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Abstract

Vibroimpact interaction between rotor and floating sealing ring is studied. The two-mass model ‘‘high-speed rotor—

sealing ring’’ is considered. The model includes an unbalanced flexible rotor with elastic bearings. The rotor rotates inside

the floating sealing ring. The ring is able to contact with the casing. The hydrodynamic forces in the clearance between the

rotor and the ring as well as the dry friction between the ring and the casing are taken into account. The investigation of

flow-coupled vibroimpact oscillations of a rotor and ring are presented. For these regimes, the analytical solution as well as

numerical results are obtained. The main dynamic features of these behaviour and stability domains are discussed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Floating sealing rings are widely used in high-speed rotary machines (for example in pumps) because they
have no regular contact with the rotor and are rather effective for leakage restriction. The absence of leakages
is based on hydraulic resistance arising in a very small clearance (0.1mm) between the rotor and seal. Some
designs of floating seals were cited in the book by Childs [1]. The liquid flow through the clearance excites
hydrodynamic forces; their determination is performed, for example, by Nelson [2]. There are publications
devoted to oscillation stability of rotor in seals under action of the non-conservative component of the
hydrodynamic forces (see, for example, the paper of Black [3] and the book by Lalanne and Ferreris [4]. The
present paper is concerned with the problems of vibroimpact regimes. These regimes often occur between rotor
and ring. In a previous paper by Akhmetkhanov et al. [5] various types of vibroimpact regimes are considered.
In this paper, the existence and stability domains for these regimes are defined.

2. Dynamical model

In this model (Fig. 1), the flexible shaft supported by elastic bearings has a massive disc m1 in the middle of
the shaft. An equivalent stiffness of the shaft with bearings is k. The disc is encased inside the floating ring m2.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a rotor eccentricity
d bearings damping
f coefficient of Coulomb’s friction
h1 flow stiffness
h2 flow damping
kz turbulence factor ðkz � 0:005RezÞ

L ring width
q1 radial rotor displacement ðq1 ¼ x1 þ iy1Þ

q2 radial ring displacement ðq2 ¼ x2 þ iy2Þ

R internal ring radius
Rez Reynolds number for axial flow ðRez ¼

2rdw=m0Þ

Sfr ring friction surface
w speed of turbulent axial flow ðw �

10d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 � p2Þ=ðrLÞ

p
Þ

d value of annular clearance
d0 minimal value of annular clearance en-

suring non-impact regime at critical
speed

Z hydraulic resistance in annular clearance
ðZ � 75 d=LÞ

m0 dynamic viscosity
r density of liquid (gas)
o rotor speed
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The disc is unbalanced and is loaded by centrifugal force Fc ¼ m1ao2. The pressure in front of the ring is high
and equals to p1. Behind the ring the pressure is low and equals to p2. Pressure difference sets the floating ring
in motion relative to the casing. The dry friction force between the ring and the casing equals to
F fr ¼ fSfrðp1 � p2Þ. Pressure distribution in the radial clearance between rotor and ring generates
hydrodynamic forces which include three components [5].

Elastic force:

Fe ¼
pLRðp1 � p2ÞZ

2dð1þ ZÞ2
q1 � q2

�� �� ¼ h1 q1 � q2

�� ��.
Damping force:

Fd ¼
pm0kzL3R

12d3
q1 � q2

�� �� ¼ h2 q1 � q2

�� ��
and non-conservative force F n ¼

1
2
oh2 q1 � q2

�� ��. This two-mass model may describe the coupled system
‘‘rotor–ring’’ if its critical speeds are widely separated and if up to nominal rotor speed the ring may be
considered as a solid. Then the flow-coupled oscillations are described by the following equations:

m1 €q1 þ d _q1 þ kq1 þ h1ðq1 � q2Þ þ h2ð _q1 � _q2Þ � i0:5oh2ðq1 � q2Þ ¼ m1ao2eiot,

m2 €q2 þ h1ðq2 � q1Þ þ h2ð _q2 � _q1Þ � i0:5oh2ðq2 � q1Þ þ F fr sgn _x2 þ i sgn _y2

� �
¼ 0. ð1Þ

Owing to the design constraints the ring can move only along the x- and y-axis and cannot rotate. It is
assumed that the ring is completely balanced. Its motion for non-impact interaction is determined by ratio
between dry friction force and elastic hydrodynamic force c ¼ F fr=Fe. There are three various ring motions
Fig. 1. Dynamical model of ‘‘rotor–ring’’.
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depending on value c: if c ¼ 0 vibration amplitude of the ring is maximum and the ring is self-centered
around the rotor, if cX1 the ring is fixed, and if 0:5oco1 motion of the ring is accompanied by periodic
sticking.

