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Abstract

Numerous linearizations of mechanical systems feature non-normal operators. This is particularly the case in follower

force systems, gyroscopic systems and models for squealing brakes. In this paper, it is shown that a pseudospectral analysis

can illuminate features of these systems including dissipation-induced destabilization and high-eigenvalue sensitivity to

parameter variation.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A mechanican attempting to subdue an energetic and unstable device will immediately think of using
dissipation to remove excess energy. In many cases, this strategy is entirely successful, and so it is one of the
most surprising results in engineering that dissipation can actually cause instability in some machines.
Dissipation-induced destabilization occurs in a wide class of mechanisms including follower force and
gyroscopic systems [1–3]. One of the results we will show in this paper is that it also occurs in certain models
for brakes, where instability is used as an indicator of brake squeal.

Our goal in this paper is to use the pseudospectral perspective [4,5] to shed light on dissipation-induced
destabilization. We put particular emphasis on a variant of the pseudospectrum known as a structured
pseudospectrum [6], that ends up being useful in the analysis of mechanical systems. Generally, the
pseudospectral perspective is well-suited to systems such as brake models, where high sensitivity to parameter
variations can make squeal prediction and suppression difficult (see for example Refs. [7,8]). The work
presented in this paper also complements existing works on eigenvalue sensitivity in follower force systems and
brake models, see for example Refs. [1,7,9].

In Section 2 we provide background on pseudospectra, and in Section 3, we introduce structured
pseudospectra. These concepts can arise from questions about the behavior of the linear system

_x ¼ Ax, (1)
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Fig. 1. Schematic of the Ziegler pendulum. The parameters and coordinates for this system are described in Section 1, as well as in

Appendix A.
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which are usually answered by considering the eigenvalues of A. The set of these eigenvalues is called the
spectrum of A and is denoted SpecðAÞ. Unfortunately there are cases for which SpecðAÞ does a poor job of
describing the behavior of Eq. (1). These cases motivate the �-pseudospectrum of A, which is denoted as L�ðAÞ,
and defined by

L�ðAÞ ¼ fl 2 SpecðAþ dAÞ; where kdAko�g. (2)

In this definition, dA can be any perturbation to A, provided its norm1 is less than �. Although consideration of
all possible perturbations is often useful, there are many problems in which the perturbations to A are
naturally restricted. For instance when A corresponds to a mechanical system, the only possible perturbations
may correspond to variations of specific parameters such as damping coefficients in follower force systems,
and lining stiffness coefficients in models for brakes. In this paper, we restrict the structure of dA in Eq. (2) and
we study the corresponding subset of L�ðAÞ, known as a structured �-pseudospectrum. We show that the
structured �-pseudospectrum illuminates existing results on dissipation-induced destabilization and brake
squeal prediction.

In Section 4, we demonstrate the advantages of the pseudospectral perspective by analyzing the Ziegler
pendulum, which consists of two masses connected by rigid links and viscoelastic hinges (see Fig. 1). The links
are oriented by the angles f1 and f2, and a follower force P acting on the second mass is oriented by the angle
af2. (In the remainder of the paper we frequently refer to the nondimensionalization of P, given by
F ¼ PL2=k2.) The viscoelastic hinges are characterized by stiffness values k1 and k2 and damping values b1

and b2. A complete description of the Ziegler pendulum and its equations of motion is given in Appendix A
and also in Ref. [2]. Several classical phenomena associated with this system are easy to see using a structured
�-pseudospectrum in which the perturbations dA in Eq. (2) are restricted so that they correspond to changes in
the viscous damping of the pendulum joints. The linearization of the Ziegler pendulum about the trivial
equilibrium state has a canonical form that encompasses a large family of mechanical systems, including brake
models2 used in the study of brake squeal. As a result, brake models and follower force systems have similar
pseudospectral properties, as we discuss in Section 5.

