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Abstract

The presented paper shows how the temperature field in beams has impact on vibrations of beams. Due to the relatively

high possible temperature variations in beams we have developed the mathematical model where fundamental

thermomechanical properties of state are functions of temperature such as modulus of elasticity, Poisson number, linear

expansion coefficient, shear modulus and some other important thermodynamic properties of state. The detailed analysis

shows, that also small changes of temperature cause significant changes of natural frequencies for beams. The comparison

between our analytical model and experimental data shows good agreement. In the presented paper it is possible to find for

the first time in scientific literature the application of the combination of statistical thermodynamics and the theory of

vibration at the same time.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanics is a very important scientific discipline, developing at an ever increasing pace. Nonlinear theory
of vibrations represents one of the most important areas [1] in modern science. From theoretical viewpoint,
nonlinear mechanics constitutes an extremely complex mathematical problem. Particularly complex are the
models of nonlinear vibrations in the area of chaos and bifurcations. In terms of the engineering approach, the
theory of vibrations means a basic method in technical systems design. In the majority of cases, the impacts of
temperature changes are ignored, yet many times they need to be taken into consideration. In such case the
analyses of the above indicated problems become very complex.

Mechanical machines very often operate under diverse temperature conditions. In internal combustion
engines, rocket systems, movement of the satellites, etc. the conditions are particularly temperature-sensitive.
Thermodynamic effects are frequently ignored in research, which may yield totally incorrect results. Literature
[2–6] shows that even the slightest temperature change leads to huge alteration of the clamped beam vibration
properties. Contrary as in papers [1,2], the impact in the present paper is not neglected of a change in
thermodynamic properties, which have to be taken into consideration at major temperature changes.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Isotropic clamped beam.
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In this article we have developed a dynamic thermo-vibrational model for the clamped (Fig. 1) and the
simply supported isotropic beam (Fig. 2). Let us assume that the beam is homogenous, having the same
temperature over its entire length. As a result of thermal expansion, an additional axial force FT occurs:

F T ¼ ayEA. (1)

In Eq. (1) a is the linear thermal extension coefficient, y is the temperature difference between the actual and
initial or reference temperature. The equation by means of which we can resolve the problem using the axial
force is as follows according to Timoshenko [4]:

EI
q4wðx; tÞ

qx4
þ F T

q2wðx; tÞ

qx2
þ rA

q2wðx; tÞ

qt2
¼ 0, (2)

where E means Young modulus, I is the area moment of inertia, A the beam cross-section area, r the density
of material, t the time and w the displacement. Using new variables, Eq. (2) can be written down in a slightly
less complicated way as

w0000ðxÞ þ 2gw00ðxÞ � b4wðxÞ ¼ 0. (3)

In Eq. (3), the new symbols represent the following functional relations: b2 ¼ o=c; c2 ¼ EI=rA; g ¼
FT=2EI .

Thus, a general solution to Eq. (3) is ðl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ g2

q
Þ [1–4]

wðxÞ ¼ C1 cos
ffiffiffiffiffiffiffiffiffiffiffi
lþ g

p
x

� �
þ C2 cosh

ffiffiffiffiffiffiffiffiffiffiffi
l� g

p
x

� �

þ C3 sin
ffiffiffiffiffiffiffiffiffiffiffi
lþ g

p
x

� �
þ C4 sinh

ffiffiffiffiffiffiffiffiffiffiffi
l� g

p
x

� �
. ð4Þ

Using boundary conditions, the following solutions can be analytically computed (G ¼ L2g; L ¼ L2l):
(a) Clamped beam:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � G2
p

cosðLþ GÞ coshðL� GÞ � 1
� �

þ G sinðLþ GÞ sinhðL� GÞ ¼ 0. (5)

(b) Simply supported beam:

sinðLþ GÞ ¼ 0. (6)

The model presented here is fully analytical, but if we compare analytical results with the measured results it
points to a large deviation from reality [1,2]. The biggest problem of this model is that in the mathematical
model in question the clamped wall can fully withstand the beam for the beam to have a constant length all the
time. The above assumption is not realistic. As a result, a new model was designed to reduce to at least to some
extent the huge differences between the analytical results and the measured values.

2. The dynamic model for beams under thermal stresses

Figs. 3 and 4 illustrate a new rheological model for the clamped and the simply supported beam. To obtain
better analytical results in comparison with experimental data, a spring is added with the spring constant K.
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Fig. 2. Simply supported beam.

Fig. 3. New model of clamped beam.