Vibroimpact interaction occurs in systems when the impact condition is fulfilled, i.e. q1 � q2

�� ��4d.
The change of vibration velocities due to impact is described by restitution coefficient e 2 ½0; 1Þ, see Harris

and Crede’s book [6]. For radial velocities of the rotor and the ring after impacts _qþ1 ; _q
þ
2 :

_qþ1 ¼
ðm1 � em2Þ _q

�
1 þm2ð1þ eÞ _q�2

m1 þm2
; _qþ2 ¼

ðm2 � em1Þ _q
�
2 þm1ð1þ eÞ _q�1

m1 þm2
.

3. Analytical solution

During analytical investigation the damping and the non-conservative hydrodynamic forces are not taken
into account because their influence on system dynamics is very small in comparison with the strong influence
of impacts.

Really, for the system under study the damping and the non-conservative components of real hydrodynamic
forces are small in comparison with the elastic component. For example, at critical speed of a non-rotating
rotor with o0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k=m1

p
, the dimensionless coefficients of the hydrodynamic forces are equal:

h1

m1 o2
0

¼ 0:138;
h2

m1 o0
¼ 0:0178;

0:5h2o0

m1 o2
0

¼ 0:0107.

Therefore, the influence of damping and non-conservative forces will not be considered at impacts. For
analytical consideration we shall take into account only the elastic component of hydrodynamic forces h1x.
Under these conditions the motion equations along axes x and y as well as conditions of impact are not
coupled. Therefore, it is possible to consider the oscillations along the x- and y-axis independently. The
oscillations of the rotor and the ring in mutually perpendicular directions occur similarly but with a shift of
phases equal to p/2 between the next impacts due to design symmetry. Thus, in a plane (x, y) there will be a 4-
impact regime.

So the motion equations of system ‘‘rotor–ring’’ along the x-axis take the form

m1 €x1 þ kx1 þ h1 ðx1 � x2Þ ¼ m1ao2 cosðo tþCÞ,

m2 €x2 þ h1ðx2 � x1Þ þ F fr sgn ð _x2Þ ¼ 0, ð2Þ

angle C is phase shift of impact moment with respect to disturbing centrifugal force.
The impact succession between rotor and ring for this model is shown in Fig. 2. The rotor moves from a

position of equilibrium under action of force F c ¼ m1ao2 and strikes the ring (t ¼ 0). The ring bounces off in a
direction of rotor motion (t ¼ T/8 where T ¼ 2p/o) and sticks under action of dry friction force (t ¼ T/4). At
the same time, the rotor reaches maximal displacement and the elastic hydrodynamic force in a clearance
between the rotor and the non-moving ring reaches its greatest value. As the elastic hydrodynamic force
becomes more than dry friction force the ring starts to move in the initial direction. But it is delayed in phase
with respect to the rotor, which changes a motion direction to the opposite one (t ¼ 3T/8). Then moving
towards each other the rotor again collides with the ring (t ¼ T/2). After this the motion of the rotor and the
ring repeats itself similarly.

Conditions of periodicity and stitching for these oscillations of the rotor and the ring are written as

x1ð0Þ ¼ x0; x2ð0Þ ¼ x0 þ d; _x1 ¼ _xþ1 ; _x2 ¼ _xþ2 ,

x1ðT=2Þ ¼ �x0; x2ðT=2Þ ¼ �ðx0 þ dÞ; _x1 ¼ _x�1 ; _x2 ¼ _x�2 ; F fr ¼ þF fr,

where x0—impact coordinate, index + denotes velocities after impacts, index � denotes velocities before
impacts (for half-period t ¼ T/2/T all signs are opposite).
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Fig. 2. Planar model of vibroimpact system ‘‘rotor–ring’’.
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Using these conditions we obtained a solution of Eq. (2) corresponding to vibroimpact oscillations of the
rotor and the ring:

x1ðtÞ ¼
F cðh1 �m2o2Þ cosðotþCÞ

D
þ C2

cos l1ðt� T=4Þ

sin l1T=4
þ C4

cos l2ðt� T=4Þ

sin l2T=4
,

x2ðtÞ ¼
F fr

h1
þ

Fch1 cosðotþCÞ
D

þ a1C2
cos l1ðt� T=4Þ

sin l1T=4
þ a2C4

cos l2ðt� T=4Þ

sin l2T=4
. ð3Þ

Here, l1,2 are natural frequencies of system ‘‘rotor–ring’’ determined from the characteristic equation

D ¼ ðk þ h1 �m1o2Þðh1 �m2o2Þ � h2
1; C2 ¼ �

_x�2
l1u

a2 þ u

a1 � a2
; C4 ¼

_x�2
l2u

a1 þ u

a1 � a2
.

