
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 307 (2007) 849–864

www.elsevier.com/locate/jsvi
Passive hybrid technique for the vibration mitigation of systems
of interconnected stays

Luca Caracogliaa,�, Nicholas P. Jonesb

aDepartment of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
bG.W.C. Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA

Received 9 January 2006; received in revised form 5 October 2006; accepted 18 July 2007

Available online 24 August 2007
Abstract

The problem of stay oscillation mitigation in cable-stayed bridges, usually induced by wind or wind and rain, may

require the introduction of passive devices, such as dampers on individual stays or the use of transverse restrainers (cross-

ties). The damper performance is often affected by the geometrical constraints of the bridge deck that limit the installation

of such devices to locations very close to the end of the cable. On the other hand, cross-ties are generally incapable of direct

energy dissipation. Therefore, the authors have proposed and analyzed a hybrid passive system in which the advantages of

both techniques are applied to the oscillation mitigation of complex interconnected systems with multiple external dampers

at the deck level, in correspondence with the cross-tie lines.

This paper summarizes the relevant findings of a research program involving the authors’ efforts focused on the in-plane

free-vibration analysis of stay-cable systems. This research is also based upon some recent results associated with the

analytical solution of a taut-cable with two attached viscous dampers. These findings are initially extended to a simplified

network with reduced number of connectors and one damper, for which the derivation of analytical solution is still

possible. Subsequently, an existing multistay multidamped arrangement on a real bridge is considered, in which a fully

numerical approach is required. The modal behavior is compared to the simplified examples, also enabling the

interpretation of the results in the context of more general guidelines for potential future application.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A quite common strategy for the mitigation of wind and wind–rain induced oscillation [1] is the use of
transverse steel-wire cables, called cross-ties, which contribute to a general increment in the in-plane stiffness
of the system and transform the individual cables into a network [2–5]. When cross-ties only are employed,
frequencies corresponding to in-plane modes of the longest cables, more vulnerable to external excitation, are
usually tuned to higher values by the presence of the restrainers, significantly reducing the risk of oscillation.
In addition, the in-plane fundamental modes of the modified system, acting as a whole entity, generally posses
a very large modal mass compared to each individual cable, as recently shown by the authors through an
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analytically derived method based upon the solution to free-vibration problem for cable networks in terms of
taut-cable theory [5,6].

However, some limitations are also evident such as, for example, the fact that this system is incapable of
direct energy dissipation, the ineffectiveness of the suppression of out-of-plane modes due to the limited
influence of the restrainers, and the presence of a large number of higher-frequency localized modes, which are
usually difficult to control. This study was motivated by the fact that such complex systems of interconnected
stays can still experience high levels of vibration during severe wind events, as observed during full-scale
measurements on an existing system [6].

Since the stays are inherently low-damping systems, the addition of mechanical devices has been traditionally
proposed in the literature for mitigation purposes, in which dampers are connected to each individual cable
(cable-damper system). One of the first studies simulated of the response associated with the installation of a
passive viscous damper on a stay [7] through taut-cable theory [8]. This study was followed by the numerical
derivation of an optimal ‘‘universal estimation curve’’ for a damper located near the end of the cable [9],
subsequently extended in Refs. [10,11] by considering three-dimensional and sag effects. Recently, a closed-
form solution to the problem of a viscous damper attached to a taut-string was developed [12,13], in which a
general analytical framework for the free-vibration solution in terms of complex-frequency analysis was
introduced. The problem of a shallow cable with viscous damper by including sag effects and the presence of a
coupled spring–mass–damper system was considered in Ref. [14], while the use of semi-active devices was also
proposed to overcome some of the limitations of passive devices located close to the stay end (e.g., [15,16]).

In this study, the authors propose a hybrid solution that combines the advantages of the network with the
benefits associated with the possibility combining the effects of the cross-ties and external dampers directly
connected to the deck in order to address—in part—the limitations of a traditional network. Similar hybrid
configurations were recently discussed in Ref. [17], while the use of dampers installed between stays at internal
locations was investigated in Refs. [18–20], confirming the interest in the study of these systems for vibration
reduction as an alternative to cable-damper systems. The analysis framework developed for a simplified linear
damper-cable system is incorporated into the analytical method, developed for the study of in-plane cable networks
without damping devices [6]. The derivation of a closed-form solution was only possible for examples with a limited
number of either stays, connectors or dampers. A numerical technique was required for all other cases.

Therefore, the dynamic behavior of a simplified cable network is initially analyzed, for which mode
identification can be carried out in closed form; results are later used for the response interpretation on a larger
system. In the second part of the paper, an application to real multistay systems is presented, based upon the
observations derived from the first part and applied to the study of an existing network, currently installed on
a cable-stayed bridge and including the installation of one or more dampers. The solution is also compared
with the case associated with two dampers on a single stay [21], recently indicated as a potential way of
improving the performance of stay-damper arrangements in the presence of geometric configuration
limitations. The characterization of the system modal performance before and after the introduction of the
restrainers is carefully considered.
2. Cable dynamics

A linear analytical method for the in-plane free-vibration analysis of cable networks in the absence of
external dissipation devices was developed in Ref. [6]. In this study, the original formulation was modified to
allow for the presence of external discrete external dampers located in correspondence with the restrainers.
Differences with respect to the previous work are summarized in this section.