The phenomenon of dissipation-induced destabilization in mechanical systems has a long history—for
references and comments, we refer the reader to Refs. [2,11–13]. Relevant background material on brake
squeal can be found in the reviews [10,14]. Material on pseudospectra can be found in Ref. [4] and in Ref. [5],
and material on structured pseudospectra can be found in Refs. [15–17].
1In this paper norm will always indicate the standard 2-norm.
2These models date to North [10] (see, for example, Ref. [9]).
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2. Background on pseudospectra

The pseudospectrum of a matrix A can be motivated by questions about the behavior of the associated
differential equation _x ¼ Ax. We say that the equilibrium x ¼ 0 of the linear system _x ¼ Ax is asymptotically
stable if all the eigenvalues l of A satisfy ReðlÞo0. It is indeed true that

jxðtÞjpC exp t max
l2SpecðAÞ

ReðlÞ
� �

(3)

as t!1, with an additional prefactor of tk in some cases of multiple eigenvalues. However, if A is nonnormal,
(that is, if ATAaAAT), then it is well-known that this asymptotic estimate can be highly nonuniform, especially
if the dimension of A is large. Non-uniformity means that C may have to be extremely large for the inequality
to hold, clearly decreasing the usefulness of the estimate. This fact encourages further consideration of
nonuniformity; we note that nonuniformity is closely related to the behavior of the resolvent RðzÞ of the
matrix A.

The resolvent3 of A is a matrix valued function defined by

RðzÞ ¼ ðzI � AÞ�1. (4)

If A is normal, then the norm of the resolvent is inversely proportional to the distance between z 2 C and the
spectrum of A,

kRðzÞk ¼ distðz; SpecðAÞÞ�1. (5)

The situation is dramatically different however when A is nonnormal. In this case, the norm of the resolvent of
A may be totally unrelated to the distance between z and the eigenvalues of A. This motivates the following
definition of the �-pseudospectrum of A:

L�ðAÞ ¼ fl 2 C such that kRðlÞk41=�g. (6)

This definition is in fact equivalent to Eq. (2). The definition in Eq. (2) highlights the relation between L�ðAÞ

and spectral instability.
Having defined the �-pseudospectrum, we now present an example. In Fig. 2 we show �-pseudospectra

(with � ¼ 0.001) corresponding to the Ziegler pendulum with the dimensionless force F ¼ 0:2 in image (a) and
F ¼ 2:0 in image (b). In both images, there are four purely imaginary eigenvalues related by reflective
symmetry about the real axis, and so we only show the two that are positive. Each eigenvalue (labeled l) is at
the center of a roughly circular region (with radius labeled r). The �-pseudospectrum in images (a) and (b)
consists of the union of these circular regions. In both images, a section of the imaginary axis is removed to
improve the display. As F increases, the �-pseudopectrum grows larger, reflecting an increase in the sensitivity
of the system spectrum to perturbations. Furthermore, as F increases, the operator associated with the Ziegler
pendulum becomes increasingly non-normal. We recall that sensitivity to perturbations is characteristic of
non-normal systems.

Many of the perturbations dA used to create Fig. 2 are not physically realistic (or realizable). To find
perturbations that are realistic, we need to examine the structure of A. For a wide class of mechanical systems
including the two considered in this paper, A has the following canonical form:

A ¼
0 I

�M�1K �M�1D

� �
. (7)

Here, K is a matrix with a symmetric part that corresponds to conservative forces, and with an asymmetric
part that contains contributions from either the follower forces or, in the case of brake models, from friction
forces. M is a symmetric positive-definite matrix called the ‘‘mass’’ matrix, and D is a matrix that represents
linear viscous damping. In the absence of damping, Eq. (7) corresponds to a reversible dynamical system, but
because KaKT, this system is not Hamiltonian [2]. Loosely speaking, as K becomes increasingly asymmetric,
3It is useful to note that the resolvent RðsÞ is the Laplace transform of the matrix exponential etA, and can be expressed as a polynomial

function of A using the Fadeev–Fadeeva formulae [18,19].
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Fig. 2. These images show �-pseudospectra of nonnormal matrices corresponding to the Ziegler pendulum for different values of F.

