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Abstract

Accurate analytical approximate solutions to the double-well Duffing oscillator are presented. The solutions are
obtained by combining Newton’s method with the harmonic balance method. The procedure yields rapid convergence with
respect to exact solution. The results are valid for small as well as large oscillation amplitudes.
© 2007 Elsevier Ltd. All rights reserved.

The Duffing equation with a double-well potential (with a negative linear stiffness) is an important model.
One physical realization of such a Duffing oscillator model is a mass particle moving in a symmetric double
well potential. This form of the equation also appears in the transverse vibrations of a beam when the
transverse and longitudal deflections are coupled [1]. The damped and forced double-well Duffing equation
has been a subject of intensive study over the last few decades as a landmark chaotic system, we refer readers
to Ref. [2] and cited therein. Although the Duffing equation with a nonnegative linear stiffness is very often
used as an example to demonstrate the validity of various methods for constructing analytical approximate
solutions to nonlinear oscillators [3—5], no corresponding report to the Duffing oscillator with a negative linear
stiffness appears up to now, to the authors’ knowledge. This paper uses the methods proposed by Wu et al.
[6-8] to construct analytical approximate periods and periodic solutions to free oscillation of the undamped
double-well Duffing oscillator. The solutions are obtained by combining Newton’s method with the harmonic
balance method. The procedure yields rapid convergence with respect to exact solution. The results are valid
for small as well as large oscillation amplitudes.

Consider a conservative single-degree-of-freedom system governed by

d’u

ds
For convenience, the approach presented by Wu et al. [6] for the case of f(—u) = —f(u), is briefly

summarized as follows. By coupling the Newton method with the method of harmonic balance, Wu et al. [6]
obtained three analytical approximate periods and corresponding periodic solutions. The first analytical

+f(w)y=0, u0)=4, %(0) =0. (1)
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approximation to the period and periodic solution is

Ti(A) =21//Qi(A), w(t)=Acost, ©=/Q(AL )

where A >0 represents oscillation amplitude and
4 n/2
Q) =a1/A, ay_ = 7/ f(A4 cos t)cos[(2i — Dr]dz, i=1,2,.... 3)
T Jo

The second analytical approximation to the period and periodic solution is

TH(A) =21/\/2:(A), 2:(A) = Qi(A4) + AQi(A),
(1) = X(A)cos T + Y(A)cos 31, = /DA, )

where

AQ(A) = w[2a; — (by — b)AL/B(A),  X(A) = A — 2a34° | D(A),

Y(A) =2a34° | B(A), D(A) = Al(bs + bs — by — bs)A + 18],
4 /2
byi—y = - fu(4cost)cos[2(i — D)r]dr, i=1,2,.... (5)
0

The third analytical approximation to the period and periodic solution is

T3(A) = 21//Q3(A), 23(4) = Q(A4) + A (A),
u3(t) = [X(A) + y,(4)] cos T+ [Y(A) — y,(A) + y5(A4)] cos 31 — yy(4) cos5t, 1= /Q3(A)1, (6)

where AQ,(A4), y1(A4), y2(A) can be obtained by solving a set of linear algebra equations. Here, they are omitted
for saving space, and for details, we refer readers to Ref. [§].

For the case of f{u) being a general nonlinear function of u, let V(1) = [ f(u) du be the potential energy of
the system and suppose it reach its minimum at u = u, called a center. We assume ug = 0. Thus, the system
oscillates between asymmetric limits [—B, A] where both u = —B(B>0) and u = A4 have the same energy level:

V(—B) = V(A). (7)

Here, B and A represent the left and right oscillation amplitudes, respectively.
Following the approach in Ref. [7], we introduce the two odd nonlinear oscillating systems:
d*u du
K@) =0, uO=H TO=0, ®)

where

of (orut) if u=0,
K, 0) = {—(xf(—acu) if u<0 ©)

with « = +1. Here we set H = A for « = 1 and H = B for o = —1, respectively. In Egs. (2)—(6), replacing f
with K(u,a) for & = +1, respectively, we may achieve the corresponding first, second and third analytical
approximate periods and the periodic solutions 7, " '(4), u, " '(¢) and T,,"'(B), u,” '(¢) (n = 1,2,3). Utilizing
these analytical approximate solutions, we can construct the corresponding the nth (n = 1,2,3) analytical
approximate period and periodic solution as follows [7]:

+1 -1
T, (A)Jr T, (B)

Tn(A) = > B

(10a)
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and
+1
u (1) for Ogth”Tw,
Ti'(4)  T,'(B) T;'(4) Ti'(4)  T,'(B)
-1 __n n n n n
LT BN T TG T TB)
S s S oyt SISttt

Now, we study the unforced and undamped double-well Duffing oscillator:

d’u 3
—— —utuw

du
i =0, u(0)=A4, d_t(o) =0. (11)

Potential energy of this system is given by V(u) = —u?/2 + u*/4 and it has three equilibrium points. The
central equilibrium point # = 0 is unstable and the other two u = +1 are stable. The periodic solutions of this
system depend upon the initial oscillation amplitude 4. For the case of 0<A <1 and 1<A4<+/2, oscillation
occurs around stable equilibrium point # = + 1, which is asymmetric about this point. For the case of 4> +/2,
the periodic solution is a symmetric one and extends across three equilibrium points.

Oscillation for the case of 4> +/2 is first studied, which occurs between symmetric limits [—4,4]. For this
case, one has f(u) = —u+ v and f (1) = —1 + 3u?. The Fourier series expansions of f{A4cos 1) and f,(Acos 1)
are given in Egs. (3) and (5), respectively, where

ag=—-A+34°/4, ay=A[4, by=-2+34>, by=34%/2, bs=0bs=0. (12)

Using Egs. (2)—(5) and (12), we obtain the first two analytical approximate formulas for the period and
periodic solution:

TiA) =21 /\/Qi(A), Qi(A)=342/4—1, w(t)=Acost, 1=/ QA (13)
Vo : Vo

and

128 — 1924° + 694*
T1(A) = 271?/\/ Q(A4), QA= 9642 — 128 >

3 3
uy(t) = (M> cos T+ (Ai) cos 31, T =/ (A). (14)

32 — 2447 244% — 32

Based on Egs. (6) and (14), the third analytical approximate expressions for the period and periodic solution
are:

D(4)
T5(4) =2n/\/Q23(4), Q23(4) = LA’
us(t) = [L1(A)cos T+ Ly(A)cos 31+ L3(A)(124° — 16) cos 5t]/L(A), = /Q:(A)t, (15)

where

D(A) = —1,099,511,627,776 + 7,352,984,010, 7524% — 21,769, 041,739, 776 A* + 37,447,618, 527,2324°
— 41,248,951,894,016 4% + 30,171,363, 606, 528 4'0 — 1,465,423,202, 1844' + 4,557,352,944,9604'*
— 823,439,591,472A4' + 65, 856,986,4754'%,
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Li(A) = 274,877,906,9444 — 1,623,497, 637,8884° + 4,179,808, 485,376 4°
—6,126,905,065,47247 + 5,592, 752,848,896 4° — 3,255,431,946,2404"" + 1,180,009, 138,9444'3
— 243,516,596,624A4" 421,904, 831,2414"7,

Ly(A) = —8,589,934,5924° 4 44,560,285, 6964 — 98,750,693,37647 4+ 121,196, 511,2324°
— 88,969, 502, 7204 + 39,067, 159,2964" — 9,501, 566, 864A4"° + 987,420,2714",

L3(A) = — 16,777,216 4% + 61,865,984A47 — 90,947, 5844° + 66, 641,9204""!
—24,344,2564" + 3,547,1754",

L(A) = 4(68, 719,476,736 — 408,021, 893, 12042 + 1,056, 159, 301, 6324* — 1,556,711, 735,296 4%

+ 1,429,036, 728,3204°% — 836,639,772, 6724 + 305,066,377, 3444
— 63,341,762,3404" + 5,733,704, 4034'°). (16)

