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Abstract

The dynamics of a novel piezoelectric device for drilling of brittle materials is investigated. This device consists of a

resonantly driven piezoelectric actuator, a drill stem, as well as a free-flying mass oscillating and impacting between the tip

of the piezoelectric actuator and the end of the drill stem. Contact interfaces exist between the actuator and the mass, the

mass and the drill stem as well as between the drill stem and the machined material. Basic understanding of the device’s

dynamic behaviour is crucial, for example to enhance the drilling performance or to redesign the system for different corer

or drill stem geometries. However, such a basic understanding is still missing. Experiments with a prototype device as well

as simulations with simple models show irregular motion of the impacting mass. To investigate the complicated temporal

behaviour of this system, so-called set-oriented numerical methods are applied. These methods are based on an adaptive

subdivision technique for cell-mapping to approximate attractors and invariant measures. A model for the drilling device is

proposed consisting of several degrees of freedom. The motion of the piezoelectric actuator tip follows a prescribed

harmonic vibration; the free-flying mass is represented as a point mass. The drill stem is modelled as a rod structure to

account for longitudinal wave propagation. The contact conditions between the different subsystems are described by

complementary kinematics and force relations and Newton’s impact law, respectively. Using the set-oriented methods,

periodic and chaotic orbits are detected and parameter ranges for the occurrence of different types of solutions are

determined. Additionally, basins of attraction for the corresponding attractors are computed. Information on the

probability of attaining a particular attractor is obtained by quantifying its connected basin of attraction. An invariant

measure is chosen which represents the drilling performance. For most important model parameters, for example the mass

of the free-flying body or the actuator excitation frequency, drilling performance is evaluated by computing this invariant

measure for each attractor. The computational results lead to a deeper understanding of the vibro-impact dynamics of this

drilling device, reveal the global behaviour of the system dynamics and show the influence of different design parameters

on the drilling performance.
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1. A vibro-impact drilling system

The application under consideration is motivated by the so-called USDC—the Ultrasonic/Sonic Driller/
Corer. The USDC is a new drilling device to work with brittle material such as rock or stone. Its idea and a
prototype device were developed by Bar-Cohen et al. [1] as a tool for in situ rock sampling and analysis in
support of the NASA planetary exploration program.

Fig. 1 shows the schematic set-up of the drilling device. One outstanding property of the USDC is its rather
simple design—compared to normal hand-held drilling machines. This can be well asserted by Fig. 2: apart
from the electrical driving unit, the drilling device consists of only three main parts, the piezoelectric actuator,
the free-flying mass, and the drill stem.

The piezoelectric actuator—first of three parts of the device—is a longitudinal piezoelectric transducer with
a stack of piezo-electric disc elements. These elements are excited by a harmonic voltage driving the actuator in
its first longitudinal eigenmode and causing its tip to vibrate at an ultrasonic frequency of approximately
20 kHz. The actuator’s body is not bounded in longitudinal direction: thus it is able to move (e.g. in a
bouncing way) in its longitudinal direction with respect to the other parts of the drilling system. The second
part is a mass of a few grams which bounces irregularly at sonic frequencies back and forth between the
actuator’s tip and the back of the drill stem. Its task is to transform ultrasonic low-amplitude vibrations of the
piezoelectric actuator into sonic impulses of higher strength, which cause stress waves traveling in the drill
stem. By its motion the free-mass maintains the necessary gap between the actuator and the drill stem. The
drill stem as the third part guides the stress waves initiated by impacts with the free-mass towards the drill-bit/
rock interface causing fracture in the rock.

The simple design of the USDC as well as promising experimental results and successful application for in
situ rock sampling, see Bar-Cohen et al. [1], motivates approaches to investigate the application of this novel
mechanism for example in hand-held drilling devices for drilling in concrete. Limitations of existing drilling
technologies are the need for large axial preload and stall torques and a high power consumption. Those needs
cannot be accommodated by lightweight robots and rovers. Their requirements motivated the development of
the USDC system.
Fig. 1. Schematic set-up of the USDC.
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Fig. 2. Prototype of the Ultrasonic/Sonic Driller/Corer. The free mass which provides the focus of this paper’s modelling task is visible in

the centre.
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Providing a new and promising drilling technology, the dynamic behaviour of the USDC system is,
however, not understood in detail. It is for example unclear how the free-flying mass, the frequency, and the
design of the drill stem influence the material removal rate. Even more, up to now it is unclear how this USDC
device can be scaled up for applications with larger driller or corer, as they are needed in drilling of concrete.
Also, the drilling speed must be significantly increased for applications on construction sites.

