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Abstract

This paper is concerned with the modelling of gear rattle in Roots blower vacuum pumps. Analysis of experimental data

reveals that the source of the noise and vibration problem is the backlash nonlinearity due to gear teeth losing and

re-establishing contact. We derive simple non-smooth models for the lightly damped, lightly loaded dynamics of the pump.

The models include a time-dependent forcing term which arises from the eccentric mounting of the gears acting at the gross

rotation rate. We use a combination of explicit construction, asymptotic methods and numerical techniques to classify

complicated dynamic behaviour in realistic parametric regimes. We first present a linear analysis of permanent-contact

motions, and derive upper bounds on eccentricity for silent operation. We then develop a nonlinear analysis of ‘backlash

oscillations’, where the gears lose and re-establish contact, corresponding to noisy pump operation. We show that noisy

solutions can coexist with silent ones, explaining why geared systems can rattle intermittently. Finally, we consider possible

design solutions, and show implications for pump design in terms of existence and stability of solutions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Recent increases in the sizes and operating speeds of Roots blower vacuum pumps have led to intermittent
noise and vibration problems in their gearing mechanism. A small amount of play between gears is essential to
ensure that they will not jam. This means that there is always a gap between the trailing face of one tooth and
the leading face of the next tooth, which is known as the backlash width. Because the gear wheels can
consequently lose contact, there is a range of relative rotational displacements for which there is no restoring
torque between the gears; this effect is known as freeplay (full details are given in Ref. [1]).

In gear systems where the load and the damping are both light, only a small amount of forcing is needed to
cause rattle. Forcing due to stiffness varying at the tooth meshing frequency is well-studied, and many
different models including Refs. [2,3] have been proposed to investigate this effect. These studies include
multimodal analysis [4] and experimental verification of models [5].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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However, motivated by experimental observation our aim is to investigate gear rattle which is caused by
forcing at the rotation frequency. When compared with rattle at the tooth meshing frequency, this produces
noise and vibrations with a larger amplitude at a much lower frequency; typically, at small-integer multiples of
the rate of rotation. Consequently, we neglect the rapidly varying stiffness coefficient found in tooth meshing
frequency models.

The main theoretical advance presented is the extension of the second-order model in Refs. [6,7], to a third-
order model where the moments of inertia of the two shafts are not necessarily equal. We investigate the effect
that breaking the symmetry has on the analytical bounds for the existence of various types of solution, and
hence the critical eccentricity, and conclusions are drawn for machine design.

1.1. Model formulation

A typical Roots blower vacuum pump [8–11] consists of two involute steel rotors which are rigidly attached
to counter-rotating parallel shafts. The X-shaft is driven by an electric motor, while the Y-shaft is driven by
means of a 1:1 gearing mechanism. In quiet (‘normal’) operation, the gears remain in permanent linear contact
(PLC), as shown in Fig. 1(a). However in noisy operation, the gears lose contact, with an audible impact when
the gears re-establish contact. This is known as a backlash oscillation. There are in fact two broad types of
backlash oscillations. Starting from state (a) in Fig. 1, the system can pass through state (b) (freeplay) to state
(c) (torque reversal) and back again. Alternatively, the system can simply oscillate between states (a) and (b).
We consider a model of two meshing spur gears and the external forces acting on the two shafts, as shown
schematically in Fig. 2. The X-shaft is driven by a motor torque TðtÞ. The first harmonic of the sound
generated by a noisy pump is at the same frequency as the gross rotation rate of the machine. This motivates
us to seek forcing mechanisms which operate at integer multiples of the gross rotation rate. There may be
Y X Y X Y X

Fig. 1. The three modes of gear meshing. From left to right: (a) X drives Y, (b) freeplay, (c) Y drives X (torque reversal).
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Fig. 2. The external torques acting on the shafts of meshing gears. The right-hand side drawing illustrates the interaction force between the

gears.
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several such mechanisms but this paper examines only two: eccentric mounting of the gears and torque ripple.
Eccentricity arises when the axis of rotation is not exactly in the centre of the gear. We will show that even very
small eccentricities can generate a sufficiently large forcing to drive noisy operation.