The values

a1;2 ¼
ffiffiffi
u
p 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

2s

are coefficients of oscillation modes calculated by ratios

u ¼
m1

m2
; s ¼ g

2p1p2

p2
1 � p2

2

�� �� ; g ¼
h1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h1ðk þ h1Þ
p ,
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where p2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h1=m2

p
; p1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ h1Þ=m1

p
, are partial frequencies of rotor and ring. Value _x�2 is determined by

formulas

cos2Cþ sin2C ¼ 1; sin C ¼
D

Fcðh1 �m2o2Þ

1þ u

u

1� e

1þ e
_x�2 ,

cos C ¼ �
D

F cm2o2

F fr

h1
� d� _x�2

1� a2

l2u

a1 þ u

a1 � a2
ctg

l2T
4
�

1� a1

l1u

a2 þ u

a1 � a2
ctg

l1T
4

� �� 	
.

Solution (3) shows that vibroimpact system ‘‘rotor–ring’’ is unstable at the critical speeds o ¼ li and at the
subharmonic frequencies o ¼ li=2n; n ¼ 1; 2; 3; . . .. Really, at the frequencies l1 and l2, a determinant
D ¼ 0, on the frequencies o ¼ li=2n; n ¼ 1; 2; 3; . . . denominators sin liT=4 ¼ 0.
4. Numerical solution

The vibroimpact oscillations of system (1) ‘‘rotor–ring’’ with account of the damping and non-conservative
forces were investigated numerically. It was found that vibroimpact oscillations of this system have some
specific features listed below.

A vibroimpact trajectory of the rotor always has a square form (Fig. 3a). The sharpness of the ring
trajectories are essentially dependent on the value of radial clearance d. When 0odo0:75d0 the ring motion
may be a square (Fig. 3b, line 1), when they are commensurable ð0:75d0odod0Þ it is a star (Fig. 3b, line 2). In
Fig. 4, the small time interval of rotor and ring vibration is shown. It is seen that the ring motion is interrupted
by impacts (point I) and by periods of sticking (line S). There is the anti phase oscillations of rotor and ring as
well. Such vibroimpact motion of system ‘‘rotor–ring’’ along one axis agrees with planar model (see Fig. 2).

The analysis of rotor amplitudes near the critical speed of a non-rotating rotor o0 has shown that impacts
intensify the amplitude of vibration if restitution coefficient is decreased and ring mass is increased (Table 1).
For comparison the rotor amplitude at the frequency o0 for non-impact interaction with a ring mass m2 ¼

0:1m1 equals 30m cm.
Spectral analysis shows (Fig. 5) that with vibroimpact interaction there are oscillations with high

frequencies, multiple of the rotor speed and equal to 3o; 5o; 7o � � � ð2n� 1Þo. Generation of harmonics with
odd frequencies agrees with the analytical solution too.

Domains of non-impact, stable and unstable vibroimpact regimes for the ‘‘rotor–ring’’ system are
determined dependent on the rotor speed, value of a radial clearance and dry friction force between ring and
casing. They were obtained from the analysis of rotor and ring trajectories (see Fig. 3). The widest domain of
vibroimpact regimes is close to a critical speed (Fig. 6a). Rotor instability due to impacts with ring occurs at
frequencies o ¼ o0; o ¼ o0=2. But for all rotor speeds the domain of vibroimpact interaction is minimum for
ratio c ¼ F fr=Fe ¼ 0:55. So the non-impact regime at o ¼ o0 takes place already when a radial clearance is
d ¼ 0:32d0 (Fig. 6b).
Fig. 3. Trajectories of rotor (a) and ring (b) at stable vibroimpact regime.
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Fig. 4. Vibroimpact oscillations of rotor-1 and ring-2.

Table 1

e 0.5 0.4 0.3 0.13 0.3 0.13

m 0.1 0.1 0.1 0.06 0.1 0.14

A, m cm 34 49 56 43 56 60

Fig. 5. Frequency spectrum for vibroimpact oscillations of ring (rotor).
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Also in Fig. 6b, there are the additional points. They correspond to the boundary, which separates non-
impact and vibroimpact regimes for planar model (Section 3). Thus, there is a good correlation between
domains of planar and orbital models.

5. Vibroimpact regimes with account for fiction force during impact

Let us write the momentum equations (the theorem of impulses), which connect translational velocities
before and after impact for the rotor inertia centre G and a geometrical centre of the ring O2. They will have
more simple presentation in coordinates (u,v) adhered to a point of impact C, laying on lines of centres O1O2.
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Fig. 6. Domains of non-impact-1, stable vibroimpact-2 and unstable vibroimpact-3 regimes of full system ‘‘rotor–ring’’.
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The rotation angle of this coordinate system is determined by an angle of impact y (Fig. 7):

m1 _uþG � _u�G

 �

¼ Su; m2 _uþO2
� _u�O2

� 

¼ �Su,

m1 _vþG � _v
�
G


 �
¼ Sv; m2 _vþO2

� _v�O2

� 

¼ �Sv, ð4Þ

where ð _u�G ; _u
þ
GÞ, ð_v

�
G ; _v

þ
G Þ—velocity projections of the inertia centre of the rotor to the normal and tangent

directions before and after the impact, the appropriate velocity projections of the ring geometrical centre have
index O2.

