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Abstract

The authors review the basic mechanisms for folding structures, such as a combination of pantographs which have

unstable states under dynamic loading. The problem is considered in terms of the large displacement range within which a

truss is allowed to be foldable and deployable, in the context of elastic stability and allows for dynamic control. There are

several possible folding patterns that are identified at the unstable states and the authors put forward a new concept for this

multi-folding of a pantograph structure using a simple model. The authors explore the critical dynamic and postbuckling

effects through the concept of energy minimization. For comparisons with final large-deflection fold patterns, the authors

use an original program for dynamic truss analysis. They demonstrate that the fold patterns change as a function of both

the velocity of the dynamic loading and the dynamic geometry of the structure.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

For structural members and/or materials subject to impact loadings the structural design must try to
successfully absorb and dissipate the impact energy. The designer should decide upon the best structural form
without the possibility of fragmentation of the system and for minimal damage as well as aiming at minimal
mass and maximum stiffness of the system. In the field of impact engineering, high-performance, energy
absorbing members with localized foldings have been developed to absorb/disperse a large impact energy. If
the folding pattern is controlled super-elastic behaviour, then the material and the members of the structure
would, under impact loading, act as shock absorbers with the system being able to return to its initial form
post impact. For material selection the use of porous and honeycomb materials, are good choices since they
have cellular micro-structures which can easily deform under loading and thus act as impact buffers [1–5].

Recently, Holnicki et al. [6,7] designed an active shock-absorber system from which the authors put forward
the concept of a pantograph truss to model multi-folding of microstructures (MFM). We have successfully
carried out FEM simulations with geometric nonlinearity, allowing for contact between nodes which
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Elastic folding systems subject to impact load f: (a) basic model; (b) von Mises truss.
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correlated with control experiments of a basic pantograph shown in Fig. 1(a). To develop this new model, we
needed to estimate the energy that initiates the multi-folding of the structure under impact and then identify
the different possible folding patterns of the system. By controlling the stress of an individual member, we can
actively control the folding characteristics and we simulate the effect of various impact scenarios. The
repetitive use dissipaters in the honeycomb-like cellular micro-structures gives an additional value of energy
dissipation. Careful pre-design for the optimal distribution of the maximum stress level in all controllable
elements, triggers the desired sequence of local collapses. The high effectiveness of active impact energy
absorption by yield stress adjustment demonstrates the potential for application of this system, e.g. in shock-
absorbing systems.

In this paper, using the fundamental concept of MFM, the authors compare experimental, numerical and
theoretical results of the folding of pantograph structures. The authors extend the discussion to include an
understanding of the behavioural characteristics of the folding patterns using the theory of elastic stability and
to identify and account for the folding patterns; and how to interpret the theoretical results through control
experiments. The problems related to the elastic stability of a structure have been researched by many
scientists in this field, notably Thompson and Stewart [8], who introduced nonlinear dynamics and chaos
based upon the instability of a structural system. It is well known that a shallow arch or truss displays unstable
bifurcation phenomena with regard to elastic nonlinearity [9–12].

This research puts forward a folding mechanism with nonlinear behaviour for an elastic folding truss subject
to an impact load from the viewpoint of structural mechanics. This is done through the numerical analysis of
dynamic instability. To observe large-scale dynamic displacement behaviour, the authors analyze the
equilibrium equation with geometric nonlinearity for a basic folding model. The numerical methods for this
folding are used in both the static and dynamic nonlinear analysis. In particular, the dynamic analysis uses a
kinematic equation described by an ordinary differential equation. The authors have found that it is similar to
the folding process for the multi-folding system and there are complex equilibrium curves during unstable
state, i.e. post buckling ‘snap-through behaviour’. In addition this paper puts forward the results of a multi-
folding simulation.

2. Theory of elastic folding for multi-folding microstructure

In this section, we describe the basic mechanism for the MFM with geometric nonlinearlity.

2.1. Nonlinear problem of a simple folding truss

The authors consider an elastic bifurcation problem with a nonlinear equilibrium equation for a folding
structure that allows for a large vertical displacement (such as snap-through behaviour) as shown in Fig. 1(b).
In this paper, we do not allow for any horizontal displacement at any node in the model (see Fig. 1(a)). The
building blocks of the basic model of Fig. 1(a) are the von Mises Truss shown in Fig. 1(b) which is formed as a
2-bar truss from bars of elastic stiffness EA, each element has a vertical projection of h, and horizontal
projection, L with the ratio g ¼ h=L. For the pre impact condition there is no stress in the members and for the
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theoretical approach of the folding mechanism, we assume that the bar is not buckled and that it is perfectly
elastic. In the case of the elastic buckling model we obtain the well-known snap through behaviour for the von
Mises truss. The energy principle is applied to solve a memory force, taking into account geometrical
nonlinearity, based on elastic stability [13]. In this paper, we assume that there is only a primary path without
secondary bifurcation paths. The initial length of a bar is ‘0 and the length after the deformation for the ith
element is defined as ‘̂i, where the following geometric rules apply:

‘0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ h2

p
¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
, ð1Þ

‘̂i ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðg�Q1Þ

2

q
; i ¼ 1; 2, ð2Þ

where Q1 ¼ v1=L is denoted as the normalized vertical displacement for the generalized degree of freedom.
Using the definition of the Green’s strain we obtain:

�i ¼
1

2

‘̂i

‘0

 !2

� 1

8<
:

9=
;. (3)

This strain is more useful than normal strain1 for theoretically analyzing the folding mechanism. The total
potential energy is then defined in the following:

V ¼
X2
i¼1

EA‘0
2
ð�iÞ

2
� fQ1L. (4)

Rewriting Eq. (4), we obtain

V ¼ A11Q2
1 þ A111Q

3
1 þ A1111Q4

1 � fLQ1, (5)

where

A11 ¼ bLg2; A111 ¼ �bLg; A1111 ¼
bL

4
; b ¼

EA

ð1þ g2Þ3=2
.

Hence the nonlinear equilibrium equations based on the principle of the minimum potential energy are
expressed in the following equation:

V1 �
dV

dQ1

� �
¼ 2A11Q1 þ 3A111Q2

1 þ 4A1111Q3
1 � fL ¼ 0. (6)

Using Eq. (6), the main equilibrium path is obtained in the following equation:

f ðQ1Þ ¼
2A11Q1 þ 3A111Q

2
1 þ 4A1111Q3

1

L

¼ bQ1ðQ1 � gÞðQ1 � 2gÞ. ð7Þ

This equation is the primary path for a von Mises truss without a bifurcation path and is shown in Fig. 2.
For the limit point, it is useful to know the strain energy stored at the point of dynamic snap-through

behaviour. Differentiating Eq. (7) and equating to zero we obtain

V11 ¼
df ðQ1Þ

dQ1

¼ bð3Q2
1 � 6gQ1 þ 2g2Þ ¼ 0,

which gives

Qcr
1 ¼

3�
ffiffiffi
3
p

3

� �
g. (8)
1Numerical analysis in this paper has used normal strain (�i ¼ ‘̂i=‘0 � 1).
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Fig. 2. Nonlinear equilibrium curve for von Mises truss.

Table 1

The coordinates of nodes

Node X (m) Y (m)

1 0.240 0.489

2 0.000 0.326

3 0.240 0.163

4 0.000 0.000

5 0.480 0.326

6 0.480 0.000
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Then, by substituting Eq. (8) in Eq. (7), we obtain the maximum force for the primary path. The value of the
maximum force is obtained as

f max ¼ f ðQcr
1 Þ ¼

2g3

3
ffiffiffi
3
p b ¼

2g3

3
ffiffiffi
3
p

EA

ð1þ g2Þ3=2
. (9)

This maximum force f max and the critical displacement Qcr
1 give us important information on the physical

behaviour with regard to the snap-through behaviour of the dynamic problem. If this system does not reach
these critical values under dynamic loading then snap-through behaviour will not take place. The kinematic
equation of the folding model is combined with the nonlinear relationships to give the following ordinary
differential equation:

M €Q1 þ C _Q1 þ bQ1ðQ1 � gÞðQ1 � 2gÞ ¼ 0. (10)

This is a dynamic equation in which the stiffness has nonlinearity of order three for primary equilibrium path
of statics analysis. From this equation, we obtain the dynamic instability of snap-through behaviour or snap-

back behaviour and real physical motion.
Numerical investigations are undertaken for this model, allowing for geometrical nonlinearity, for both

static and dynamic analysis in the paper. The numerical solutions to the dynamic analysis are a function of
time, dynamic loading and folding.

3. Numerical analysis for folding truss with nodal contact

We now examine the folding of a pantographic truss allowing for contact between members and nodes in
order to compare it with the experiment.

3.1. Static equilibrium analysis

The nodes for the FEM model are shown in Fig. 1(a) and the coordinates are given in Table 1. The
extensional stiffness of all members in the model have EA ¼ 1.
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We consider the problem of contact under folding and introduce two virtual additional elements between
the nodes 2 and 4 and nodes 5 and 6 in the basic model of Fig. 1(a). It is assumed that the damping factor of all
elements is given by C ¼ 0:5 and the mass M ¼ 1. All units are normalized. If the value of the damping is
small the system response appears as vibration motion analogous to the dynamics of a molecular model. In
this idealized model, we have not considered the effects of gravity on the elements and the rolling hinges
supported on the walls are assumed to be frictionless. This model therefore makes it possible to gain a physical
understanding in which there are several equilibrium curves for the different folding patterns from the limit
point (first peak of Fig. 3 below). This point is called the bifurcation point (BP) of the Hill-top type and the
eigenvalue at this singular point becomes zero. There are several paths that can be followed from BP in
addition to the primary path.