Fig. 4. New model of simply supported beam.
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The model slightly differs from the model presented in paper [1], where the authors Marques and Inman
integrated additional torsion springs into the rheological model.

In this case, force FT can be computed in the following way [1]:

�EA ¼ ayEA� Kd; Kd ¼ EAðay� d=LÞ; d ¼
EALay

KLþ EA
. (7)

The reaction force computation can be as follows:

F T ¼ Kd ¼
EALay

Lþ EA=K
, (8)

where the modulus of elasticity E and linear expansion coefficient a are temperature-dependent functions. An
aluminium beam and copper beam with the dimensions indicated in Tables 1 and 2 were used for the
computation.

3. Statistical thermomechanics

The need for mathematical modeling of thermomechanical properties of state arises in various fields [7–24].
Currently, a growing emphasis is placed on new materials, such as different alloys, polymers, plastic material,
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Table 1

Fundamental constants for aluminum beam

Beam

Length (m) 6.35� 10�2

Width (m) 2.04� 10�2

Thickness (m) 1.62� 10�3

Young modulus (N/m2) 6.9� 1010

Volume expansion coefficient (1/K) 24� 10�6K�1

Spring constant (N/m) 1.553� 105

Density (kg/m3) 2780

Table 2

Fundamental constants for copper beam

Beam

Length (m) 6.35� 10�2

Width (m) 2.04� 10�2

Thickness (m) 1.62� 10�3

Spring constant (N/m) 1.553� 105

J. Avsec, M. Oblak / Journal of Sound and Vibration 308 (2007) 514–525 517
ceramics [12,19]. Due to a large number of possible combinations of various components mathematical models
are frequently used to predict thermodynamic properties. Mathematical modeling is often used also in some
metallurgical processes, such as sintering, corrosion, welding, etc. Furthermore, analytical computation of
thermodynamic properties of state in solids is of paramount importance also in a number of other fields such
as planetary physics, for example. Another important area is the production of liquid–solid [20], solid–gaseous
phase diagrams. At higher pressure and temperature bands, such measurements may be very costly, which is
why mathematical models are often used instead.

Assume that each form of motion of energy is independent of the others; thus, the energy of the system of
molecules can be written as a sum of individual contributions or decoupled forms of motion [9]:
(a)
 Vibration energy of molecules (Evib) due to the relative motion of atoms inside the molecules.

(b)
 Potential energy (Epot) of a system of molecules, which occurs due to the attractive or repulsive

intermolecular forces in a system of molecules.

(c)
 Energy of electrons (Eel), which is concentrated in the electrons or in the electron shell of an atom or a

molecule

(d)
 Nuclear energy (Enuc), which is concentrated in the atom nuclei.
Now introduce the term of partition function Z [21], which applies to the system of particles at a certain
volume V, temperature T and particle number N. Assuming that the energy spectrum is continuous and having
the above assumptions we can then write the canonical partition function for the one-component system in an
even easier manner [9]:

Z ¼
1

N!hNf

Z
� � �

Z
exp �

Evib þ Eel þ Enuc

KBT

� �
� dp1 � dp2 . . . � dpN

�

Z
� � �

Z
exp �

Epot

kBT

� �
dr1 � dr2 . . . drN ð9Þ

The second term on the right-hand side in Eq. (9) is called the configurational integral, f is the number of
degrees of freedom of an individual molecule, p is momentum, r is coordinate, Evib, Eel, Enuc, Epot represents
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the vibrational energy, electron energy, nuclear energy of individual molecule and potential energy between
two molecules.

Similarly, we can express also the partition function Z for a multi-component system of indistinguishable
molecules:

Z ¼
1Q

iN!h
Nif i

Z
::

Z
exp �

Evib þ Eel þ Enuc

kBT

� �
dp1 � dp2 . . . dpN

�

Z
::

Z
exp �

Epot

kBT

� �
� dr1 � dr2 . . . drN . ð10Þ

In Eq. (2) Ni is the number of molecules of the ith component, fi is the number of degrees of freedom of the
ith molecule. On the basis of all indicated generalizations we can write, using the canonical partition, the
partition function Z of the one-component system as a product of partition functions:

Z ¼ Z0ZvibZelZnucZconf . (11)

For a system of many components the partition function Z [16,18] can be written as a product of partition
functions for individual terms:

Z ¼
Y

i

ðZ0ZvibZelZnucÞiZconf ¼
Y

i

ZiZconf . (12)
3.1. Vibration properties of solids

Our thermodynamic system consists of N particles associated by attractive forces. Atoms in a crystal lattice
are not motionless but they constantly thermally oscillate around their positions of equilibrium. At
temperatures far below the melting point the motion of atoms is approximately harmonic [7,21,22]. This
assembly of atoms has 3N�6 vibration degrees of freedom. Ignore 6 vibration degrees of freedom and mark
the number of vibration degrees of freedom with 3N.