The key issue of the USDC device is the novel mechanism transfering ultrasonic vibrations of the piezoelectric
actuator into larger vibrations of the free-flying mass. Thus, exploring the dynamics of this mechanism is
essential for further developments with this drilling device. In Badescu et al. [2] finite element modelling and
long-time integration of a simple spring-mass-model is chosen to analyse the dynamics of the contact-impact
between the actuator and the free-flying mass. In Neumann et al. [3] and Neumann and Sattel [4] a different
approach is chosen. Since experimental results show a complex dynamic behaviour of the vibrating mass, it is
appropriate to perform a phase-space analysis in order to extract global information about the system dynamics.
Information on the existence and domains of attraction of periodic orbits are sought, or statistical measures
about the drilling performance based on the trajectories in the underlying phase space should be obtained.
Therefore, so-called set-oriented methods are chosen for the model analysis, see e.g. Dellnitz and Junge [5]. These
are new methods, based on the cell-mapping method by Hsu [6]. The methods analyse dynamical systems which
can be represented by a set of difference equations. They use the point mapping technique which became well
known from the work of H. Poincaré and G. Birkhoff—see also Babitsky [7, pp. 69–71].

The USDC device is modelled as a non-smooth system with vibro-impact behaviour. For such non-smooth
systems approximate methods based on harmonic linearisation can be used, as given in Babitsky [7], in case
the system behaviour in the interesting parameter range is time-periodic. Path following methods to analyse
periodic non-smooth mechanical systems are presented by Leine and Nijmeijer [8]. All these methods cannot
be applied for non-smooth systems with complex nonlinear dynamic behaviour. In Neumann et al. [3] and
Neumann and Sattel [4] a simple one degree of freedom impact model is proposed for the model analysis. By
describing the model as a time-discrete map the set-oriented methods could be applied. The analysis of this
simple model reveals chaotic and periodic attractors and relative statistical measures about the performance of
the energy transmission could be stated.

In this paper an extended model of the USDC vibro-impact dynamics is proposed, which includes the
dynamics of the piezoelectric actuator. Focusing on the impacting free mass, Section 2 proposes a time discrete
four-dimensional modelling approach for the non-smooth motion. In the proposed model the drill stem is
simplified by a deflector at which the free mass rebounds. Energy dissipation during impacts is described by
Newton’s coefficient of restitution. Section 3 is dedicated to the analysis of the modelled system. In this section
the set-oriented numerical method will be introduced and applied.

Finally, the paper is summarised and an outlook on future work is given in Section 4.
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2. Time-discrete modelling of a vibro-impact system

2.1. The time-discrete dynamic system as map

Fig. 3 shows the three components of the simple model of the drill system, namely the piezoelectric actuator,
called oscillator, the free mass, depicted as a ball, and the surface of the drill stem, denoted as deflector. The
oscillator is excited in its first longitudinal eigenmode, as illustrated on the right-hand side in this figure. Thus,
the lower end of the oscillator vibrates like a plunger in a harmonic manner with ūðtÞ :¼ u0 cosOt. The
displacements xðtÞ of the oscillator’s centre of gravity and yðtÞ of the free mass are defined as height over the
deflector.

The displacement uðtÞ of the plunger can be formulated as harmonic excitation ūðtÞ coupled to the oscillator
motion xðtÞ:

uðtÞ ¼ xðtÞ � ūðtÞ. (1)

A non-penetration contact condition

0pyðtÞ 8t and yðtÞpuðtÞ 8t (2)

between the bodies is assumed in the modelling. A constant axial preload F A is exerted to the oscillator to
enhance the drilling performance. Gravity force acts on both bodies.

During operation of the drill system the ball gets in contact with either the plunger or the deflector between
its free motion in the gap. Between two successive impacts both moving bodies perform forced motions
due to gravity and the axial preload FA. Their motions are completely defined by their corresponding initial
value problems. Accordingly, giving the state variables at the time instant immediately after the impact with
each other (ball–plunger contact) together with the corresponding phase information (with respect to the
harmonic excitation) at which the impact occurs suffices to completely describe the motion of both moving
bodies.

Hence, the dynamic state of the system is given only at those instants of time tj at which an impact between
ball and oscillator occurs (ball–plunger contact). Thus, the discrete state of the drill system is fully described
Fig. 3. Vibro-impact system model of degree four; the drill stem is described by a deflector.
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by the state vector xðtjÞ ¼ ½tj ;xðtjÞ; _xðt
þ
j Þ; _yðt

þ
j Þ�

T, where the state variables are

tj : time of impact;

xðtjÞ : displacement of oscillator at time of impact;

_xðtþj Þ : velocity of oscillator immediately after the impact and

_yðtþj Þ : velocity of ball immediately after the impact.