These images were obtained with the help of EIGTOOL [20].
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the matrix A becomes increasingly nonnormal and pseudospectral effects manifest. In follower force systems,
this occurs when the magnitude of the follower force increases. In many brake models, this occurs when the
friction forces or coefficients of friction increase.4

3. Structured pseudospectra

Motivated by Eq. (2), we define a structured �-pseudospectrum of the linear operator A to be

S�ðAÞ ¼ fl 2 SpecðAþ dAÞ such that kdAko� and dA 2 Sg, (8)

where S is the set of matrices that satisfy some structural condition. To study the effects of damping and other
parameter variations on the mechanical systems of interest, we will examine S�ðAÞ where

A ¼
0 I

�M�1K 0

� �
, (9)

and where dA 2 S in Eq. (8) indicates that dA has the following structure:

dA ¼
0 0

�M�1H �M�1D

� �
, (10)

with M and D positive definite. Here H represents variations in the applied forces and stiffnesses. We note that
Eq. (9) is non-normal when KaKT.

4. Example of a follower force system

The Ziegler pendulum shown in Fig. 1 is a follower force system that experiences dissipation-induced
destabilization. This phenomenon is illustrated in Fig. 3 where the pendulum position as a function of time is
4See Section 8 of Ref. [14] where lumped parameter models for disk brakes are discussed. A detailed discussion of the case of a large

degree-of-freedom finite-element model can be found in the Appendix of Ref. [9].
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Fig. 3. Simulations showing dissipation-induced destabilization in the Ziegler pendulum. In (a) and (b) F 0 ¼ 0:2, F1 ¼ 1:2, and F 2 ¼ 2:0.
In (a), damping is absent and the F2 simulation is stable, while in (b) damping is present and the F2 simulation is unstable.
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determined by numerically integrating the nonlinear equations given in Appendix A. In images (a) and (b) in
this figure, F takes on the values 0:2, 1:2, and 2:0, and the logarithm of the normalized total energy E is plotted
as a function of a dimensionless time t. In image (a), damping is absent, whereas in image (b), the elements
of the damping matrix Eq. (11) are c1 ¼ c2 ¼ 0:1. (These non-dimensional coefficients are defined in
Appendix A.) We see that for the smaller value of F, the equilibrium is stable both in the absence and presence
of damping. For the larger value of F, the equilibrium is stable in the absence of damping, but can become
unstable when damping is added.

It turns out that dissipation-induced destabilization also occurs in the linearized equations of motion for the
Ziegler pendulum, given by M €zþD_zþ Kz ¼ 0 where

M ¼
mþ 2 1

1 1

� �
; D ¼

c1 þ c2 �c2

�c2 c2

" #
; K ¼

1þ k� F F � 1

�1 1

� �
. (11)

The nondimensional mass, damping, stiffness, and follower force terms m, ci, k, and F that we use here are
defined in Appendix A. The linearized Ziegler equations can be written as _x ¼ Ax where A is the matrix in
Eq. (7), with M, D, and K as given above. When D and F are zero, A has a pair of purely imaginary
eigenvalues. As F increases, these eigenvalues move towards each other along the imaginary axis, merging in a
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Fig. 4. Here we superpose the structured �-pseudospectrum S�ðAÞ on the regular �-pseudospectrum from Fig. 2.
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reversible Hopf bifurcation5 when F is approximately 2.086. In the presence of damping however, the
eigenvalues of A can move into the right half-plane for F as low as 1.2. This is the dissipation-induced
destabilization that interests us.

When D ¼ 0, the operator A associated with the Ziegler pendulum is given by Eq. (9). The �-pseudospectrum
of this A does not reveal anything about dissipation-induced destabilization (see Fig. 2), although it does show
that larger values of F (which cause A to be increasingly non-normal) make A more sensitive to perturbations.
We illuminate the system response to dissipation by constructing a structured �-pseudospectrum S�ðAÞ for the
system with A and dA as given in Eqs. (9) and (10), respectively, with H in Eq. (10) set equal to 0. We generate
each dA by constructing a random positive definite D with unit magnitude, and by then setting

dA ¼
0 0

0 bM�1D

" #
, (12)

with b ¼ ~�=kM�1Dk for some ~� 2 ½0; �Þ. The random positive definite D is given by

D ¼
cos y sin y

� sin y cos y

� �
1 0

0 d1

" #
cos y � sin y

sin y cos y

� �
, (13)

where y and d1 are random numbers on ½0; 2p� and ½0; 1�, respectively.
In Fig. 4 we superpose a structured �-pseudospectrum S�ðAÞ on an exact copy of the �-pseudospectrum

L�ðAÞ from Fig. 2. Our S�ðAÞ is generated by restricting the perturbations dA to the form Eq. (10). This
restriction causes the �-pseudospectra from Fig. 2 to collapse down to the much smaller horizontally oriented
regions at the circle centers. When these smaller regions have a part in the right half-plane, (such as when
F ¼ 2:0), it is possible for the Ziegler pendulum to experience dissipation-induced destabilization. We examine
these smaller regions in greater detail in Figs. 5 and 6.