The moments of inertia of the fully assembled shafts are denoted by IX ;Y , and rX ;Y denote the radii of the
pitch circle at which contact occurs between the X and Y gears; we assume rX ¼ rY . The angular
displacements yX ;Y have directions chosen so that both coordinates increase in time. Both the X and Y -shafts
suffer resistive torques against the direction of motion, given by cX ;Y

_yX ;Y , where cX ;Y are linear damping
coefficients. The relative rotational displacement is defined generally by rXyX � rYyY. We also include a
geometric oscillatory correction term, eðtÞ ¼ e cos 2pt, that models the eccentric mounting of the gears. Here
we focus on the special case rX ¼ rY , for which we work with the non-dimensional relative rotational
displacement Y:¼yX � yY þ eðtÞ. The stiffness coefficient k is a measure of the lumped torsional rigidity of the
shaft assemblies. Each gear experiences a reaction force kB, which for simplicity we assume acts normal to the
shafts, and which is dependent on the relative position of the gear teeth. When the gear teeth are in contact, we
use a lumped approach and suppose that each assembly deforms according to Hooke’s Law. Here B is a
nonlinear backlash function that consists of three linear components:

BðYÞ ¼

Y� b; Y4b ðX drives YÞ;

0; jYjob ðfreeplayÞ;

Yþ b; Yo� b ðY drives XÞ:

8><
>: (1)

This backlash function could be adjusted to incorporate other nonlinear effects, for example lubrication and
friction, here however we leave these refinements for future work.
1.2. Equations of motion

We apply Newton’s second law of motion in angular coordinates to derive equations of motion for the two
shaft assemblies. For the X and Y-shaft assemblies, respectively, we have

IX
€yX þ cX

_yX þ rX kBðyX � yY þ eðtÞÞ ¼ TðtÞ, ð2Þ

IY
€yY þ cY

_yY � rY kBðyX � yY þ eðtÞÞ ¼ 0, ð3Þ

where dots denote differentiation with respect to time. We model the total motor torque T by
TðtÞ ¼ T þ g cosð2pntþ xÞ, where T is the mean motor torque and g is the amplitude of a ripple component,
due to the imperfect symmetry of the armature. The mean torque T balances with the drag terms when the
machine is running steadily, and so it need not be given as a separate parameter. Providing that cx=Ix ¼ cy=Iy

we can reduce Eqs. (2) and (3) to a single non-autonomous second-order differential equation for the relative
rotational displacement measured at the pitch circle F ¼ yX � yY þ eðtÞ. By non-dimensionalising with the
rotation period, we find that

F00 þ dF0 þ 2kBðFÞ ¼ 4pd� 4p2e cosð2ptÞ � 2pde sinð2ptÞ þ g cosð2pntþ xÞ, (4)

where 0 denotes differentiation with respect to non-dimensional time t. We note that the rescaled damping d,
half-backlash width b and eccentricity parameter e are good candidates for use as small parameters in
perturbation analysis and that d�b�e. In comparison, the rescaled stiffness parameter k is large.

The ripple component g is very small compared to the mean motor torque 4pd, therefore, for the remainder
of our work we neglect torque ripple and concentrate on the effect of eccentricity only.
1.3. Two degree of freedom dimensionless model

The single degree of freedom (dof), second-order, model requires that the ratio of the moments of inertia
and damping coefficients of the X and Y-shafts are equal. We now extend the scope of our model by allowing
the quantities to differ; in this case, yX and yY are independent coordinates. For algebraic convenience we
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choose a non-dimensional parameter Z 2 ð�1; 1Þ, to measure the broken symmetry, so that

IX

I
¼ 1þ Z; and

IY

I
¼ 1� Z; where I ¼

IX þ IY

2
. (5)

After non-dimensionalisation, it is possible to re-write the pair of coupled second-order ODEs as a system of
three first-order equations by introducing new coordinates, (F, C, Z), where F ¼ yx � yy þ eðtÞ as before,
C ¼ F0 and Z ¼ y0X þ y0Y . We now have

1 0 0

0 1 Z

0 Z 1

0
B@

1
CA

F0

C0

Z0

0
B@

1
CA ¼

0 1 0

0 �d 0

0 0 �d

0
B@

1
CA

F

C

Z

0
B@

1
CAþ

0

4pdþ e00 þ de0 � 2kBðFÞ

4pdþ Ze00

0
B@

1
CA. (6)

The scaling is such that d, e and k take the same values as for the one dof model.

