and, thus, these properties do not hold for the full solution. This
is a limiting factor for extending this approach to other boundary conditions, which involve odd order
derivatives. Nevertheless, approximate solutions, where the hyperbolic functions are developed in Fourier
series can be developed [22] for other boundary conditions.

The wavenumbers are given by

k1n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p � k2
yn

q
; k2n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p þ k2
yn

q
; kp ¼ ðo2rh=DÞ1=4 and kyn ¼ np=Ly. (3)

The coefficients An, Bn, Cn and Dn are found using the transverse and angular displacements at the two ends
as boundary conditions, and using the moment and effective shear force expressions [20]:

Mx ¼ D
q2w

qx2
þ u

q2w

qy2

� �
and Vx ¼ Qx þ

qMxy

qy
¼ �D

q3w
qx3
þ 2� uð Þ

q3w

qxqy2

� �
. (4)

One may look at the proposed solution to the wave equation as a wave propagation solution in
the x direction and by a sum of sine functions in the y direction. This sine terms can be interpreted as
propagation modes. Each mode n will only propagate for frequencies that are higher than the frequency
where the wavenumber associated to it, k1n in Eq. (3), becomes real, i.e., kpXkyn. Given a desired
frequency range, it is then straightforward to determine how many propagation modes, N, should be taken
into account.

The thin plate spectral element matrix can be obtained by writing the shear force and the moment
using the displacements and the slopes at the two extremities along x. Considering an element with
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length Lx in the x dimension, the transverse displacement and the slope at positions x ¼ 0 and Lx are
given by

1

sinðkyyÞ

w1

f1

w2

f2

8>>>><
>>>>:

9>>>>=
>>>>;
¼

1 1 1 1

�ik1 ik1 �k2 k2

e�ik1Lx eik1Lx e�k2Lx ek2Lx

�ik1e
�ik1Lx ik1e

ik1Lx �k2e
�k2Lx k2e

k2Lx

2
6664

3
7775

A

B

C

D

8>>><
>>>:

9>>>=
>>>;
¼ a½ �

A

B

C

D

8>>><
>>>:

9>>>=
>>>;
, (5)

where f ¼ dw=dx.
And the shear force and the moment are given by

1

sinðkyyÞ

V 1

M1

V 2

M2

8>>><
>>>:

9>>>=
>>>;
¼ D

a1 �a1 a2 �a2
b1 b1 b2 b2

�a1e�ik1Lx a1eik1Lx �a2e�k2Lx a2ek2Lx

�b1e
�ik1Lx �b1e

ik1Lx �b2e
�k2Lx �b2e

k2Lx

2
66664

3
77775

A

B

C

D

8>>><
>>>:

9>>>=
>>>;
¼ b½ �

A

B

C

D

8>>><
>>>:

9>>>=
>>>;
, (6)

where

a1 ¼ ik3
1 þ ik2

y 2� uð Þk1; a2 ¼ �k3
2 þ k2

y 2� uð Þk2; b1 ¼ k2
1 þ uk2

y; b2 ¼ �k2
2 þ uk2

y (7)

and the subscript n was dropped for simplicity. Thus, combining the equations above to write the element
matrix gives

fV1 M1 V 2 M2 g
T ¼ ½b�½a��1fw1 f1 w2 f2 g

T ¼ ½K �fw1 f1 w2 f2 g
T. (8)

It is interesting to note that the element matrix is independent of the term sin (kyny) and the sum in kyn can
be performed for each element independently, or it can be done after the global matrix assembled. In order to
complete the process, the force must be projected on the basis of sine function in terms of kyn related to the y

direction. This representation takes into account the position of the concentrated driving force, y0, and it is
given by

Fn ¼ F0
2

Ly

sinðkyny0Þ. (9)

The final solution will be given by the sum in the y direction expressed in Eq. (2), which can be interpreted as
a propagation mode superposition. The global matrix is assembled with the standard direct stiffness method
[23].