The exact period 7,(A) for Eq. (11) is
B /”/2 4dt
0\ A2 +sin? /2 1

For comparison, the exact period 7,.(A4) obtained by computing integral in Eq. (17) and the approximate
periods T4, T», and T3 computed, respectively, by Eqs. (13)—(15) are listed in Table 1. Furthermore, we have

T(A)

(17)

lim I =0.978277, lim L =0.999318, lim Ts = 0.999929. (18)
A—+oo 1, A—+oo 1, A—+oo 1,

Note that, for this oscillator, oscillation amplitude is required to satisfy A4>+/2, since Eq. (11) has a
homoclinic orbit with period + oo for 4 = +/2. From Table 1 and Eq. (18), it can be concluded that
Egs. (13)—(15) can provide excellent approximate periods for oscillation amplitude 4> /2.

For purpose of comparison, the exact periodic solutions u,(¢) achieved by integrating Eq. (11) and the
analytical approximate periodic solutions u(¢), u,(f) and uz(¢) computed by Egs. (13)—(15), respectively, are
plotted in Figs. 1 and 2 for the time in one period. These figures correspond to, respectively, two different
amplitudes of oscillation 4 = 1.5 and 10.

Figs. 1 and 2 show that the third approximations provide the most excellent solutions with respect to the
exact periodic solutions for oscillation amplitude 4 > +/2. The proposed second approximations are generally
acceptable for large oscillation amplitude.

For the case of 1<A4<+/2, the oscillation occurs around stable equilibrium points ¥ = + 1, and is a
asymmetric about it. We introduce a new variable:

x=u-—1. (19)
Table 1
Comparison of approximate periods with exact period
A T. T, /T, T3/T.
1.42 15.0844 0.581955 0.729206 0.875313
1.45 11.2132 0.737748 0.889001 0.978779
1.5 9.22366 0.821562 0.949312 0.994180
1.7 6.35285 0.915341 0.989117 0.999007
2 4.68568 0.948183 0.996020 0.999621
5 1.52860 0.975637 0.999140 0.999912
10 0.747096 0.977660 0.999278 0.999926
50 0.148369 0.978253 0.999317 0.999929
100 0.0741684 0.978271 0.999318 0.999929

1000 0.00741630 0.978277 0.999318 0.999929
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Fig. 1. Comparison of approximate periodic solutions with exact periodic solution for 4 = 1.5.
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Fig. 2. Comparison of approximate periodic solutions with exact periodic solution for 4 = 10.

Substituting Eq. (19) into Eq. (11) yields
dx s 3 ~ dx
- = = —=(0) = 20
a7 +2x+3x"+x =0, x(0)=4, T 0)=0, (20)
where 4 = A — 1. The corresponding potential energy of the system is
V(x)=x>+x" +x*/4. (21)
Using Eqs. (7) and (21), we can express B(B>0) in terms of A:

B=1-V1-24-4". (22)

Based on Egs. (8) and (9), the introduced odd nonlinear oscillating systems are:

d’x dx
SR =0, xO=H T0=0, 23)
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where

K(x,2) 2x + 3ax? + x3 if x>0,
T 32 443 if x<0

with o = +1
The Fourier series expansions of K(H cos 1, o) and K. (H cost, «) are given by Egs. (3) and (5), respectively,
where

ai =2H +3H’ [4 + 8¢H? /1, a3y = H’ /4 +8aH?/(51), by =4+ 3H* +240H /7,
by =3H?/2+8aH/n, by=—8uH/(5n), be=240H/(35m). (24)

From Egs. (2), (4) and (24), we obtain the first two analytical approximate formulas for the period and
periodic solution:

1
TY(H) = QN(H) = H(Sn + 3nH? + 320H),

2n
VOiH)
xj(ty=H cos 1, 1= 4/Q{(H)t (25)

and
2n
TY(H) = —F——,
V5 (H)
x5(t) = X*(H)cos 1+ Y*(H)cos 31, 1=4/Q5(H)t, (26)
where
Q3(H) = [1757°(512 + 384H* + 69 H*) + 4800 H (1480 + 541 H?)
+ 13864960 H?] /[20n®*(H)],
X*(H) = [35Hn(64 + 23H?) + 85760 H*| /®*(H), Y*(H) = TH*(5Hn + 320)/®*(H),
@*(H) = 40(567 + 21 H? 7 + 2200 H). (27)
Table 2