2. Permanent linear contact solutions

Solutions where the gears remain permanently in contact are highly desirable; we wish to find bounds on
parameters for their existence. Eq. (4) for F in the PLC region is linear and can be solved exactly. We must
then apply an a posteriori check for the validity of solutions, namely that FðtÞ4b for all t. This provides us
with a bound for eccentricity:

eoe1dofcrit :¼
2d
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� 2p2Þ2 þ p2d2

4p2 þ d2

s
, (7)

above which silent solutions are destroyed. As k!1 (motivated by physical parameters of real machines)
we have

ecrit�
d
p
þOðd3Þ. (8)

Typical measured eccentricities are of the same order of magnitude as the calculated critical eccentricity. This
could explain the experimental observations that the same machine can behave inconsistently and ‘identical’
machines behave differently since the PLC solution can be eliminated with a small change in the machine
parameters. Increasing inertia, however, decreases d and will make rattle more likely; we therefore wish to find
design solutions to increase ecrit. It has been suggested [12] that breaking the symmetry of the system by
removing mass may be used to increase ecrit. We now proceed to examine this idea.

We write Eq. (6) in the form:

Mu0 ¼ Auþ b1 �Refb2 exp 2ptig, (9)

where Re denotes the real part, i the square root of �1 and eðtÞ ¼ Refe exp 2ptig is the eccentricity term. We
solve Eq. (9), and apply the a posteriori check to find the bound

eoe2dofcrit ¼
2d
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððk� 2p2Þ2 þ p2d2Þ þ

8p4Z2

4p2 þ d2
ð2ðk� 2p2Þ þ d2 þ 2pZ2Þ

ð4p2 þ d2Þ þ
8p2Z2

4p2 þ d2
ðð4p2 � d2Þ � 2p2Z2Þ

vuuuuut (10)

for the existence of PLC solutions. Note that for Z ¼ 0, e2dofcrit ¼ e1dofcrit as required. Expanding Eq. (10) as a
binomial series in small Z, for fixed d and k, gives

ecrit ¼ e1dofcrit ð1þ Z2 þOðZ4ÞÞ: ð11Þ

Hence for small Z, breaking the symmetry by removing mass from one shaft and adding it to the other
increases ecrit (a desirable effect). The advantage of the Z parameter is that it allows easy manipulation of the
equations of motion and does not change the values of the other non-dimensional parameters. However it is
more physically interesting to investigate the effect of adding/removing mass to just one shaft, or equally to
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both shafts. We thus introduce two new non-dimensional variables m and n: m measures half the ratio of mass
added/removed to either one of the X or Y-shafts, while n measures half the ratio of mass added/removed to
each shaft. Note that the parameters n and m result in the same total change in mass.

We substitute expressions for m and n into Eq. (10) (with suitably modified damping and stiffness parameters
due to the change in total mass) and then expand as a binomial series in small m, n, respectively, for fixed d and
k as above, to give

ecrit ¼ e1dofcrit ð1� mþ 2m2 þOðm3ÞÞ, (12)

and

ecrit ¼ e1dofcrit ð1� nþ n2 þOðn3ÞÞ. (13)

Thus (for small m and n) it is better to remove mass from one shaft rather than half the amount of mass from
both the X and Y-shafts, but the improvement is a second-order effect.

3. Conditions for noisy operation

Numerical simulations of the initial value problems Eqs. (4) and (6) reveal a very rich structure of coexisting
stable solutions. Analysis for the one dof model shows that there are many stable rattling periodic orbits that
can coexist with quiet operation. Simulations suggest that this is also true in the two dof model; some outputs
are shown in Fig. 3 for realistic machine parameters where a variety of different initial data have been chosen.
For some parameter values it seems that noisy solutions predominate. For certain choices of machine
parameters we would like to understand whether it is possible to destroy the noisy solutions. In these
solutions, the majority of time is spent in freeplay. The large stiffness value k results in impact-like events of
short duration, where the gears make contact. We approximate the contact as a pure impact [13] through a
classical coefficient of restitution law (with coefficient of restitution ¼ 1). It was shown in Refs. [6,7] that, to
leading order, existence and stability criteria are identical for the finite and infinite stiffness models in the limit
k!1, thus for convenience we consider only the impacting model of backlash here. Thus the only
differential equation we need solve is Eq. (6) in the freeplay region, where BðFÞ ¼ 0, though the problem is still
harshly nonlinear due to impacts.

We use the notation introduced in Refs. [6,7] to identify different types of periodic solution. We let
Pðm; nþ; n�Þ denote a periodic solution, of period m 2 Z, where n� denote the number of times per period that
the orbit contacts the F ¼ �b boundaries, respectively.