2.1. Introducing the beam reinforcements on the plate element

Stiffener beams can be introduced in the Spectral element model plate element. If they are assumed to be
ideally attached to the plate [4], the effective shear force and the bending moments at the end of the plate will
Qx

Qx

Qx

Mxy

Mxx Mxx

Mxy
Mxy

Mxx

x=O- x=O- x=O+

y

x

z

Fig. 1. Equilibrium for a plate with an edge rigidly connected to a beam.
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be equal to those in the beam, as shown in Fig. 1, and the equations of motion become

EIb

q4uðyÞ

qy4
� o2rAuðyÞ ¼ Qx þ

qMxy

qy

� �
x¼O�

� Qx þ
qMxy

qy

� �
x¼Oþ

, (10)

GJb

q2yðyÞ
qy2

þ o2rIpyðyÞ ¼ ðMxxÞx¼O� � ðMxxÞx¼Oþ , (11)

where u(y) is the transverse displacement of the beam, y(y) is the torsion angle of the beam, EIb and GJb are
the flexural and torsional rigidity of the beam, respectively, and rA, rIp are the mass and the polar mass
moment of inertia per unit length of the beam, respectively. Note that, when the flexural waves reach the
beam, they introduce both flexural and torsional motion in the beam.

Thus, modified boundary condition can be established at position x ¼ O+ to take into account the effective
shear force and the moment including the beam effects as

Vx ¼ �D
q3w
qx3
þ 2� uð Þ

q3w

qxqy2

� �
þ EIb

q4w
qy4
� o2rAw, (12)

Mx ¼ D
q2w

qx2
þ u

q2w
qy2

� �
� GJb

q3w
qxqy2

� o2rIp

qw

qx
. (13)

The beam effect in the boundary conditions must be applied at the position of the stiffener. Here, the
stiffener will be placed at one edge of the spectral plate element. Using the same procedure used to derive
Eq. (6), the modified matrix [bn] can be obtained:

bn

� �
¼ D

a1 �a1 a2 �a2
b1 b1 b2 b2

�a1 þ
d1
D

	 

e�ik1Lx a1 þ

d1
D

	 

eik1Lx �a2 þ

d1
D

	 

e�k2Lx a2 þ

d1
D

	 

ek2Lx

�b1 � i
d2
D

k1

	 

e�ik1Lx �b1 þ i

d2
D

k1

	 

eik1Lx �b2 �

d2
D

k2

	 

e�k2Lx �b2 þ

d2
D

k2

	 

ek2Lx

2
6666664

3
7777775
, (14)

where the modifying terms are

d1 ¼ EIbk4
y � o2rA; d2 ¼ GJbk2

y � o2rIp. (15)

Another form of including the stiffener in the spectral element formulation is using its transfer matrix. If we
take into account the elasticity of the beam/plate connection, the transfer matrix of a symmetric stiffener such
C

kb

ke

2- 2+

Fig. 2. Reinforcement beam with flexible connection to the plate.
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as shown in Fig. 2 is given by [19]

Tð2þ; 2�Þ ¼

w

f

V

M

8>>><
>>>:

9>>>=
>>>;

2þ

¼

1 0 0 0

0 1 0 0

d1 0 1 0

0 d2 0 1

2
6664

3
7775

w

f

V

M

8>>><
>>>:

9>>>=
>>>;

2�

, (16)

where the points 2� and 2+ are indicated in Figs. 2 and 3 and

d1 ¼ 2 EðIb þ aAz2GÞk
4
y �

o2rA

1� o2rA=kb

� �
,

d2 ¼ 2
GJbk2

y � o2rIp

ðC þ GJbk2
y � o2rIpÞ

C þ o2rA zG �
h

2

� �
D2

D1

� �
� o2rAzG

D2

D1

( )
, ð17Þ

where

D1 ¼ 1�
o2rA

ke

�
ðzG � ðh=2ÞÞ

2o2rA

C þ GJbk2
y � o2rIp

; D2 ¼
h

2
þ

CðzG � ðh=2ÞÞ

C þ GJbk2
y � o2rIp

. (18)