Through the knowledge of independent harmonic oscillators the distribution function Z [11] can be derived
as follows:

Z ¼
expð�hv=2kBTÞ

1� expð�hv=kBTÞ

	 
3N

. (13)

In Eq. (5) n is the oscillation frequency of the crystal. The term hn/k is the Einstein temperature yE.
In comparing the experimental data for simple crystals a relatively good matching with analytical

calculations at higher temperatures is observed whereas at lower temperatures the discrepancies are higher.
This is why Debye corrected the Einstein’s model by taking account of the interactions between a number of
quantized oscillators. The Debye approximation treats a solid as an isotropic elastic substance. Using the
canonical distribution the partition function may be written as:

ln Z ¼ �
9

8
N

yD

T
� 3N ln 1� expð�yD=TÞ

� �
þ 3N

T3

y3D

Z yD=T

0

x3

expðxÞ � 1
dx. (14)

In Eq. (14) yD is the Debye temperature. By developing the third term in Eq. (14) into a series for a higher
temperature range [11,23] we can write

x3

expðxÞ � 1
¼ x2 �

1

2
x3 þ

1

12
x4 �

1

720
x6 þ � � � . (15)
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Using Eqs. (14) and (15) turns into the following expression:

ln Z ¼ �
9

8
N
yD

T
� 3N ln 1� exp �

yD

T

� �� �

þ 3N
T

yD

� �3

1

3

yD

T

� �3

�
1

8

yD

T

� �4

þ
1

60

yD

T

� �5

�
1

5040

yD

T

� �7

þ
1

272160

yD

T

� �9

� ��

2
66664

3
77775. ð16Þ

The relation between the Einstein and Debye temperature may be written as yE ¼ 0:735yD.
The Debye characteristic temperature was determined by means of the Grüneisen independent constant g

yD ¼ CV�g, (17)

where C is the constant dependent on material. We developed a mathematical model for the calculation of
thermodynamic properties of polyatomic crystals. The derivations of the Einstein and Debye equations,
outlined in the previous paragraphs, apply specifically to monoatomic solids, i.e. those belonging to the cubic
system. However, experiments have shown that the Debye equation represents the values of specific heat and
other thermophysical properties for certain other monoatomic solids, such as zinc, which crystallizes in the
hexagonal system. Suppose that the crystal contains N molecules, each composed of s atoms. Since there are
Ns atoms, the crystal as a whole has 3Ns vibrational modes. A reasonable approximation is obtained by
classifying the vibration into
�
 3N lattice vibrations, which are the normal modes discussed in the Debye treatment (acoustical modes).

�
 independent vibrations of individual molecules in which bond angles and lengths may vary. there must be

3N(s�1) of these (optical modes). We expressed the optical modes using the Einstein model.

3.2. Crystal bonds

The analytical calculation of configuration integral in solids is a very difficult task. Most frequently
numerical procedures are applied in practical computations by means of the Monte-Carlo method.
Nevertheless, the presented method requires a lot of computer time with another serious drawback being also
that it does not provide a functional dependence of thermodynamic properties on temperature and volume.
Empirical equations are frequently used as well, though mostly without any theoretical basis built on a
molecular view of the world. In the paper presented we used the perturbation Van der Waals (VDW) theory
for solids [10,24] around the model of hard spheres to calculate the thermodynamic properties of state. In
order to calculate the mixtures of atoms of hard spheres we obtain the configuration free energy for a certain
binary crystal [9]:

Aconf0 ¼ NkBTx

�3 ln
Vn � 1

Vn

� �
þ 5:124 � ln Vn

�20:78Vn þ 9:52Vn2 � 1:98Vn3

þC0 þ c1 � ln c1 þ c2 � ln c2

2
66664

3
77775, (18)

C0 ¼ 15:022; Vn ¼
V

V0
; V 0 ¼

Ns3ffiffiffi
2
p , (19)

where s means the Lennard-Jones parameter, V� reduced volume and ci a molar fracture of component 1. In
case of a crystal formed of atoms of the same type the free energy can be written as:

Aconf0 ¼ NkBT

�3 ln
Vn � 1

Vn
þ 5:124 � ln Vn

�20:78Vn þ 9:52Vn2

�1:98Vn3 þ C0

2
6664

3
7775. (20)
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To calculate the perturbation contribution the VDW model was used. In most of the technical literature
[13,24] the VDW model is treated only in relation to atomic structure, whereas we additionally presented the
temperature-dependent coefficients:

Aconf1 ¼ �
aðc1;c2;TÞ

V
. (21)

The configuration integral is thus formed by the contribution of hard spheres and perturbation:

Aconf ¼ Aconf0 þ Aconf1. (22)

In our case the coefficient a was determined as a temperature-dependent polynomial following a comparison
between experimental data and analytical results:

a ¼ a0 þ a1T þ a2T2. (23)

Coefficients a0, a1, a2 are obtained by numerical approximation and the comparison with thermodynamic
data.
3.3. Bulk and elastic modulus

Using Eq. (16) we can calculate also some derived thermodynamic properties of state, which are very
important in planning and monitoring the thermomechanical processes:

Isobaric heat capacity is very important for the calculation of some important parameters such as the
thermal diffusivity of solids:

Cp ¼
qH

qT

� �
p

. (24)

The bulk modulus relates the relative pressure change and the applied stress [15] as:
Isentropic bulk modulus:

Ks ¼ �V
qp

qV

� �
s

. (25)

Isothermal bulk modulus:

Ks ¼ �V
qp

qV

� �
T

. (26)

The modulus of elasticity E is also known as Young’s modulus and is the measure of the elastic force of any
substance, expressed by the ratio of a stress on given unit of the substance to the accompanying distortion. For
highly symmetric solids the Young’s modulus can be written in terms of bulk modulus and the Poisson ratio
[15] as

E ¼ 3Kð1� 2vÞ. (27)

Volumetric expansion coefficient b is expressed with the next express:

b ¼
1

V

qV

qT

� �
p;c

. (28)

For many engineering applications the quantity of direct interest is not the coefficient of volume expansion
b but rather the coefficient of linear expansion coefficient a:

a ¼
1

V 1=3

qV 1=3

qT

� �
p

¼
1

3
b, (29)

where b is the volumetric expansion coefficient.
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3.4. Murnaghan equation of the state for solids [25]

The internal energy of a solid uT can be expressed as the sum of two terms:

uT ðv;TÞ ¼ u0ðvÞ þ uDðT ; vÞ, (30)

where u0 represents the cohesive energy at zero temperature. On the basis of relations from classical
thermodynamics ð�p ¼ qut=qvjSÞ we can express the next expression:

p ¼ p0 þ uD

g
V
, (31)

where p0 is the pressure at zero temperature and uD is internal energy on the basis of Debye model [25]. The
pressure at zero temperature p0 is expressed with the next equation:

p0 ¼ K0
3½ðV=V 0Þ

1=3
� 1�

ðV=V 0Þ
2=3

e�a 1� 0:15at þ 0:05a2t
� �

, (32)

where K0 is the bulk modulus at zero temperature and at is the constant calculated from interatomic distance.
How to determine all important constants is possibly to find in Ref. [25].
Fig. 5. Thermal expansion coefficient for copper: —E—, EXP; ?’?, AO-HS; —m—, AO-M.

Fig. 6. Isothermal bulk modulus for copper: —E—, EXP; ?’?, AO-HS; —m—, AO-M.
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Fig. 7. Modulus of elasticity for copper: —E—, EXP; ?’?, AO-HS; —m—, AO-M.

Table 3

Results for simply supported aluminum beam

Temperature Mode of

vibration

Experimental results [2] Analytical results

Marques–Inman [2]