The cable network configuration is simulated by a set of parallel cables (Fig. 1), interconnected by means of
restrainers on occasion extended to ground or connected to the deck through damping devices. The generic jth
cable (j ¼ 1,y,n) in Fig. 1 is divided into mj segments (with m1,y,mj,y,mn usually different for each cable).
The free-vibration problem of each pth element of the jth cable (with j ¼ 1,y,n and p ¼ 1,y,mj) is solved
(linear taut-string theory [8]) as

Hjq
2yjp

.
qx2

jp ¼ mjq
2yjp

.
qt2 (1)



ARTICLE IN PRESS

j - 1

Element j-1,p

Restrainer p

j
Pj,p -1

yj-1,1

xj -1,1

l0, j-1

l0,j

lj -1,p   
Restrainer p-1

Pj,p
l j,p   

K
c

Constitutive law

R
ef

. a
bs

ci
ss

a

yj-1,p yj-1,p+1

xj,p

yj,p

xj ,1

yj,1

Mj-1,p-1 

Mj,p-1 Mj,p

Mj -1P
xj-1,p x j-1,p+1

Fig. 1. Generalized cable network configuration.
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with yjp(xjp,t) time- and position-dependent transverse displacement along the segment jp between nodes Pj,p�1

and Pj,p, Lj cable length, Hj cable tension and mj mass per unit length. In contrast with the previous work, the
motion of each element must be assumed as yjp(xjp,t) ¼ Re[Yjp(xjp)e

iot], in which o is a complex circular
frequency [12] due to the presence of the dampers, and reducing Eq. (1) to

Hj d
2Y jp

.
dx2

jp þ mjo
2Y jp ¼ 0. (2)

A solution in terms of trigonometric functions:

Y jpðxjpÞ ¼ Aj;p sin gpL�1j f jxjp

� �
þ Bj;p cos gpL�1j f jxjp

� �
(3)

is adopted, with Aj,p Bj,p complex amplitudes and fj ¼ o01/o0j jth cable frequency ratio. The quantity o01 ¼ p/
L(H1/m1)

0.5 is the fundamental real circular frequency of a reference cable (usually j ¼ 1) and g ¼ a+ib
represents a normalized complex frequency (i ¼

ffiffiffiffiffiffiffi
�1
p

) such that o ¼ go01. The length of each jp segment is lj,p
and xj,p ¼ lj,p/Lj. The complex variable o (or g) can be equivalently expressed in terms of its real and imaginary

parts, as o ¼ o01ðaþ ibÞ ¼ ~o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
þ iZ ~o with ~o ¼ o01norm½g�. The damping ratio 0pnp1 is computed as

Z ¼ ½z=ð1þ zÞ�0:5 with z ¼ ðb=aÞ2.
Eq. (3) are subsequently solved for the unknown amplitudes Aj,p and Bj,p by means of a set of internal and

external compatibility, continuity and equilibrium equations for a network with one or more external viscous
dampers connected to the deck, i.e.,

Bj;1 ¼ 0 Aj;mj
sin gpf jxj;mj

� �
þ Bj;mj

cos gpf jxj;mj

� �
¼ 0 with j ¼ 1; . . . ; n, (4,5)

Aj;pj
sin gpf jxj;pj

� �
þ Bj;pj

cos gpf jxj;pj

� �
� Bj;pjþ1

¼ 0 with j ¼ 1; . . . ; n; pj ¼ 1; . . . ;mj, (6)

K̂ j;p Bjþ1;pþ1 � Bj;pþ1

� �
¼
Xj

k¼1

gpH1L�11 sp
k;j

nk Ak;p cos gpf kxk;p

� �
� Bk;p sin gpf kxk;p

� ��
�Ak;pþ1

�
� gpwk;pBk;pþ1

8<
:

9=
;

with p ¼ 1; . . . ; ~m� 1; j ¼ 1; . . . ; ðgp � 1Þ; ~m ¼ max½gp�, ð7Þ

irDp
Bgp ;pþ1 ¼

Xgp

j¼1

sp
j;gp

nj Aj;p cos gpf jxj;p

� �
� Bj;p sin gpf jxj;p

� �
� Aj;pþ1

h i
� gpwj;pBj;pþ1

n o
,

with p ¼ 1; . . . ; ~m� 1. ð8Þ

External boundary conditions are enforced through Eqs. (4) and (5), the continuity between consecutive
segments on the same stay through Eq. (6), and internal and global force equilibrium through Eqs. (7) and (8).
Inertial terms are introduced to account for the mass of the secondary system, represented through lumped
elements Mj,p at each node Pj,p; linear spring elements are employed to simulate internal cross-tie segments.
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The variable gp denotes the maximum number of connected cables for the pth cross-tie. The quantity nj ¼

½ðmjHjÞ=m1H1�
0:5 is a mass-tension reduction factor, as it accounts for the relative reduction of mass and

tension of each cable with respect to the reference stay, wj;p ¼Mj;p=ðm1L1Þ and K̂ j;p ¼ Kj;p½sin ðcj;pÞ�
2 for an

inclined restrainer with stiffness Kj,p. The non-parallel three-dimensional orientation of stays and restrainers

(Eqs. (8) and (9)) is considered through sp
k;j ¼ Pj�1

q¼k sin ĉq;p= sin cq;p (sj,j
p
¼ 1), with cq,p and ĉq;p relative

inclinations of each cross-tie segment qp with respect to stays q and q+1, respectively.
Global force equilibrium equations at each cross-tie (Eq. (8)) account for the presence of external viscous

dampers connected to the deck in correspondence with the restrainers. Each unit with viscous coefficient cDp

and dimensionless damping parameter rDp
¼ cDpðH1m1Þ

�0:5 is installed (if present) on the pth restrainer below
the lower cable.

A homogeneous system of 2r ¼ 2Smj equations is derived as SU ¼ 0, in which the complex matrix S is
composed by a set of algebraic nonlinear relationships as a function of g. The vector U 2 C2r contains the
unknowns Aj,p and Bj,p. This system is numerically solved for g, associated with the condition det[S] ¼ 0, as an
eigen-value–eigen-vector problem. Each mode is generally characterized by two limiting cases with real eigen-
values (b�0) and no dissipation: rp ¼ 0 i.e., undamped solution in which no dampers to ground are present
and rp-N, i.e., locked dampers equivalent to a rigid connection to the deck. Between these two cases the
mode is complex and usually underdamped, with an oscillatory eigen-function prevailing and Zp1. Other
solutions are also possible, such as over-damped modes, with a ¼ 0 and non-oscillatory rapid decay (b40 but
finite) and critical modes with frequency a 6¼0 and b-+N (Z-1) [12].