Parameters kb and ke are the stiffness per unit length associated to translational springs in the out-of
plane (z) an in-plane (x) direction, respectively. Parameter C denotes the torsional stiffness per unit length
describing the elasticity of the connection. In Eq. (17), a correction term a was included. As the connection
between the plate and the beam is not rigid in the z direction, the neutral axis position for the beam will no
longer be the neutral plane of the plate. When the stiffness coefficient ke goes to infinity, a goes to 1, while,
when ke goes to 0, a also goes to 0, as each beam will then have its neutral line passing through its own
centroid. Note that all derivations were made for two identical beams placed on either side of the plate with
the same connection flexibility. For simplicity, only one beam and its connection to the plate is represented
on Fig. 2.

In order to include the effects of the changes in the shear force and in the bending moment due to the
stiffener, it is considered one spectral element, as defined in Fig. 3.

The dynamic stiffness matrix of the element was shown in Eq. (8) to be given by [K][b][a]�1, which can be
written as

V1

M1

V2

M2

8>>><
>>>:

9>>>=
>>>;
¼ ½K �

w1

f1

w2

f2

8>>>><
>>>>:

9>>>>=
>>>>;
¼

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

2
6664

3
7775

w1

f1

w2

f2

8>>>><
>>>>:

9>>>>=
>>>>;
. (19)

The inclusion of the stiffener, which is located between points 2� and 2+ in Fig. 3, is performed considering
the transfer matrix relating the point 2� with the point 2+. Therefore, from Eq. (16),

w2 ¼ w2� ¼ w2þ and f2 ¼ f2� ¼ f2þ (20)

V2 ¼ V2� ¼ V2þ � d1w2� and M2 ¼M2� ¼M2þ � d2f2� . (21)
1

2- 2+

2

Fig. 3. Spectral plate element including the effect of the reinforcement beam at node 2.
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Substituting Eqs. (18) and (19) in Eq. (17), the dynamic stiffness element matrix relating points 1 and 2+,
which is the element matrix including the stiffeners, is given by

V 1

M1

V2þ

M2þ

8>>>><
>>>>:

9>>>>=
>>>>;
¼

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 þ d1 k34

k41 k42 k43 k44 þ d2

2
6664

3
7775

w1

f1

w2þ

f2þ

8>>>><
>>>>:

9>>>>=
>>>>;
. (22)

Some special cases can be formulated using this methodology, the first case being when kb and ke ¼ 0,
Fig. 4. The terms are reduced to

d1 ¼ 2
EðIb þ Az2GÞk

4
y � o2rA

D

 !
,

d2 ¼ 2
GJbk2

y � o2rIp

DðC þ GJbk2
y � o2rIpÞ

C þ o2rA zG �
h

2

� �
D2

D1

� �
� o2rAzG

D2

D1

( )
, ð23Þ

where, now, the area moments of the beams are computed with respect to their individual inertial centroid.
The correction term for the beam thickness is made by the term in zG, which is the distance between the beam
centroid and the neutral plane of the plate. The expressions of D1,2 are given by

D1 ¼ 1�
ðzG � ðh=2ÞÞ

2o2rA

C þ GJbk2
y � o2rIp

; D2 ¼
h

2
þ

C zG � ðh=2Þ
� �

C þ GJbk2
y � o2rIp

. (24)

Another case considered is when C is equal to N. The expressions for d1 and d2 are then reduced to

d1 ¼ 2ðEðIb þ Az2gÞk
4
y � rAo2Þ,

d2 ¼ 2ðGJk2
y � rIpo2Þ � 2rAo2z2g,

D1 ¼ 1; D2 ¼ zg.