By using Eq. (8), we obtain the theoretical displacement vcr for the critical state of the basic model when the
load reaches the maximum point:

vcrn ¼
3�

ffiffiffi
3
p

3

� �
ðn� hÞ ¼ 0:2068ðmÞ for the basic model n ¼ 3

and we can use Eq. (9) to obtain the maximum load on this system. The numerical result at the critical point is
given by

vcrnu ¼ 0:2128ðmÞ; f max ¼ 0:0821.

Eq. (8) is used to predict the approximate value for the critical state of the whole of this system even though
the definition of the numerical and theoretical strains is different.

For the case of no contact the folding pattern is proportional to global deformation of the whole system.
However, it has a high level of sensitivity and is very difficult to control. Other static paths of this system are
shown as bifurcation paths, from BP (the first peak of the equilibrium curve in Fig. 3). Bifurcation path 1 in
Fig. 3 is the line of lowest strength after BP and is a path where local buckling has occurred, i.e. local snap-

through behaviour has occurred at the top two members. Bifurcation path 2 has a different type of local
buckling which occurs in the bottom two members. Generally the folding in this system occurs in the elements
that are directly subject to the impact loading.
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Fig. 4. Folding processes in the experiment of J. Holnicki and P. Pawlowski: (A) initial state; (B) top deformation; (C) the first snap-

through; (D) contacting; (E) the second snap-through; (F) restable state.
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3.2. Folding processes in the experiment

We know that there are three types of equilibrium paths for the elastic truss model in the previous
subsection. Therefore, we have investigated the folding mechanisms making allowance for contact between
nodes in the dynamic problem.

We have developed the active control concept for the multi-folding system under impact loads which has
been carried out in a laboratory experiment described by Holnicki et al. [7]. The photographs of the
experimental process show in Fig. 4. Picture (A) is the initial location of structural system prior to impact. For
all joints displacement is possible in the vertical direction and the top joint is the point of application of the
impact load. The six members have identical properties of absolvers (stiffness). In this paper, we confirm the
process of the experimental folding process shown from Pictures (A) to (F) of Fig. 4.

3.3. Dynamic numerical analysis

Several equilibrium paths were identified using the static analysis of Section 3.1. We have obtained
numerical results using dynamic analysis by incremental loading and displacement control methods. Firstly we
describe the folding pattern for the dynamic analysis after postbuckling. The first fold for this pattern is the
local snap-through behaviour of the top two members. There is more than one equilibrium curve as shown in
Fig. 5(a). A process such as ‘a’ ! ‘BP’ ! ‘e’ ! ‘h’ in the figure, is obtained by using the dynamic loading
control. It is shown as two snap-throughs from ‘BP’ to ‘e’ and ‘e’ to ‘h’. As can be seen in the figure, point ‘h’ is
corresponds to the final point and here all members are in contact. The path followed by using dynamic
displacement control, shows a solid line from ‘a’! ‘BP’! ‘c’! ‘CP’! ‘e’! ‘f’! ‘g’! ‘h’ in Fig. 5(a).
Here ‘CP’ means Contact Point on folding members.

In particular, the trace of the path ‘d–e–f’ corresponds to the equilibrium curve of a von Mises truss model
(see Fig. 2). There are several paths crossing at the CP point as shown at ‘d’ in Fig. 5(a) The paths have higher
stiffnesses compared with the static paths. There is an increase in the stiffness of the system as members come
into contact with each other during the folding process as shown by ‘d’ in Fig. 5(b). The numerical simulation
of the complete folding process is shown in Fig. 5(b). This figure displays seven folding processes from ‘a’ to
‘g’. The change of displacement reduces between snap throughs as can be seen in Fig. 5(b) e.g. from ‘a–c’ to
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Fig. 5. Equilibrium curves for folding pattern allowing for contact and folding process showing contact: (a) dynamic methods comparing

with static problem; (b) the process of each deformation.
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‘d–f’. After this we see that as the system passes through the ground position labelled ‘f’ of Fig. 5(b), the
system becomes unstable and there is a loss of stiffness as every member in the system has undergone snap-
through behaviour. In the folding process from ‘b’ to ‘c’; both of the side support nodes become higher than
the position at the loaded node when the top two elements snap-back during the folding process. Finally, we
see that the shape for the model has only two elements, which is shown in the process of ‘g’ in Fig. 5(b) which
corresponds to all members of the system being in contact. The dynamic path just described is a very different
path to the no contact and static problem. The analysis was carried out by using an FEM model composed of
elastic material.
4. Conclusion

Using a numerical approach we have established the folding mechanism for the dynamic nonlinear folding
process of a pantographic truss system which compares well with a folding experiment, based on the multi-
folding concept. The nonlinear equilibrium paths for the folding smart passive structures have been
successfully simulated and it has been possible to calculate the capacity of the maximum impact energy and/or
strain energy in these systems. Although this model is simple, the solution to the behaviour near BPs has
required the finding of the equilibrium paths.
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