In Fig. 5, we show structured �-pseudospectra (with � ¼ 0:001) for the Ziegler pendulum as F increases
through the values 0.2, 1.2, 1.4, 1.6, and 1.7. The structured �-pseudospectra are the regions outlined in
small dots, the system eigenvalues are the larger dots, and the vertical line in each image is the iR axis. As F

increases, the eigenvalues move towards each other along the iR axis, and for some F between 0.2 and 1.2, the
5This event is also known as a binary flutter instability.
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Fig. 5. These images show a progression of structured �-pseudospectra for the Ziegler pendulum.
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Fig. 6. These images continue the progression from Fig. 5.
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structured �-pseudospectrum moves into the right half-plane. The regions surrounding each eigenvalue are
scaled and translated, and data below the real axis is omitted. Actual parameters for these regions are given in
Appendix B. It is evident from the first image in Fig. 5 that for small F, dissipation stabilizes the equilibrium.
However, as F gets larger, the non-normality of A increases and dissipation can induce instability. As is
evident from the results for FX2:08, the destabilization can occur in either pair of eigenvalues.

In Fig. 6, we continue the progression from Fig. 2, with F values of 1.8, 2, 2.08, 2.08575, 2.0859, and 2.087.
In 1952, Ziegler [3] showed that the merging of the eigenvalues suggested by the transition from the fourth
image to the fifth image above occurs at the exact value F ¼ 7

2
�

ffiffiffi
2
p

.

5. Brake squeal

We now consider the usefulness of structured �-pseudospectra in predicting brake squeal. As may be
surmised from the vast literature on this topic, brake squeal is an elusive phenomenon for which complete
suppression is difficult. Here we consider a simple brake model (see Fig. 7) with a linearization A that becomes
increasingly non-normal as the onset of squeal is approached. As a consequence of this non-normality, the
spectrum of A becomes more sensitive to perturbations, and small changes to the system parameters greatly
affect the onset of squeal. Our comments here are in accord with the independent observations on this
sensitivity that have appeared in Refs. [7,8]. If we add large amounts of dissipation to the system, then the
eigenvalues develop negative real parts, and the pseudospectral effects are reduced. This is in agreement with
the common practice of using dissipation as a squeal suppression mechanism.6 Small amounts of damping
however may give rise to instability.

Our brake model is a discrete two degree-of-freedom system first described by North in Ref. [10], (see
Fig. 7). In this model, the brake rotor is represented by a tilted rigid rod of mass m, moment of inertia I, length
6For additional background on squeal suppression mechanisms, see Ref. [14].
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L and thickness 2h. The brake pads in contact with the rotor are incorporated into the model by the normal
forces N1 and N2, and by the frictional forces P1 and P2. The translational and rotational degrees of freedom
of the rod are denoted by y and y, respectively. To model the stiffness of the rotor, we subject the rod to a
torsional spring of stiffness kr and a linear spring of stiffness kt. The flexibility of the brake pads is included in
the model by a linear spring of stiffness kp=2 for each pad. The normal forces are assumed to be

N1 ¼
kp

2
ðyþ dyÞ þN0; N2 ¼ �

kp

2
ðyþ dyÞ þN0, (14)

where N0 accounts for a static preload between the brake pads and the rotor, and where d is the dimension
shown in Fig. 7. The corresponding expressions for the frictional forces are:

P1 ¼ mN1; P2 ¼ mN2, (15)

where m is a coefficient of friction. The (dimensionless) linearized equations of motion for this model are given
by M €zþD_zþ Kz ¼ 0 where

z ¼

y

d

y

2
4
3
5; M ¼

1 0

0
1

md2

2
64

3
75,

K ¼
1þ kp �Zþ kp

ð1þ sÞkp ð1þ sÞkp þ kr

" #
ð16Þ

and where D is a positive definite matrix representing the effects of damping. The dimensionless parameters in
these matrices are:

kp ¼
kp

kt

; kr ¼
kr

d2kt

; s ¼
mh

d
; Z ¼

2mN0

ktd
, (17)

where the frequency
ffiffiffiffiffiffiffiffiffiffiffi
kt=m

p
is used to non-dimensionalize time. The system equations of motion can be

written as _x ¼ Ax where A is given by the canonical form Eq. (7), just as it was for the Ziegler pendulum.
Recall that A is nonnormal when KaKT, which in our system occurs when

mþ skpa0 () m
kp

kt

h

d
þ 1

� �
a0. (18)
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This condition always holds because the friction coefficient m is never zero. The structured �-pseudospectra
for this system are qualitatively similar to those of the Ziegler pendulum, with the friction coefficient m in
the brake model analogous to the follower force F in the Ziegler pendulum. The introduction of small

amounts of damping can cause the system eigenvalues to move into the right half plane, for lesser
friction coefficient values than those needed to reach the reversible Hopf bifurcation in the case when no
damping is present.

6. Concluding remarks

We have used structured pseudospectra to illustrate the presence of dissipation-induced destabilization in
follower force systems and brake models. Related results also apply for gyroscopic systems, but are so similar
that we do not present them here.7 We point out that non-normal matrices which have a more general
structure than Eq. (7) can be found in the literature (see, e.g., Ref. [8]), and that a structured pseudospectral
analysis can also be performed for them.
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Appendix A. Equations of motion for the Ziegler pendulum

The pendulum system shown in Fig. 1 consists of a mass m1 attached by a link L1 to a fixed base, and a mass
m2 attached by a link L2 to the mass m1. The links L1 and L2 make angles f1 and f2, respectively with a fixed
line of reference. The points of attachment are viscoelastic hinges, endowed with torsional stiffness and
damping. We quantify the torsional stiffness at the first and second hinges by the coefficients k1 and k2,
respectively. These coefficients have units of ½force� � ½distance�. The damping coefficients associated with the
first and second hinges are denoted b1 and b2, respectively, and have units of ½force� � ½distance� � ½time�.
A follower force of magnitude F acts on m2 at an angle af2 with respect to the line of reference from before.
For good measure we include gravity g acting on both masses in the direction of the line of reference.

We first use the frequency n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=L2

2m2

q
to establish the following non-dimensional values:

F ¼
PL2

k2
; k ¼

k1

k2
; l ¼

L1

L2
; m ¼

m1

m2
� 1,

g ¼
g

n2
; c1 ¼

b1n
k2
; c2 ¼

b2n
k2
; t ¼ tn. ðA:1Þ

With the understanding that a superposed dot indicates differentiation with respect to t, the Ziegler pendulum
equations of motion are given by

l2ðmþ 2Þ l cosðf1 � f2Þ

l cosðf1 � f2Þ 1

" # €f1

€f2

2
4

3
5

¼ l sinðf1 � f2Þ
� _f

2

2

_f
2

1

2
4

3
5þ �ðkþ 1Þ 1

1 �1

" #
f1

f2

" #
þ F

sinðf1 � af2Þ

l�1 sinðð1� aÞf2Þ

" #

þ
�ðc1 þ c2Þ c2

c2 �c2

" # _f1

_f2

2
4

3
5� g

lðmþ 2Þ sinf1

sinf2

" #
. ðA:2Þ
7A good system to explore these results is Example 4.6.1 in Ref. [13].
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The non-dimensional kinetic, spring potential, and gravitational potential energies of the system are:

KE ¼ 1
2
l2ðmþ 2Þ _f

2

1 þ
1
2
_f
2

2 þ l _f1
_f2 cosðf1 � f2Þ,

PEs ¼
1
2
ðkf2

1 þ ðf2 � f1Þ
2
Þ,

PEg ¼ �gðmþ 2Þl cosf1 � g cosf2. ðA:3Þ

With a ¼ 1 and g ¼ 0, the system linearization about zero is given by

M
€f1

€f2

" #
þD

_f1

_f2

" #
þ K

f1

f2

" #
¼ 0, (A.4)

where

M ¼
mþ 2 1

1 1

� �
; D ¼

c1 þ c2 �c2

�c2 c2

" #
; K ¼

1þ k� F F � 1

�1 1

� �
. (A.5)
Appendix B. Data from Figs. 5 and 6

Table B1 gives the eigenvalues and structured �-pseudospectra dimensions from Figs. 5 and 6. For each
value of F , the structured �-pseudospectrum consists of four distinct regions in C, each containing one of the
system eigenvalues. We identify each such region R by the eigenvalue it contains. The structured
pseudospectrum is symmetric with respect to the real axis, and so we only give data above the real axis.
Table B1