Finally, assuming only one stiffener with zg ¼ 0,

d1 ¼ EIbk4
y � rAo2; d2 ¼ GJk2

y � rIpo2.
C

C

Fig. 4. Reinforcement beam with flexible connection to the plate (simplified model).
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These terms are exactly the terms added to the spectral plate element to form the dynamic stiffness matrix of
the reinforced plate element [Kn] ¼ [bn][a]

�1 where [bn] is given in Eq. (14).
3. Verifying the spectral reinforced plate element

To verify the implementation of the spectral element reinforced plate element, a plate that is simply
supported in the yz-plane and free–free in the xz-plane shown in Fig. 5 was modeled. The plate is assumed to
have E ¼ 69GPa, r ¼ 2700 kg/m3, thickness h ¼ 4mm, Poisson ratio u ¼ 0.3, and dimensions Lx ¼ 700mm,
Ly ¼ 400mm. Avoiding the main symmetry lines so that most of the modes can be excited, the driving point is
arbitrarily located at position (x, y) ¼ (333.4,160)mm. The receptances at the driving point for the spectral
element model and finite element model solutions are compared. The spectral element model was evaluated
using 4 reinforced plate and 2 simple plate elements as indicated in the scheme shown in Fig. 6. The response
was obtained with 10 propagation modes for the frequency range DC-2 kHz, while the finite element model
was implemented in Ansyss using shell63 elements, which have 4 nodes with 6 degree of freedom per node,
and beam44 for the beam, totaling 18,180 nodes and 18,300 elements. The modal summation was made over
200 modes in order to obtain convergence of the receptance at the anti-resonances. Results obtained with the
Fourier-series approach and image sources were not distinguishable from the sinusoidal solution using 40
Fourier lines. In Fig. 7 are shown the results obtained by the finite element and spectral element models (both
methods practically coincide).
4. Computing the reflection and transmission coefficients

Defining a state vector for the plate cross-section at a given position x for pure bending as

X ¼ fw; y;Mxy;Mxxg
T, (25)



ARTICLE IN PRESS

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e

c
e

p
ta

n
c
e

 [
d

B
 r

e
f.

 [
1

m
/N

]]

Frequency [Hz]

Fig. 7. Comparison of finite element (dashed) and spectral element model (continuous) results for the plate in Fig. 5. (Where the two

curves are not distinguishable, it means that they match nearly exactly.)

J.R.F. Arruda et al. / Journal of Sound and Vibration 307 (2007) 564–577572
the transfer matrix between 0� and 0+ can be written as in Eq. (16):

Tð0þ; 0�Þ ¼

1 0 0 0

0 1 0 0

d1 0 1 0

0 d2 0 1

2
6664

3
7775. (26)

Combining the first two rows of Eqs. (5) and (6), we can write, for both 0� and 0+,

w

y

V

M

8>>><
>>>:

9>>>=
>>>;

0�;0þ

¼ sinðkyyÞ

1 1 1 1

�ik1 �k2 ik1 k2

a1 a2 �a1 �a2
b1 b2 b1 b2

2
66664

3
77775

A

C

B

D

8>>><
>>>:

9>>>=
>>>;
¼ ½Ê�

A

C

B

D

8>>><
>>>:

9>>>=
>>>;

0�;0þ

. (27)

Given that the transfer matrix from x0� to x0þ with a null length is given by Eq. (26), the matrix connecting
the wave amplitudes before and after the discontinuity caused by the reinforcement beam is given by

A

C

B

D

8>>><
>>>:

9>>>=
>>>;

0þ

¼ ½Ê��1 Tð0þ; 0�Þ
� �

½Ê�

A

C

B

D

8>>><
>>>:

9>>>=
>>>;

0�

¼
G11 G12

G21 G22

" # A

C

B

D

8>>><
>>>:

9>>>=
>>>;

0�

. (28)