Comparison of approximate periods with exact period

4 T, /T, To/T,

1.05 4.45169 0.999970 1.00000
1.10 4.48053 0.999866 1.00001
1.15 4.53484 0.999649 1.00003
1.20 4.62391 0.999230 1.00007
1.25 4.76522 0.998401 1.00014
1.30 4.99674 0.996583 1.00032
1.35 5.42749 0.991564 1.00082
1.40 6.75637 0.961218 1.00269
1.41 7.92344 0.916475 1.00051

1.412 8.55534 0.886769 0.995337
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To save space, the corresponding third analytical approximation is omitted. The exact period for Eq. (20) is

(121)_ /"/2 2dt
0 \/2+121(3 —cos 2¢+ 2 sin t)/(cos t/2 + sin t/2)2+,212(1 + sin’ t)/2

T.

2dt

+ /0 " , (28)
J

2— B —cos 2+ 2 sin 1) /(cos 1/2+sin 1/2)° + B (1 +sin’ 1) /2

where B is given, in terms of A, in Eq. (22).

By setting o =1, H = Aand «=—1, H=B, respectively, in Egs. (25)—(27) and applying the relation in
Eq. (10), we can obtain the first two analytical approximate period and periodic solutions 7, and x,(?)
(n = 1,2). Based on Eq. (19), the analytical approximate periodic solutions to Eq. (11) are given by

u () =x,()+1, n=1,2 (29)

and the corresponding approximate periods are the same as 7, (n = 1, 2).

For comparison, the exact period 7, obtained by integrating Eq. (28) and the approximate periods 7 and

T, computed, respectively, by Egs. (10a), (25) and (26) are listed in Table 2. Furthermore, we have
. T . T
AILH?H T = Alinll 7.~ 1.00000. (30)

Note again that Eq. (11) has a homoclinic orbit with period + oo for 4 = +/2.

From Table 2 and Eq. (30), we can conclude that 7, gives excellent approximate periods for the oscillation
amplitude 1 <4 <+/2.

The exact periodic solutions u.(¢) achieved by integrating Eq. (11) and the analytical approximate periodic
solutions u(¢) and u,»(f)computed by Egs. (10b), (25) and (26) are plotted in Figs. 3 and 4 for the time in one
according period. These figures correspond to, respectively, two different amplitudes of oscillation 4 = 1.1
and 1.4.

Figs. 3 and 4 show that the second analytical approximations provide the most excellent solutions with
respect to the exact periodic solutions for oscillation amplitudes 1 <4 <+/2. The proposed first analytical
approximate solution is generally acceptable for oscillation amplitude 4>1 and near 1.

For the case of 0<A <1, the oscillation is the same as that with initial conditions u(0) = 4 = V2 — A2,
(du/dr)(0) = 0, since V(A) = V(A). Note that for 0< A< 1, one has 1 <A <+/2. Furthermore, for the case of

ug(t)

)

1.00

0.95

Periodic solutions u(f)

0.90 -

0.85 T T T - I .
0 1 2 3 4 5
Time t

Fig. 3. Comparison of approximate periodic solutions with exact periodic solution for 4 = 1.1.
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Fig. 4. Comparison of approximate periodic solutions with exact periodic solution for 4 = 1.4.

1 <A<+/2, the corresponding analytical approximate period and periodic solution have been established in
above paragraphs. We can then get the analytical approximate period and periodic solution for 0 <A <1.

Because the periodic motion around the equilibrium point # = —1 is similar to that around the equilibrium
point u = + 1. The results above may easily be transformed to those for oscillation amplitudes —v2 <A< — 1
and —1 <4 <0. The details are omitted for saving space.

In summary, accurate analytical approximate solutions to the double-well Duffing oscillator have been
presented. The solutions are obtained by combining Newton’s method with the harmonic balance method.
The procedure yields rapid convergence with respect to exact solution. The results are valid for small as well as
large oscillation amplitudes.
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