Transition from velocities _x; _y to _u; _v is carried out under relations:

_u ¼ _x cos yþ _y sin y; _v ¼ � _x sin yþ _y cos y; tgy ¼ �
y1

x1
.

Relations of velocities of the rotor’s inertia centre G and its geometrical centre O1 are defined from the
equations

_uG ¼ _uO1
þ ao cos ot0 _vG ¼ _vO1

þ ao sin ot0, (5)

where a ¼ O1G—rotor eccentricity, ot0—impact phase.
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From Eqs. (4) and (5), it is possible to find the equations connecting velocities of the geometrical centres of
the rotor and rings before and after impact

m1 _uþO1
� _u�O1

� 

¼ Su; m2 _uþO2

� _u�O2

� 

¼ �Su,

m1 _vþO1
� _v�O1

� 

¼ Sv; m2 _vþO2

� _v�O2

� 

¼ �Sv, ð6Þ

where ð _u�O1
; _uþO1
Þ, ð_v�O1

; _vþO1
Þ—velocity projections of the rotor geometrical centre on a normal and tangent

before and after impact. Further instead of an index ‘‘O1’’ it is applied to simplify the index ‘‘1’’ as above.
Direct non-elastic impact is described by a hypothesis of Newton

_uþ2 � _uþ1 ¼ �eð _u�2 � _u�1 Þ; e 2 ½0; 1Þ. (7)

That is carried out only in limited range of approach velocities—from 10 cm up to several metres per second.
And velocities of the rotor and ring are in such a range.

From Eq. (6) for a normal shock impulse Su it is possible to find normal components of velocities for the
rotor and the ring geometrical centres after impact based on the equality (7)

_uþ1 ¼
ð1� meÞ _u�1 þ mð1þ eÞ _u�2

1þ m
; _uþ2 ¼

ðm� eÞ _u�2 þ ð1þ eÞ _u�1
1þ m

, (8)

where m ¼ m2=m1—the ratio of the ring mass to the rotor mass.
Impact of rough bodies is accompanied by friction that derives from a tangent component of an impact

impulse Sv. Using a hypothesis of friction by Coulomb, we shall write

Sv ¼ �fSu, (9)

where f-coefficient of a sliding friction between the rotor and the ring.
From Eq. (9) we shall find tangential components of velocities after impact for the rotor’s and the ring’s centres:

_vþ1 ¼ _v�1 þ f m
ð1þ eÞð _u�1 � _u�2 Þ

1þ m
; _vþ2 ¼ _v�2 � f

ð1þ eÞð _u�1 � _u�2 Þ

1þ m
. (10)

Each of expressions (10) is true only in the case when the value _vþ1 has the same sign, as _v�1 ; otherwise it is
necessary to consider _vþ1 ¼ 0, i.e. the tangential component disappears; it is the same for ring’s velocities.

So relations (8) and (10) for the rotor’s and the ring’s velocities before and after impact allow to solve the
problem of impact movements with account to friction force during impact.

As calculations are shown, consideration of impact friction does not bring basic qualitative changes in the
motion picture and the four-impact regime is still possible. There are the following insignificant differences:
�
 due to the tangential component of impact force impulse, influence of impacts on the rotor oscillations
weakens (Fig. 8a) and for the ring amplifies: when 0odo0:75d0, the trajectory of the ring is a concave one
inside a rhomb (Fig. 8b). When 0:75d0odod0 it is like a cross (Fig. 8c);
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Fig. 9. Domains of non-impact-1, stable vibroimpact-2 and unstable vibroimpact-3 regimes system ‘‘rotor–ring’’.
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�
 domain of existence of the non-impact regimes does not change, but friction increases stability of system
‘‘rotor–ring’’ at impact regimes (Fig. 9).

Oscillations of the rotor due to friction force at impact in the motionless bearing (corresponding to the
motionless or heavy enough ring) were considered in Banakh [7].

6. Conclusions
�
 Vibroimpact regimes in a system ‘‘rotor–ring’’ produce only destabilising action. They excite also
superharmonic oscillations of a rotor and ring. This can be the reason for subharmonic resonances and
instability of a rotor.

�
 The stabilizing effect (the impact damping of rotor vibration by a floating ring) was not detected.

�
 Domain of non-impact interaction at small radial clearance as well as dynamic stability domain of the rotor

with impact regimes are optimal when c ¼ F fr=Fe ¼ 0:5, m2! 0, e! 0:5 and f ! 1.
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