The scattering matrix can be derived from Eq. (28) by re-arranging the terms:

A0þ

C0þ

B0�

D0�

8>>><
>>>:

9>>>=
>>>;
¼

G11 � G12G�122 G21 G12G�122

�G�122 G21 G�122

" # A0�

C0�

B0þ

D0þ

8>>>><
>>>>:

9>>>>=
>>>>;
¼ S½ �

A0�

C0�

B0þ

D0þ

8>>>><
>>>>:

9>>>>=
>>>>;
. (29)

The vectors fA0þ C0þ B0� D0� gT and fA0� C0� B0þ D0þ g
T in Eq. (29) correspond to the

amplitude vectors of the waves which are out-coming from the junction and to the amplitude vector of the
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waves which are in-coming at the junction, respectively. The expressions for the reflection and transmission
coefficients for purely propagative bending waves are then given by

T11 ¼ fG11 � G12G�122 G21gð1;1Þ,

R12 ¼ fG12G�122 gð1;1Þ,

R21 ¼ f�G�122 G21gð1;1Þ,

T22 ¼ fG
�1
22 gð1;1Þ. ð30Þ

Because of the symmetry properties of the scattering matrix, the absolute values of the reciprocal
coefficients are equal, i.e., jR12j ¼ jR21j and jT11j ¼ jT22j. In general, if no particular normalisation procedure
is performed, phase discrepancies can exist between the coefficients and we do not have R12 ¼ R21 and
T11 ¼ T22. Note that the reflection and transmission coefficients are functions of the frequency and of the
wavenumber across the y direction, ky. Given k1 and ky, the angle of incidence of an equivalent plane incident
wave can be determined:

tanðyÞ ¼
kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
p � k2

y

q ¼
np=Lyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2rh=DÞ1=2 � ðnp=LyÞ
2

q . (31)

The reflection and transmission coefficients apply to this incoming wave incidence angle. Ideally, the
junction should be characterized by the wave reflection and transmission coefficients at an arbitrary frequency
and angle of incidence. However, the wavenumber ky takes the quantified values np/Ly imposed by the
boundary conditions. Thus, it follows that at one given frequency the incidence angle is also quantified and
takes the discrete values given by Eq. (31).

5. Measuring reflection and transmission coefficients

In order to simulate an experimental determination of the reflection and transmission coefficients at the
reinforcement, the dynamic response of a plate was simulated and the incoming and outgoing complex wave
amplitudes were computed from the transverse displacement measured at a few discrete locations on both
sides of the reinforcing beam. The procedure was implemented such that it can be later applied to the
experimental data. The physical model used to simulate an experiment is shown in Fig. 8. The locations where
the response was simulated with the spectral element model are indicated. Where the dimensions are not given
symmetry may be assumed.

In order to estimate the wave complex magnitudes from response measurements, the displacement field is
assumed to obey an equation similar to Eq. (2) but with the evanescent terms neglected. This assumption
imposes low frequency limits for the proposed experimental method. Furthermore, it is assumed that only the
two first modes can propagate in the frequency range under consideration. A mode will propagate if k1n is real.
According to Eq. (3), this will depend upon the bending stiffness and mass density of the plate. Mode n is
1.5
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Fig. 8. Simply supported plate with reinforcing for determination of R and T coefficients.
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propagating if

k2
p4k2

yn. (32)

This condition is equivalent to f4f n, where f n ¼ ð1=2pÞðnp=LyÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffi
D=rh

p
is the cut-on frequency of mode n

since it gives the minimum frequency value for mode n to propagate. For a given frequency range, the number
of modes to consider can thus be determined by the number of cut-on frequencies in this range. Assuming a
10mm-thick, 0.25m large aluminum plate with material parameters E ¼ 67.5E9, r ¼ 2800 and u ¼ 0.33,
Eq. (32) gives a minimum frequency of 377.4Hz for mode 1, 509.5Hz for mode 2, and 3.396Hz for mode 3.
Limiting our range of analysis to 3.5 kHz, only modes 1 and 2 will significantly contribute to the response far
from discontinuities. Therefore, we can write

wðx; yÞ ffi
X2
n¼1

Ane
�ik1nx þ Bne

ikn1x
� �

sinðkynyÞ ¼
X2
n¼1

Zn sinðkynyÞ. (33)