Eigenvalues and structured �-pseudospectra dimensions from Figs. 5 and 6

F ReðlÞ ImðlÞ minðReðRÞÞ DReðRÞ minðImðRÞÞ D ImðRÞ

0.20000 �9:496656e� 18 1:772232eþ 00 �4:918268e� 04 4:626542e� 04 1:772232eþ 00 8:034621e� 08

0.20000 �1:135801e� 16 3:989923e� 01 �1:253187e� 04 1:249762e� 04 3:989923e� 01 2:221254e� 08

1.20000 �1:949384e� 17 1:434196eþ 00 �5:276500e� 04 5:026811e� 04 1:434196eþ 00 8:058873e� 08

1.20000 �1:949384e� 17 4:930336e� 01 �1:474492e� 04 1:723291e� 04 4:930336e� 01 2:181407e� 08

1.40000 �6:884011e� 17 1:351373eþ 00 �5:503930e� 04 5:273948e� 04 1:351373e� 00 7:829293e� 08

1.40000 �4:108453e� 17 5:232507e� 01 �1:619412e� 04 2:070492e� 04 5:232507e� 01 2:859811e� 08

1.60000 �3:928148e� 17 1:258741eþ 00 �5:887940e� 04 5:645737e� 04 1:258741e� 00 8:145434e� 08

1.60000 �1:152590e� 17 5:617572e� 01 �1:866597e� 04 2:697304e� 04 5:617571e� 01 6:534549e� 08

1.70000 �2:679640e� 18 1:206970eþ 00 �6:204038e� 04 6:006905e� 04 1:206970e� 00 8:897478e� 08

1.70000 �2:679640e� 18 5:858529e� 01 �2:059099e� 04 3:210697e� 04 5:858528e� 01 1:069690e� 07

1.80000 �2:123300e� 17 1:149652eþ 00 �6:706411e� 04 6:505671e� 04 1:149652e� 00 1:785604e� 07

1.80000 �6:522575e� 18 6:150617e� 01 �2:295368e� 04 3:949867e� 04 6:150616e� 01 1:945922e� 07

2.00000 �1:804112e� 16 1:000000e� 00 �9:831250e� 04 9:758750e� 04 9:999998e� 01 1:562333e� 06

2.00000 �4:483593e� 17 7:071068e� 01 �3:500000e� 04 8:281930e� 04 7:071053e� 01 1:572187e� 06

2.08000 �6:278791e� 16 8:797905e� 01 �3:032270e� 03 3:559450e� 03 8:797900e� 01 9:897194e� 05

2.08000 �5:723679e� 16 8:037218e� 01 �9:253781e� 04 3:424958e� 03 8:036232e� 01 9:897771e� 05

2.08575 �3:955170e� 15 8:439200e� 01 �1:032975e� 02 1:502420e� 02 8:439149e� 01 7:460492e� 03

2.08575 �4:024558e� 15 8:378837e� 01 �5:140275e� 03 1:484115e� 02 8:304282e� 01 7:460505e� 03

2.08590 �5:328282e� 03 8:408795e� 01 �5:097472e� 03 5:618368e� 03 8:312490e� 01 1:347916e� 02

2.08590 �5:328282e� 03 8:408795e� 01 �1:120838e� 02 5:860394e� 03 8:368811e� 01 1:352532e� 02

2.08700 �1:741811e� 02 8:407160e� 01 �1:717581e� 02 9:079214e� 04 8:350055e� 01 7:293936e� 03

2.08700 �1:741811e� 02 8:407160e� 01 �1:857042e� 02 1:133566e� 03 8:390573e� 01 7:310464e� 03

DReðRÞ denotes maxðReðRÞÞ–minðReðRÞÞ, and D ImðRÞ denotes maxðImðRÞÞ–minðImðRÞÞ.
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