3. Influence of damping in simplified cable networks

A special case of a simplified cable network with limited number of independent variables is analyzed in this
section to allow for the introduction and analysis of some basic characteristics that can be found in other
examples and are useful in the understanding and interpretation of the mechanics of more realistic systems.

A set of two skew-symmetric cables (Fig. 2a) is interconnected by a vertical massless cross-tie, located at a
distance l with respect to the left end of the upper reference stay. The total length of the upper cable is defined
as L; the second one has an offset equal to l with respect to the reference abscissa and the right end with l ¼ l1,1
common to both segments 1,1 and 2,1 and x ¼ l/L. The characteristics of the two stays are H1 ¼ H2 ¼ H and
m1 ¼ m2 ¼ m. Nodes P1,1 and P2,1 are connected by a linear spring of stiffness K. The infinite set of frequencies
corresponding to individual-cable motion are ar1 ¼ r and ar2 ¼ r/(1�x), rAI+. The case study shown in
Fig. 2(b) will be analyzed in the second part of this section.

In a first phase of this analysis, the damper is inactive (c ¼ 0) and the resulting undamped network is
considered, concentrating the study on the influence of the variable location x and the stiffness of the tie. The
dimensionless parameter dK ¼ H/KL is variable between 0 (rigid restrainer) and infinity (disconnected system).

Figs. 3(a1) and (a2) depict, as an example, the first and second modes corresponding to a case where l ¼ 0.20L

and for dK ¼ 1.0 and extremely flexible connector. As a result, the first two frequencies a1 ¼ 1.024 (cables in
phase) and a2 ¼ 1.295 (opposite-phase stays) are almost coincident with the fundamental modes of the
independent stays 1 and 2 (i.e., a01 ¼ 1.00 and a02 ¼ 1.25), as also shown in Figs. 3(a1) and (a2). Results for
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Fig. 2. Simplified networks-case studies: (a) skew-symmetric (l22 ¼ l11 ¼ l) two-stay network with flexible connector; (b) non-symmetric

(l22 ¼ sl11, s40) two-stay network with rigid restrainer and damper to ground.
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Fig. 3. Example of fundamental modes of the skew-symmetric network with l ¼ 0.2L. First (a1: a ¼ 1.024) and second (a2: a ¼ 1.295) real

eigen-solutions for r ¼ 0 and flexible connection with dk ¼ 1.0; first (b1: a ¼ 1.069) and second (b2: a ¼ 1.491) real eigen-solutions for

r ¼ 0 and rigid connection with dk ¼ 0; first (c1: rM1;Opt ¼ 2:85, gM1;Opt ¼ 1:158þ 0:118i) and second (c2: rM2;Opt ¼ 3:48,
gM2;Opt ¼ 1:569þ 0:115i) complex eigen-modes corresponding to optimal damping (real part, ——; imaginary part, – – –).
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dk ¼ 0 and a perfectly rigid connection are shown in Figs. 3(b1) and (b2). The expected frequency up-shift is less
evident for the first mode (a1 ¼ 1.069) than for the second one (a2 ¼ 1.491, Fig. 3b2), in which the opposite-phase
behavior of elements 1,2 and 2,2 is responsible for a reduction of the effective wavelength; pseudo-symmetric
(localized) modes [5] are also present (not shown). Enhancement in the performance is achieved for 0.2oxo0.3,
since the relative frequency increment between dk ¼ 1.0 and 0 is higher. More details can be found in Ref. [5].
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In the second stage of the analysis (Fig. 2b) a damper linked to ground is installed in correspondence with
node P2,1 and a rigid tie is considered with dk ¼ 0. For practical applications, the assumption of ‘‘quasi-rigid’’
links among cables (dkE0) is usually acceptable [6]. The characteristic polynomial associated with det[S] ¼ 0
becomes

pðgpÞ ¼ sin ðgpxÞ
2 cos ðgpxÞ þ ir sin ðgpxÞ½ � sin ½gpð1� xÞ� sin ½gpð1� 2xÞ�

þ sin ðgpxÞ sin ½gpð2� 3xÞ�

( )
. (9)

The dimensionless damping parameter is defined as r ¼ c(Hm)0.5. The first term of Eq. (9) is not influenced
by the presence of the damper and corresponds to the set of purely real pseudo-symmetric modes with
aPS,r ¼ r/x, rAI+.

In the case of ‘‘locked-mode’’ real solutions (as r-N) each element of the network is vibrating
independently. Since l1,1 ¼ l1,2, repeated real eigen-values with multiple eigen-vectors are present, e.g.,
U0L;Mu2 ¼ ½1; 0; 0; 0�

T and U00L;Mu2 ¼ ½0; 0; 1; 0�
T for aL,Mu2 ¼ r/x.

Fig. 4(a) depicts the evolution of the complex frequency dependence on r for l ¼ 0.20L. The figure presents
the evolution curves for modes 1–6 (M1–M6), in which the complex roots are plotted for increasing values of
damping in terms of normalized frequency a and damping ratio Z. Different typologies of modes can be
observed, similar to the regimes indicated in Ref. [12] for the case of a damper attached to a single stay. Modes
1–2 and 5–6 are typically underdamped and oscillatory; cross- and diamond symbols denote undamped and
locked aL solutions, respectively.