In order to determine the contribution of each mode, a linear system of equations may be assembled at each
position along x using two measurements along y:

sinðky1y1Þ sinðky2y1Þ

sinðky1y2Þ sinðky2y2Þ

" #
Z1

Z2

( )
¼

wðx; y1Þ

wðx; y2Þ

( )
. (34)

In our case, the first mode, represented by a sinusoid along y, sinðpy=LyÞ, is symmetric with respect to a line
passing through the mid-width of the plate (x-axis in Fig. 8), while the second mode is anti-symmetric,
sinð2py=LyÞ. Therefore, in order to decompose the responses into the two modes, it is sufficient to add two
responses located symmetrically with respect to the x-axis to obtain the contribution of mode 1 and subtract
them to obtain the contribution of mode 2. For arbitrary location of the measurements, the mode uncoupling
can be done by solving Eq. (34). After separating the two modes, the complex amplitudes can be determined
from Eq. (33) by assembling a linear system of equations, as shown in Eqs. (35) and (36):

e�ik11x1 eik11x1

e�ik11x2 eik11x2

" #
A0�

B0�

( )
mode1

¼
Z1ðx1Þ

Z1ðx2Þ

( )
¼

wðx1; y1Þ þ wðx1; y2Þ
� �


2

wðx2; y1Þ þ wðx2; y2Þ
� �


2

( )
, (35)

e�ik12x1 eik12x1

e�ik12x2 eik12x2

" #
A0�

B0�

( )
mode2

¼
Z2ðx1Þ

Z2ðx2Þ

( )
¼

wðx1; y1Þ � wðx1; y2Þ
� �


2

wðx2; y1Þ � wðx2; y2Þ
� �


2

( )
. (36)

Similar equations can be written for the measurements on the positive side of the x-axis, so that complex
amplitudes can be computed at the two sides of the reinforcing beam:

e�ik11x3 eik11x3

e�ik11x4 eik11x4

" #
A0þ

B0þ

( )
mode1

¼
wðx3; y1Þ þ wðx3; y2Þ
� �


2

wðx4; y1Þ þ wðx4; y2Þ
� �


2

( )
, (37)

e�ik12x3 eik12x3

e�ik12x4 eik12x4

" #
A0þ

B0þ

( )
mode2

¼
wðx3; y1Þ � wðx3; y2Þ
� �


2

wðx4; y1Þ � wðx4; y2Þ
� �


2

( )
. (38)

The linear system of Eq. (29) can be rearranged, with R12 ¼ R21 ¼ R; T11 ¼ T22 ¼ T, as

A0� B0þ

B0þ A0�

" #
T

R

� �
¼

A0þ

B0�

( )
(39)

and be solved for R and T. All these operations must be performed for each mode and for each frequency.
The spectral element model for the plate in Fig. 8 could be assembled with as little as 3 spectral elements, as

the discontinuities along x are only the excitation location and the reinforcing beam. However, given that the
model is so simple, in order to avoid having to interpolate the responses from the nodal responses, 7 elements
were used so that each measurement location is a node of the model.
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Thinking about practical experimental problems to be faced later, two excitation configurations were used.
In the first configuration the two excitation locations, indicated in Fig. 8 by crosses, are in-phase, so as to
enhance the contribution of the first mode, while, in the second configuration, they are out-of-phase, to excite
the second mode. In the theoretical data, the symmetry of the problem would allow an exact uncoupling using
Eqs. (34) and (39), but, in the experimental case, symmetry is not exact, and enhancing modal response is
important. Otherwise, mode extraction can be improved using more measurement points and solving the
problem in a least-squares sense.