3.1. Pðm; 1; 0Þ solutions

We begin by considering solutions of type Pðm; 1; 0Þ, which repeat once every m periods of the forcing, hit
the F ¼ þb boundary once per period and never contact the F ¼ �b boundary (see Fig. 4). Our general
method for solution construction is as follows. We solve the differential equation (6) in the freeplay region and
find explicit expressions for F, C and Z (with three constants of integration which we label c1, c2 and c3; see
Ref. [14]). We then patch solution segments together with the impact and periodicity conditions. With
reference to Fig. 4 our solution loses contact with the þb boundary at some initial unknown time s, with
velocity �v; the periodicity condition then implies that our solution impacts the þb boundary again at some
time sþm with velocity v. Hence:

FðsÞ ¼ b; CðsÞ ¼ �v, ð14Þ

FðsþmÞ ¼ b; CðsþmÞ ¼ v. ð15Þ

Conservation of angular momentum also implies that

ZðsÞ ¼ ZðsþmÞ þ 2Zv. (16)



ARTICLE IN PRESS

Fig. 3. Numerical simulations of the initial value problem for the two degree of freedom model for identical machine parameters (for

which silent PLC solutions exist), and an ensemble of initial conditions. Each graph is a plot of relative rotational displacement FðtÞ
against t, plotted over the last 20 periods of forcing, with F ¼ �b shown as horizontal lines. These show a mixture of noisy solutions and

‘less noisy’ single contact solutions. Note that there is only one permanent linear contact solution shown in column 4, row 2 (the solution

curve is indistinguishable from F ¼ �b because of the vertical scale).
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By applying conditions Eqs. (14)–(16) we obtain a system in the form, Ac ¼ b to solve for the five unknowns
c1, c2, c3, v and s,

1 e�s eþs 0

1 e�m eþm 0

0 l�e�s lþeþs 1

0 l�e�m lþeþm �1

0 l�ðe�m � e�s Þ lþðeþs � eþmÞ �2Z

0
BBBBBB@

1
CCCCCCA

c1

c2

c3

v

0
BBB@

1
CCCA ¼

b� 4ps� e cos 2ps

b� 4pðsþmÞ � e cos 2ps

�4pþ 2pe sin 2ps

�4pþ 2pe sin 2ps

0

0
BBBBBB@

1
CCCCCCA
, (17)
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Fig. 4. Sketches of Pðm; 1; 0Þ and Pðm; 1; 1Þ orbits, respectively. The LHS picture illustrates the impacts at the þb boundary, at unknown

times s and sþm. The RHS picture illustrates the �b impacts at sA and sB, respectively.
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where c ¼ ½c1 c2 c3�
T, l� ¼ �d=ð1� ZÞ, e�s ¼ e�l�s and e�m ¼ e�l�ðsþmÞ. We then find a matrix P such that PA is

in echelon form, which gives us expressions for c1, c2, c3 and v, and generates an algebraic constraint on the
impact time s.
3.2. Existence and stability of solutions

Following the above procedure, we find that the impact time s takes the form

s ¼
1

2p
sin�1

1

e
2�

l�m

2
coth

l�m

2

� �
�

lþm

2
coth

lþm

2

� �� �� �
. (18)

There are two admissible solutions to Eq. (18); we expand them in terms of the small parameter d to give:

s ¼

�d2m2ð1þ Z2Þ

12peð1� Z2Þ2
þOðd4Þ : in phase solution;

1

2
þ

d2m2ð1þ Z2Þ

12peð1� Z2Þ2
þOðd4Þ : out of phase solution:

8>>>><
>>>>:

(19)

Numerical evidence indicates that the in phase solution is stable, and the out of phase solution is unstable. The
Pðm; 1; 0Þ solutions do not exist if the argument of the arcsin function in Eq. (18) exceeds one in modulus.

This gives us a condition on eccentricity:

e4ecrit:¼
d2m2ð1þ Z2Þ
6ð1� Z2Þ

þOðd4Þ, (20)

for the existence of simple Pðm; 1; 0Þ solutions. Since in practice e and d are of similar magnitude, this bound
will always be satisfied for realistic parameters and hence it is very difficult to eliminate rattling solutions
by reducing eccentricity, and moreover, the e�Oðd2Þ scaling is independent of the symmetry breaking
parameter Z.