In Fig. 4(a) critical modes are present, emanating from the unrestrained oscillatory solution (cross-symbols,
e.g., M2) and tending to a Z-1 for r-rCR (b-+N with a 6¼0 finite). The quantity rCR is a constant
(rCR ¼ 4.0 in Fig. 4a), independent of the critical mode but a function of the network configuration
(Section 4). Fig. 4(a) also shows the bifurcation for rorCR between M3 and M4, possible since the critical
frequency coincides with a single-multiplicity locked mode (aL ¼ 2.5 ¼ a2). Critical modes in simplified
networks are usually related to vibration of shorter elements or portions of the network (i.e., segments 1,1 and
2,1 in Fig. 4a). More than one set of critical modes may be present, similarly to the case of two dampers on a
single stay [21]. Fig. 4(b) shows another case of unanticipated behavior for x ¼ 0.45 and dk ¼ 0 with multiple
and partially overlapping frequency–damping trajectories for modes 4 and 5 (M4 and M5). Maximum
damping is achieved for rffi 3:0; the direction of increasing r is also indicated.

As an example of complex eigen-functions, Figs. 3(c1) and (c2) show real and imaginary parts of the mode
shapes associated with the optimized modes M1Opt and M2Opt (maximum Z) for l ¼ 0.2L and dk ¼ 0 in
Fig. 4(a). While the real modal part is qualitatively the same as that observed with c ¼ 0 (Fig. 3b1 and b2), the
imaginary component (dashed line in Figs. 3c1 and c2) becomes significant for M1Opt and M2Opt. This fact can
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be interpreted by noticing that the imaginary eigen-function are mainly related to the first time derivative of yjp

and, therefore, predominantly influenced by the viscous absorber. In Fig. 3(c1) mode 1 is potentially ‘‘more
dampable’’ (M1Opt with Zffi 10%), in contrast with mode 2 (Fig. 3c2; M2Opt with Zo10%) dominated by the
opposing phases in elements 1,2 and 2,2.
4. Extension of the concept of ‘‘critical damping’’ to cable networks

In a generalized multistay cable network, where the installation of more restrainers will cause the presence
of more solutions over a reduced frequency range, the derivation of the characteristic polynomial cannot be
conducted analytically but numerically. However, for geometrically symmetric and simplified network, closed-
form expressions for the critical damping can be found. In Fig. 5, a multistay parallel-cable symmetric
network is considered, similar to the example studied in Section 4, in which the n cables have the same
properties (o01 ¼ o0j ¼ o0n, g ¼ o=o01 ¼ aþ ib), connected through a rigid and massless restrainer located
at a distance l from the left-hand side of the system, with x ¼ l/L. The components of the eigen-functions in
Eq. (3) are defined as A1, Aj, An (left-hand side) and Â1; Âj ; Ân (right-hand side); Bj,p are all zero due to the
particular orientation of the local x–y axes. In the absence of damping (r ¼ 0) the eigen-frequencies of the
system are: (i) those of the disconnected cables with aAI+ (no force through the restrainer), (ii) two classes of
pseudo-symmetric frequencies for aPS,I ¼ r/x and aPS,II ¼ r/(1�x) with rAI+, each of which corresponds to a
multidimensional eigen-vector subspace (all possible combinations of internal cables). For r6¼0, the repeated
application of Eq. (6) reveals that A1 ¼ Aj ¼ � � � ¼ An ¼ A and Â1 ¼ Âj ¼ � � � ¼ Ân ¼ Â, provided that
sin ½pgð1� xÞ�a0 and sin½pgx�a0, i.e., excluding pseudo-symmetric modes. The system SU ¼ 0 is
characterized by two compatibility equations only with U ¼ ½A; Â�T and e ¼ (1�2x),

A sin pgx½ � � Â sin pg 1� xð Þ½ � ¼ 0, (10)

A n cos pgxð Þ þ ir cos pgxð Þ½ � þ nÂ cos pg 1� xð Þ½ � ¼ 0. (11)

The characteristic polynomial associated with Eqs. (10) and (11) becomes

p gð Þ ¼ n sin pgð Þ þ 0:5ir cos pg�ð Þ � cos pgð Þ½ �. (12)

The real and imaginary parts of Eq. (12) with Y ¼ pa, O ¼ pb must vanish, i.e.,

Rep gð Þ ¼ n sin Y cosh O� 0:5r sin Y sinh Oþ 0:5r sin �Yð Þ sinh �Oð Þ ¼ 0, (13a)

ImpðrÞ ¼ n cos Y sinh O� 0:5r cos Y cosh Oþ 0:5r cos �Yð Þ cosh �Oð Þ ¼ 0. (13b)

The critical value of damping can be derived by recalling the definition of real overdamped modes [12,21]
with Y ¼ pa�0. While Eq. (13a) becomes the null identity, the critical damping rCR is obtained from
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ARTICLE IN PRESS
L. Caracoglia, N.P. Jones / Journal of Sound and Vibration 307 (2007) 849–864856
Eq. (13b) as O ¼ pb-N with eo1, i.e.,

rCR ¼ lim
O!þ1

r Oð Þ ¼ 2n. (14)

Eq. (14) reveals that the critical value of the frequency for a multistay parallel-cable rigid-connector
symmetric network is equal to twice the number of the stays and confirms the result observed in Section 3 for
the system in Fig. 2. This equation can be interpreted a generalization of the individual-stay critical damping
threshold [12] for the system in Fig. 5. For a real network, in which the tie flexibility, dK, is responsible for
relative displacement between the stays or multiple restrainers are present, Eq. (14) will also depend on dK and,
possibly, on the mass of the connectors Mj,p. In these cases a numerical solution of the system S(Y,O,r) can be
implemented for Y ¼ 0 and the condition

lim
O!þ1

det ½SðY ¼ 0;O;rÞ� ¼ det ½ lim
O!þ1

SðY ¼ 0;O;rÞ� ¼ 0. (15)

The interchange between the limit and the determinant operators in Eq. (15) is possible since the limit of the
matrix functional SðY;O;rÞ, as O!þ1, exists and is finite. Eq. (15) is scalar and complex as a function of r
only; similarly to Eqs. (13a) and (13b), inspection reveals that the real part of this equation is identically zero,
while the imaginary part converges to rCR (numerically, for large O).