Another problem in the calculation of R and T is the possible ill-conditioning of Eqs. (34) and (39) when the
vibration field is too reverberant (low damping). In order to improve conditioning and simulate an experiment
where sand boxes are used to damp vibrations at the plate ends, damped springs were added to the simple
supports at x ¼70.75m. It is straightforward to do so in the model simply by adding a complex stiffness to
the diagonal elements of the global dynamic stiffness matrix at the locations corresponding to the desired
degrees of freedom. In our example, the complex value added to the rotational degrees of freedom
corresponding to the two simple supports at the plate ends was 500+10i.

Two reinforcing beams placed on either side of the plate with cross-section 0.02mm � 0.02mm, made of
the same aluminum as the plate, were simulated. Results are shown in Figs. 9 and 10 for connecting stiffness
parameters a ¼ 0.25, C ¼ 1e6Nm/rad, ke ¼ 7e8N/m, kb ¼ 1e9N/m for mode 1. When obtaining results for
mode 2, the transverse connection bending stiffness was changed to kb ¼ 1e8N/m, as it is expected that the
bolted connection that will be implemented in the experiment will behave differently for these two different
modes. The exact R and T curves can be obtained with Eq. (30) and compared with the values computed from
the simulated responses using the methodology described above.

At low frequencies, below the frequency above which the mode can propagate, it is expected that the
method proposed for computing R and T from a few discrete point responses will not work, as there are only
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evanescent waves, and even the concept of reflection and transmission coefficients is lost. Results below the
cut-off frequency can therefore be disregarded.

6. Conclusions

The possibility of obtaining reflection and transmission coefficients for bending waves in thin plates caused
by a reinforcing beam that is flexibly connected to the plate was investigated. For this purpose, a reinforced
plate spectral element was derived and implemented. A system consisting of a simply supported long
rectangular plate, treated here as a wave-guide, was numerically simulated using a spectral element model, and
the dynamic responses at a few locations were used to compute the reflection and transmission coefficients.
The choice of the lateral boundary conditions for the plate is mainly due to the fact that this is a simple way to
quantify the transverse wavenumber and thus to control the incidence angle of the flexural wave. In order to
derive the theoretical expressions of the coefficients, the transfer matrix of the plate and of the beam alone
were derived. The coefficients obtained by using the proposed method were compared with the theoretical
values and a very good agreement was found, thus validating the proposed technique. The numerical model
can be used to optimize the experimental conditions for extracting the reflection and transmission coefficients.
The reflection and transmission coefficients obtained this way can be used to characterize a given
reinforcement beam flexibly connected to a thin plate in a ribbed panel assembly.

The limitations of the proposed method should be pointed out. Ideally, the junction should be characterized
by the reflection and transmission coefficients at an arbitrary frequency and angle of incidence. However,
measurements are only possible for quantified values of the incidence angle, which are imposed by the
quantified values of the transverse wavenumber. From a practical point of view, the main difficulties of the
method are linked to the technical realization of the simply supported boundary conditions. If the simply



ARTICLE IN PRESS
J.R.F. Arruda et al. / Journal of Sound and Vibration 307 (2007) 564–577 577
boundary conditions are not well satisfied, transverse propagation modes of the wave-guide are not sinusoidal
and the determination of the reflection and transmission coefficients becomes much more difficult. It should be
pointed out that, even when simply supported boundary conditions are well satisfied, accurate separation of
the lateral modes remains an important practical difficulty, which can be overcome by increasing the number
of measurement points. Even with the present limitations, the method can be useful for the determination of R

and T for complex joints. It is well known that joints in built up structures are difficult to model and to
characterize. Such coefficients can be used in ray-tracing methods applied to structures, which are currently
under development.
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