We must also check that the solution trajectory does not hit the boundary F ¼ �b. To determine this we
must find the minimum displacement; we thus require t̂ such that F0ðt̂Þ ¼ Cðt̂Þ ¼ 0; we try a power series
solution in the form

t̂ ¼ sþ
m

2
þ t̂0 þ t̂1dþOðd2Þ: ð21Þ

We have four cases corresponding to in phase/out of phase solution and m odd/even. In each case we solve for
the coefficients t̂i, substitute these expressions for t̂ into the condition Fðt̂Þ4� b and expand this as a series as
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well. For the in phase solution (s � 0) not to contact the lower boundary we require

b4

eþ
pm2d

4ð1� Z2Þ
þOðd2Þ : m odd;

pm2d
4ð1� Z2Þ

þOðd2Þ : m even;

8>>><
>>>:

(22)
(i),(ii)

(iii)

(iv)
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Fig. 5. Sketch of the existence bounds for the Pðm; 1; 0Þ solutions (in the case m ¼ 1 and Z ¼ 0). The bounds (22) and (23) describe the

stable and unstable solution grazings with F ¼ �b, respectively. The critical eccentricity bound is also shown. (i)–(iv) are numerical

integrations of Eq. (4) in the freeplay region. The parameter values chosen are shown schematically on the bifurcation diagram. (i) and (ii)

illustrate coexisting in phase and out of phase Pðm; 1; 0Þ solutions, respectively. (iii) illustrates an unstable out of phase Pðm; 1; 0Þ solution
and (iv) illustrates an unstable out of phase Pðm; 1; 1Þ solution.



ARTICLE IN PRESS
J. Mason et al. / Journal of Sound and Vibration 308 (2007) 431–440 439
and for the out of phase solution (s � 1
2
) not to contact the lower boundary we require

b4

pm2d
4ð1� Z2Þ

� eþOðd2Þ : m odd;

pm2d
4ð1� Z2Þ

þOðd2Þ : m even:

8>>><
>>>:

(23)

Note that when the symmetry breaking parameter Z ¼ 0 we recover the bounds for the one dof model. In
Fig. 5 we have plotted the existence bounds found in Eqs. (20), (22) and (23) in the eccentricity damping plane.
From this we conclude that increasing Z increases the bounds on e though this is only a higher order effect.

3.3. Pðm; 1; 1Þ solutions

We now proceed to show how one might examine noisier, less desirable solutions of type Pðm; 1; 1Þ that visit
all three regimes, thus impacting both �b boundaries. The overall aim is to find existence bounds for these
noisy solutions, and therefore determine how they can be eliminated. We write the solution F as the
combination of two parts so that

FðtÞ ¼
FAðtÞ; sAotosB;

FBðtÞ; sBotosA þm

(
(24)

(and similarly for C and Z); see Fig. 4. sA and sB denote the impact times with the �b boundaries,
respectively. Similarly to before, we can patch our solution segments together with the impact and periodicity
conditions.

We find that the expressions for sA;B are not solvable in closed form, it is necessary to resort to a numerical
root finding procedure to find the impact times. Once the solutions have been found, as for the Pðm; 1; 0Þ case,
a retrospective check has to be made to ensure that the constructed solution is always in the correct regime.
The aim would then be to find conditions on the symmetry-breaking parameters, to determine how this noisy
type of solution can be destroyed and replaced by quieter single-contact solutions. This analysis remains for
future work. We can, however, determine stability numerically using an initial value solver written in
MATLAB. Some outputs are shown in Fig. 5.

4. Conclusions

In this paper we have considered a mathematical model of noise and vibration in lightly damped lightly
loaded Roots blower vacuum pumps. We have extended the work carried out by Halse et al. [6,7], by
constructing a full two dof model, and investigated the effects of breaking the symmetry between the two
shafts. In particular, we derived analytical bounds for the existence of various classes of periodic solution as a
function of parameters. We discovered that removing mass from the system increases the critical value of
eccentricity (below which silent solutions exist), whilst adding mass reduces this existence bound.
Unfortunately, one is very limited in how much mass one can remove from such a machine, without
compromising its structural integrity.

Future work should expand the work of Section 3 into a formal bifurcation analysis and compute basins of
attraction, i.e. which starting configurations end up at which (stable) periodic solutions. Much work also
remains to be done in experimental validation and investigation of other design solutions. Mathematical
models of these new types of system will involve more degrees of freedom and will be more complicated than
any existing mathematical treatment of backlash systems.
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