5. Case study: the Fred Hartman Bridge

5.1. Use of transverse cross-ties for vibration mitigation purposes

The presented results are related to the application of the methodology to the study of the side-span unit of
the south tower of the Fred Hartman Bridge [6], a twin-deck cable-stayed bridge over the Houston Ship
Channel, with central span of 380m and side spans of 147m. The current configuration of the ‘‘A-line’’ 12-stay
system (side span, south tower) is shown in Fig. 6(a). Before cross-ties were installed in 1998, large-amplitude
vibration was often observed in the stays. For this reason the original 12-stay configuration was modified by
means of three transverse restrainers as in Fig. 6(a), an ‘‘eight-loop’’ steel wire rope system. In the figure, the
proposed retrofit with the addition of external dampers is also indicated; dampers are denoted as D1 and D2.

Physical properties and geometry of each cable were specified in accordance with the original design
specifications and adjusted using relevant measurements. The equivalent model, used in the simulations, is
depicted in Fig. 6(b) (units in meters). Cable AS1 is considered as reference: f01 ¼ o01/2p ¼ 0.626Hz. Each
cross-tie is simulated by appropriately calibrated linear springs. The original configuration, currently installed
on the Fred Hartman Bridge, does not include mechanical dampers.

In the case of a cable network without external devices for energy dissipation, the solution to the in-plane
free-vibration problem was derived in Ref. [6] and two types of modes were identified: global network modes

with significant increment of modal mass, usually the fundamental ones, where all cables are active and a large
number of localized modes related to narrow frequency intervals, where selected jp elements only contribute to
the vibration, linked to all the combinations of internal segments of the network.

It is convenient to express the system performance in terms of two dimensionless groups rD1 ¼ cD1/(m1H1)
0.5

and rD2 ¼ cD2/(m1H1)
0.5, where cD1 and cD2 represent the viscous damping coefficient of the two devices, m1

and H1 the mass and tension of the reference cable (AS1).

5.2. Analysis of the cable network with the addition of one external damper connected to the deck

The introduction of a single damper (D1) in correspondence with Restrainer 3 of the ‘‘A-line’’ was first
considered. The Frequency–damping evolution as a function of rD1 (with rD2 ¼ 0) is depicted in Fig. 7(a) for the
fundamental modes (M1–M3, for a between 1.0 and 4.0) and Fig. 7(b) for some of the localized modes (M5–M7, in
the range 3.72oao3.80). All the investigated modes have an origin at the undamped solution corresponding to the
current configuration of the network, labeled as ‘‘uu’’ in the figure (cross-symbols in Fig. 7b), and they all belong to
the category of complex underdamped modes, as described in Section 3. The direction of increasing damping is
also indicated with the locked-frequency nodes labeled as ‘‘ru’’ (diamond symbols in Fig. 7b).
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Some of the characteristics of these curves are similar to the simplified network case studied in Section 3, as
for M1 in Fig. 7(a), between nodes M1uu and M1ru. Mode 4 (localized solution) was omitted from Fig. 7(b)
since its evolution was very similar to M5. Some differences can be observed for modes M2 and M3.
A distinction with respect to the case of an individual taut cable is the fact that the number of solutions
increases and several real roots can coexist in the limiting cases of rD1 ¼ 0 and rD1-N in a reduced range of
frequencies. Critical damping was numerically computed through the procedure described in Section 4 and
estimated as rCR;D1 ffi 4:3.

Comparison of Fig. 7(a) with Fig. 7(b) reveals that global modes are mainly affected by the installation of
the damper (M1–M3), while localized eigen-functions are practically unaltered (M5–M7). In the latter case
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(Fig. 7b), insignificant values of damping ratios are achieved (less than 0.2%) due to the fact that modal
amplitudes in correspondence with the external node of Restrainer 3 are limited.

A peculiar set of solutions can be observed in Fig. 7(a), with the simultaneous presence of outer (M2) and
inner (M3) trajectories, partially overlapping without crossing. This particular type of solution is the extension
of the behavior depicted in Fig. 4(b) for simplified networks (Section 3). This trend was studied in detail in
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terms of complex eigen-functions associated with these two modes, as depicted in Figs. 8(a1)–(a3) for mode 2
and Figs. 8(b1)–(b3) for mode 3. The scale used in these pictures is arbitrary; these modes correspond to the
special nodes (circle symbols) in Fig. 7(a).

Mode 2 evolves from the second mode of the original configuration (M2uu in Fig. 8a1), progresses to a
high-damping (21%) solution (Fig. 8a2, rD1 ¼ 7.14) and subsequently migrating to a frequency range typical
of localized modes (M7ru as rD1-N).

In Fig. 8(a3), the complex eigen-function, evaluated at rD1 ¼ 39.04 is shown (g ¼ 3:81þ 0:10i) with
Zffi 2:5%, with transition to a localized mode. Modal amplitudes have been scaled in the plots to highlight the
contributing elements. This behavior has been interpreted by recalling the fact that the ‘‘A-line’’ network can
be divided in two regions: stays AS1–AS5, directly affected by the damper, and the remaining cables, simply
driven by this mechanism. The active cables (AS1–AS5) tend to behave as a ‘‘generalized’’ solution of the
single cable-damper example [12], with the device located at a distance of 0.15–0.25 dimensionless units from
the idealized right end. Three concurring phenomena are believed to contribute to the evolution of mode 2: a
lower modal compatibility of M2uu with respect to M2ru, the observation that in the case of the ‘‘locked
network’’ with rD1-N a fundamental anti-symmetric mode disappears from the category of global modes
(M1ru, M2ru only are global in comparison with M1uu, M2uu, and M3uu) and the absence of critical
solutions for this range of frequencies, since primarily associated with shorter network elements (Section 3).