Analytical results

Avsec–Oblak

23 1C 1 36.79444 31.6279 32.05

2 95.7661 87.2021 88.66

3 182.4597 170.9858 173.7

4 294.8589 282.7049 287.26

29 1C 1 31.7540 29.2867 29.72

2 88.2056 84.0921 85.421

3 171.875 167.6089 170.294

4 285.2823 279.1737 283.64

33 1C 1 29.2339 27.605 27.91

2 84.1734 81.9485 83.185

3 166.8347 165.3185 167.987

4 280.2419 276.7942 279.14

36 1C 1 26.2097 26.266 26.56

2 79.1331 80.3006 81.466

3 161.7944 163.5791 166.09

4 274.1935 274.9959 279.14

40 1C 1 22.6815 24.3582 24.56

2 74.5968 78.0458 78.981

3 156.25 161.2305 163.646

4 268.6492 272.5976 276.4

42 1C 1 21.1694 23.3410 23.49

2 71.0685 76.8919 77.906

3 152.2177 160.043 162.981

4 265.1210 271.3633 271.656

48 1C 1 24.6976 19.9576 19.91

2 66.5323 73.3143 74.16

3 144.1532 156.4261 158.63

4 259.5766 267.681 271.656

J. Avsec, M. Oblak / Journal of Sound and Vibration 308 (2007) 514–525522
4. Results and discussion

Thermal and caloric equations of state for solids are fundamental characteristics of matter defining
thermodynamic properties over a wide range of temperatures. The principal problem of modern powerful
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theories is the necessity to take into account correctly the strong collective and interparticle interaction in
dissordered media. Solids have been extensively studied with models on the basis of classical
thermomechanics. The models are from the practical view more accurate and they allow simulation in wider
temperature and pressure regions. Classical thermomechanics has no insight into the microstructure of the
substance. But it allows the calculation of thermodynamic functions of state with asistance from measurement
or empirical equations. Statistical thermodynamics, on the other hand, calculates the properties of state on the
basis of molecular motions in space, and on the basis of the intermolecular interactions. This paper is one of
the first attempts in determining how to calculate vibrational properties for beams on the basis of statistical
thermodynamics, with the combination of analytical vibrational theory.

The presented mathematical model was used to calculate thermodynamic properties of state of pure
aluminum and copper beam. Figs. 5–7 show the comparison between experimental results (Exp.), model on
the basis of statistical thermodynamics and hard sphere theory (AO-HS) and model on the basis of statistical
thermodynamics and Murnaghan model (AO-M). The presented results show relatively good agreement
between analytical models and experimental data. The detailed analysis shows, that also small changes of
temperature cause significant changes of natural frequencies for beams.

Table 1 contains the main data for the beam. An aluminium beam was chosen. The aluminium beam is very
interesting, particularly due to relatively high expansion coefficients. Indicated in Table 3 are the results for the
natural frequencies for the first four modes for the simply supported beam. Table 4 contains the results for the
natural frequencies for the first four modes of vibration for the clamped beam. The analytical results are
Table 4

Results for isotropic aluminum clamped beam

Temperature Mode of

vibration

Experimental

results [2]

Analytical results

Marques–Inman [2]

Analytical results

Avsec–Oblak

23 1C 1 36.79444 31.6279 32.05

2 95.7661 87.2021 88.66

3 182.4597 170.9858 173.7

4 294.8589 282.7049 287.26

29 1C 1 31.7540 29.2867 29.72

2 88.2056 84.0921 85.421

3 171.875 167.6089 170.294

4 285.2823 279.1737 283.64

33 1C 1 29.2339 27.605 27.91

2 84.1734 81.9485 83.185

3 166.8347 165.3185 167.987

4 280.2419 276.7942 279.14

36 1C 1 26.2097 26.266 26.56

2 79.1331 80.3006 81.466

3 161.7944 163.5791 166.09

4 274.1935 274.9959 279.14

40 1C 1 22.6815 24.3582 24.56

2 74.5968 78.0458 78.981

3 156.25 161.2305 163.646

4 268.6492 272.5976 276.4

42 1C 1 21.1694 23.3410 23.49

2 71.0685 76.8919 77.906

3 152.2177 160.043 162.981

4 265.1210 271.3633 271.656

48 1C 1 24.6976 19.9576 19.91

2 66.5323 73.3143 74.16

3 144.1532 156.4261 158.63

4 259.5766 267.681 271.656
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Table 5

Results for isotropic clamped copper beam

Temperature Mode of vibration Analytical results Avsec–Oblak

250K 1 24.51

2 67.56

3 218.94

4 327.06

300K 1 17.898

2 58.88

3 207.16

4 313.53

400K 1 �0

2 30.254

3 95.93

4 179.1
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compared with the measured values [1] and with the analytical results of the authors Marques-Inman [1]. The
comparison of the results indicates a satisfactory matching of the results for the new analytical model. Table 5
shows the analytical results for clamped copper beam under thermal effects on the basis of statistical
thermomechanics.

5. Conclusion

The paper deals with the vibrations of the clamped and simply supported beams under the impact of
temperature effects. The thermophysical properties of state, such as modulus of elasticity and linear expansion
coefficient, are calculated on the basis of statistical thermomechanics. The analysis shows that a minor change
in temperature results in a considerable alteration in natural frequencies of the beam. The comparison between
experimental data and analytical results shows satisfactory agreement.
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