It must be observed that the force equilibrium in correspondence with Restrainer 3 in Figs. 8(a2), (a3) and
(b2) with rD1 6¼0 must be interpreted as a combination of real and imaginary parts, apparently violated if
either contribution is only considered.

In contrast, mode 3 evolves backwards on the frequency axis from M3uu with real a ¼ 3.15 in Fig. 8(b1) to
an intermediate complex eigen-solution (g ¼ 2:95þ 0:37i, rD1 ¼ 7.06) at the same frequency as M2 but with
considerably lower damping (12%, Fig. 4b2), and subsequently decreasing to the second mode of the network
with locked damper to ground as r-N, M2ru (Fig. 8b3). The evolution of M2 and M3 can be interpreted by
recalling that the frequency of both undamped and locked solutions such as, for example, M3uu and M2ru for
M3, can be associated with a characteristic global network wavelength and cannot change significantly during
the migration between the two cases.

In Figs. 8(a2) and (b2), the presence of modes with the same a and inner and outer loops is physically
possible due to the similarity with Fig. 4(b). The significant differences in the maximum attainable damping
ratio (21% and 12%, respectively, corresponding to distinct rD1) can be related to the different magnitudes of
the complex part of the eigen-solution for stays AS1–AS5, in correspondence with the damper location.

In general, it was concluded that Damper D1 is capable of considerably improving the response for mode 2
and in part for mode 3, as shown in Fig. 7(a) (Z410% in both modes). From the design point of view, an
optimal unit for the anti-symmetric mode 2 (Z ¼ 21%, rD1 ¼ 7.14) corresponds to cD1E150 kN s/m.
Moreover, low damping ratios (5%) in the fundamental mode can be achieved, since the location of damper
D1 is unfavorable. In general, the damper coefficient, c, corresponding to maximum Z is different for M1 and
M3, suggesting that simultaneous optimal performance is impossible in the presence of a single external unit.

5.3. Analysis of the cable network with the addition of multiple dampers

In this section, the simultaneous presence of dampers D1 and D2 (Figs. 6a and b) is considered. Critical
damping in the presence of both D1 and D2 was numerically computed (Section 4) under the assumption of
equal units, rD1 ¼ rD2. The numerical solution indicated two independent values of critical damping,
rCR;D1 ffi 4:3, coincident with the quantity derived in Section 5.2 for single unit, and rCR;D2 ffi 3:1. This fact
suggests that, as shown for an individual cable [21], if rD1 ¼ rD2 the behavior of the two units is independent
at critical conditions, i.e., the critical eigen-function is concentrated in the proximity of either damper, and that
rCR,D1 and rCR,D2 may be different for a network.

As a first example, the optimization of mode 1 only is considered with rD1 6¼rD2. From the optimal node
‘‘M1ou’’ rD1

Opt
¼ 6.10, corresponding to a damper coefficient cD1 approximately equal to 128 kN s/m as shown

in Fig. 9(a) by a thin line and circle symbol, the second damping parameter was progressively incremented
from rD2 ¼ 0. The thick line of Fig. 9(a) shows the solution for this new configuration, originating from the
reference point ‘‘M1uo’’ and progressively reaching a new maximum at rD2 ¼ 7.95, equivalent to a damper
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with cD2 ¼ 169 kN s/m, denoted by ‘‘M1oo’’ in the figure. The corresponding complex eigen-mode
(rD1

Opt
¼ 6.10, rD2

Opt
¼ 7.95, g ¼ 1:71þ 0:37i) can still be classified as underdamped (Fig. 9b); the

performance is excellent (Z420%) due to the favorable location of damper D2 close to mid-span.
A second control strategy was explored in order to identify optimized solutions for multiple modes, in

particular for modes 1 (M1) and 3 (M3). Frequency–damping curves were numerically generated for M1 and
M3 by simultaneously varying rD1 and rD2 in the intervals 0orD1o10 and 0orD2o16. The upper limits of
these intervals were decided a priori by considering the potentially large dimensions of these devices. In
Fig. 10(a), a collection of these two classes of a–Z evolution curves is depicted (solid lines for M1, broken lines
for M3). Every curve in Fig. 7(a) has origin from the ‘‘backbone lines’’ with rD2 ¼ 0 and is numerically
computed by progressively varying rD2 with given constant rD1. For each of these branches, the end node in
Fig. 10(a) is accompanied by the notation [rD1, rD2max] with rD2max ¼ 16.0. It is worth noticing that the
extension of these curves to rD2-N does not correspond to a real mode due to rD1 6¼0 but finite.
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For M1 an increase of rD2 is always associated with a monotonic increment of both a and Z. In contrast, the
evolution of M3 is more articulated in the presence of the second damper; as an example, a backward/forward
frequency trajectory originating from the backbone is observed for rD147.0 (Fig. 10a).

The evolution of mode 2 was separately analyzed in Fig. 10(b), for the same interval of rD1 and rD2. The
backbone curve for rD2 ¼ 0 is represented by a thick solid line. In Section 5.2, a transition from global skew-
symmetric mode to localized solution was recorded in the absence of D2 for increasing values of rD1. As a
results, if the complex mode is global and dominated by a skew-symmetric configuration such as, for example,
for rD1o3.0 in Fig. 10(b), the introduction of the second device in correspondence of a nodal point of the
network (Fig. 8a1) produces no significant increment of Z. For intermediate values 3.0orD1o7.5, the
influence of the second damper is more evident as shown on the upper left-hand side of Fig. 10(b);
the numerical procedure also suggests a decrement of Z with respect to the backbone curve for M2 such as,
for example, rD1 ¼ 7.0 and rD240. For rD1 ¼ 7.5, corresponding to the evolution to a localized mode
(Section 5.2), the addition of the second device accelerates this transition (right-hand side of Fig. 10b).

From the collection of the solutions presented in Fig. 10(a) for modes M1 and M3 iso-damping contours
were generated, by reordering the normalized damping parameters, rD1 and rD2, under the condition of
constant Z. Fig. 11(a) depicts the rD1–rD2 contours for Z ¼ 10%, 15%, 20% for both M1 (solid lines, with
progressively increasing thickness) and M3 (dashed lines). For M1 the iso-curves are closed circuits with
progressively reduced size, whereas V-shaped irregular patterns are evident for M3. The mutual intersection of
the Z-equivalent contours associated with M1 and M3, defines the condition of uniform damping for both
eigenvalues, i.e., a condition of equivalent simultaneous optimization of the network in different modes. In
Fig. 11(a), the nodes ‘‘ID10’’ (Z ¼ 10%) with rD1 ¼ 5.3 and rD2 ¼ 2.0, and ‘‘ID15’’ (Z ¼ 15%) with rD1 ¼ 6.9
and rD2 ¼ 4.2, are shown. The latter case can be translated into cD1E145 kN s/m and cD2E90 kN s/m,
corresponding to large units but still acceptable from the design perspective. This is a significant advantage of
the multiple-damper configuration with respect to single-damper network, where one mode at a time can only
be optimized.

Iso-damping contours can also be plotted for M2 (Fig. 11b); the curves are not continuous due to the
articulated behavior of this mode. From the analysis of Figs. 10(b) and 11(b) it was also concluded that M2 is
not of concern in the regimes corresponding to 4.0orD1o7.5 and nodes ‘‘ID10’’ and ‘‘ID15’’ for the
investigated case, since the damping ratio exceeds 15% independently of rD2. Nevertheless, it must be
observed that, in general, the proposed multimode optimization procedure may possibly require the analysis
of iso-damping curves including all fundamental modes, i.e., M1–M3.
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The design of the wire ropes can be addressed by analyzing the expected modal axial internal forces on the
transverse elements, as suggested in a previous study [19], in particular for the fundamental global modes. In
general, when a damper to ground is introduced in correspondence with a restrainer, a significant increment in
the axial force of the restrainer segments is recorded. As an example, in Fig. 8(b3) a 40% increase of axial force
in Restrainer 3 was observed if the ground connector was included with respect to Figs. 8(b1) and (a1). Large
relative increments must be avoided due to the possibility of slackening/snapping of the wire ropes.

Finally, it is worth mentioning that the derivation of asymptotic solutions for small frequency shift for cable
networks, similar to design curves for an individual stay, was recently explored in Ref. [22]. The comparison of
the predictions with the numerically generated solution was reasonable; however, derivation of a unique and
simple relationship, applicable to a wide range of cases and capable of representing the dynamics of a
multistay damped network, did not seem practical and the use of such curves could not fully replace the
complete dynamic analysis.

6. Conclusions

The problem of in-plane large-amplitude oscillation mitigation of cable networks was presented and
examined through an analytical technique founded on the linear taut-cable theory. This problem is of
particular significance for the retrofit of inclined stays of cable-stayed bridges often affected by vibration
associated with wind and wind–rain excitation.

A hybrid passive control strategy, in which the transverse restrainers of the interconnected network system
are combined with linear dampers connected to the deck, was developed. An analytically based and
numerically implemented methodology in the complex domain was considered, allowing for the free-vibration
analysis in the presence of energy dissipation devices.

Analytical solutions derived for a simplified damped network, also reported herein, and the collection of
observations from the free-vibration behavior of a taut-cable with two dampers [21] have contributed to the
identification and interpretation of the in-plane dynamic behavior of large multiple-stay multiple-damper
networks such as, for example, inter-related solution patterns and the modal evolution for different classes of
eigenvalues. The results have shown that even the study of a geometrically simple system can become
challenging in terms of number and type of solutions.

The main part of this research was concentrated on the investigation of the performance of a real network
example (Fred Hartman Bridge, Houston, TX, USA) in relation to both fundamental and higher modes, and
their evolution as a function of the amount of damping that is introduced. The improvement of the response
that is achieved by carefully considering more than one passive device connected to the network at the deck
level was also evaluated.

The efficacy of the proposed hybrid method can be primarily associated with global modes, for which the
dampers are fully active and provide a significant contribution to energy dissipation. Advantages of this
solution with respect to the more common mitigation solution of a damper installed on an individual stay
include the fact that the location of the unit is not geometrically restricted to the cable ends due to presence of
the deck. In fact, this location can be selected in accordance with the position of the cross-ties along the
network, in particular where modal displacements of the undamped eigen-solutions are usually larger, clearly
enabling a more efficient structural control. Moreover, it has been shown that the use of more than one
damper on a cable network at the same time is preferable due to the possibility of multiple-mode optimization.
This opportunity is usually unattainable in more traditional configurations, in which the optimal damping can
only be referred to one mode in particular.

Localized modes, in which only the internal portion of the system is responding, tends to be marginally
affected by the presence of external dampers and may become potential vulnerable to externally induced
oscillation. Although these modal solutions usually correspond to a less critical higher frequency range,
vibration problems cannot be excluded and need consideration. A possible solution associated with the
introduction of dampers at internal locations only between two consecutive stays, although not directly
discussed in this paper, can be found in Ref. [19].

Out-of-plane vibration control in the case of a cable network is less manageable due to the fact that the
influence of the restrainers is minimal in the transverse direction. Although in most cases network-type
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systems have been demonstrated efficient in the vibration reduction, this is an inherent limitation of all cross-
tied systems for the case of wind-induced oscillation with non-negligible out-of-plane component. Analysis of
the trajectories of unrestrained individual cables, observed in the field, are typically elliptical with major axis
inclined with respect to the in-plane direction [1]. This observation indicates a complex mechanism depending
on the three-dimensional orientation of the stays with respect to the wind direction, and is not currently
considered by the proposed formulation.

Acknowledgments

This research has been supported in part through an FHWA-sponsored project (Harold Bosch technical
contact) on stay-cable vibration awarded to a team of investigators including HNTB Corporation, New York,
Johns Hopkins University, Baltimore, MD, Rowan Williams, Davies and Irwin, Ontario, Canada, Buckland
and Taylor of Vancouver, BC, Canada. The Fred Hartman and Veterans’ Memorial Bridges Project has been
funded by the Texas Department of Transportation through Texas Tech University and the University of
Texas at Austin. The first author would like to acknowledge the support of Northeastern University, start-up
funding for new faculty members.

This material is also based in part upon work supported by the National Science Foundation under Grant
no. 0305903. This support is gratefully acknowledged. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation, the Texas Department of Transportation and the United States
Department of Transportation, Federal Highway Administration.
References

[1] D. Zuo, N.P. Jones, The mechanism of rain–wind-induced vibration: vortex-shedding or galloping, Proceedings of the 10th Americas

Conference on Wind Engineering, Baton Rouge, LA, USA, May 31–June 4, 2005, CD-ROM.

[2] H. Yamaguchi, H.D. Nagahawatta, Damping effects of cable cross ties in cable-stayed bridges, Journal of Wind Engineering and

Industrial Aerodynamics 54–55 (1995) 35–43.

[3] H. Yamaguchi, M. Alauddin, Control of cable vibrations using secondary cable with special reference to nonlinearity and interaction,

Engineering Structures 25 (6) (2003) 801–816.

[4] M. Virlogeux, Cable vibrations in cable-stayed bridges, in: A. Larsen (Ed.), Bridge Aerodynamics, A.A. Balkema, Rotterdam, NL,

1998, pp. 213–233.

[5] L. Caracoglia, N.P. Jones, In-plane dynamic behavior of cable networks, part 1: formulation and basic solutions, Journal of Sound

and Vibration 279 (3–5) (2005) 969–991.

[6] L. Caracoglia, N.P. Jones, In-plane dynamic behavior of cable networks, part 2: prototype prediction and validation, Journal of

Sound and Vibration 279 (3–5) (2005) 993–1014.

[7] T.J. Carne, Guy Cable Design and Damping for Vertical Axis Wind Turbines, Sandia National Laboratories, SAND80-2669, 1981.

[8] H.M. Irvine, Cable Structures, MIT Press, Cambridge, MA, USA, 1981.

[9] B.M. Pacheco, Y. Fujino, A. Sulekh, Estimation curve for modal damping in stay cables with viscous damper, Journal of Structural

Engineering 119 (6) (1993) 1961–1979.

[10] Z. Yu, Y.L. Xu, Non-linear vibration of cable-damper systems, part I: formulation, Journal of Sound and Vibration 225 (3) (1999)

447–463.

[11] Y.L. Xu, Z. Yu, Non-linear vibration of cable-damper systems, part II: application and verification, Journal of Sound and Vibration

225 (3) (1999) 465–481.

[12] J.A. Main, N.P. Jones, Free vibrations of a taut cable with attached damper. I: linear viscous damper, Journal of Engineering

Mechanics—ASCE 128 (10) (2002) 1062–1071.

[13] S. Krenk, Vibrations of a taut cable with external damper, Journal of Applied Mechanics—Transactions of the ASME 67 (4) (2000)

772–776.

[14] S. Krenk, J.R. Høgsberg, Damping of cables by a transverse force, Journal of Engineering Mechanics—ASCE 131 (4) (2005) 340–348.

[15] E.A. Johnson, R.E. Christenson, B.F. Spencer Jr., Semiactive damping of cables with sag, Computer-aided Civil and Infrastructure

Engineering 18 (2) (2003) 132–146.

[16] C.S. Cai, W.J. Wu, X.M. Shi, Cable vibration reduction with a hung-on TMD system, part I: theoretical study, Journal of Vibration

and Control 12 (7) (2006) 801–814.

[17] H.R. Bosch, S.W. Park, Effectiveness of external dampers and crossties in mitigation of stay cable vibrations, Proceedings of the Sixth

International Symposium on Cable Dynamics, Charleston, South Carolina, USA, September 19–22, 2005, CD-ROM.

[18] C.N. Jensen, S.R.K. Nielsen, J.D. Sorensen, Optimal damping of stays in cable-stayed bridges for in-plane vibrations, Journal of

Sound and Vibration 256 (3) (2002) 499–513.



ARTICLE IN PRESS
L. Caracoglia, N.P. Jones / Journal of Sound and Vibration 307 (2007) 849–864864
[19] L. Caracoglia, N.P. Jones, Selection of an optimized cable network system configuration, Proceedings of the 17th ASCE Engineering

Mechanics Conference, University of Delaware, Newark, DE, USA, June 13–16, 2004, CD-ROM.

[20] L. Sun, C. Shi, H. Zhou, Y. Zhou, Vibration mitigation of long stay cable using dampers and cross-ties, Proceedings of the Sixth

International Symposium on Cable Dynamics, Charleston, South Carolina, USA, September 19–22, 2005, CD-ROM.

[21] L. Caracoglia, N.P. Jones, Damping of taut-cable systems: multiple dampers on a single stay, Journal of Engineering Mechanics—

ASCE 33 (10) (2007).

[22] L. Caracoglia, N.P. Jones, Design of mitigation devices for stay-cable vibration, Proceedings of the Sixth International Symposium on

Cable Dynamics, Charleston, South Carolina, USA, September 19–22, 2005, pp. 125–132.


	Passive hybrid technique for the vibration mitigation of systems of interconnected stays
	Introduction
	Cable dynamics
	Influence of damping in simplified cable networks
	Extension of the concept of ’’critical damping’’ to cable networks
	Case study: the Fred Hartman Bridge
	Use of transverse cross-ties for vibration mitigation purposes
	Analysis of the cable network with the addition of one external damper connected to the deck
	Analysis of the cable network with the addition of multiple dampers

	Conclusions
	Acknowledgments
	References