Since the ball and the oscillator are in contact with each other during the time of impact, with yðtjÞ ¼ uðtjÞ ¼

xðtjÞ � ūðtjÞ the displacement yðtjÞ of the ball during impact is simultaneously given. The abbreviating symbols

xj :¼xðtjÞ; _xþj :¼ _xðt
þ
j Þ; _yþj :¼ _yðt

þ
j Þ (3)

are introduced and the state vector is denoted by xj :¼ ½tj ;xj ; _x
þ
j ; _y
þ
j �

T.
Modelling the drill system as a time-discrete dynamic system results in a set of four difference equations

which are to be derived in the subsequent sections. The difference equations map the system’s state at time tj

on the system’s state at time tjþ1. Accordingly we obtain a set of nonlinear algebraic equations including case
differentiation

fðxj ;xjþ1Þ ¼ 0, (4)

mapping the contact state of a ball–plunger impact xj onto a contact state of a ball–plunger impact xjþ1. In the
next two sections the difference equations are derived. In Section 2.2 the subsequent instant of time tjþ1 is
gained and in Section 2.3 the remaining state variables xj ; _x

þ
j ; _y
þ
j are obtained.

2.2. Calculation of the subsequent time of impact tjþ1

The motion yðtÞ of the ball after the impact j with the plunger will be given by the initial value problem

€y ¼ �g with yðtjÞ ¼ uðtjÞ; _yðtjÞ ¼ _yþj 8t 2 ½tj ; tjþ1Þ, (5)

where uðtjÞ and _yþj are the initial displacement and the initial velocity after the ball–plunger contact,
respectively. Using Eq. (1), the initial displacement is

uðtjÞ ¼ xðtjÞ � ūðtjÞ ¼ xj � u0 cosOtj . (6)

Solving the initial value problem Eq. (5) yields the equation of motion of the ball after impact j:

yðtÞ ¼ �
g

2
ðt� tjÞ

2
þ _yþj ðt� tjÞ þ xj � u0 cosOtj 8t 2 ½tj ; tjþ1Þ. (7)

The motion xðtÞ of the oscillator after the impact j is given by the initial value problem

€x ¼ �g�
F A

M
with xðtjÞ ¼ xj ; _xðtjÞ ¼ _xþj 8t 2 ½tj ; tjþ1Þ, (8)

where M denotes the oscillator’s mass on which the axial preload FA acts. Solving the initial value problem,
Eq. (8) yields the equation of motion of the oscillator after impact j

xðtÞ ¼ �
gþ FA=M

2
ðt� tjÞ

2
þ _xþj ðt� tjÞ þ xj 8t 2 ½tj ; tjþ1Þ. (9)

In the next step the equations for computing the still unknown subsequent ball–plunger impact time tjþ1 are
derived. It has to be distinguished between two possible contact cases: Case 1 is given by a ball–deflector
contact condition at the contact time tWj

contact case 1: yðtWjÞ ¼ 0 with tWj 2 ðtj ; tjþ1Þ (10)

and case 2 corresponds to a multiple ball– plunger impact at contact time tjþ1

contact case 2: yðtjþ1Þ ¼ uðtjþ1Þ. (11)

Besides a multiple impact at the plunger it is theoretically also possible to simulate multiple impacts at the

deflector, if the ball moves under gravitational influence. This kind of motion corresponds to a rattling
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behaviour at the deflector. Here, it can be possible for the ball to bounce infinitely often against the deflector
and gets to rest at zero velocity after a finite time, and before the plunger hits the ball again. This phenomenon
is rather likely to appear with zero or negative axial preload on the transducer. In the following a positive
preload is assumed at which multiple deflector impacts are hardly observed in simulations and thus will be
neglected.

Let us first assume that a ball–deflector impact occurs (contact case 1). The time of impact between the ball
and the deflector, tWj, follows from Eq. (10). The contact condition results in a quadratic polynomial in
ðtW j
� tjÞ, which solves to

tW j
¼ tj þ

1

g
_yþj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _yþj Þ

2
þ 2g ðxj � u0 cosOtjÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼uðtjÞ40

vuut
2
664

3
775. (12)

The minus-solution is neglected, since it would yield a tW j
with tW j

otj, but this makes no sense in this context.
Under the assumption that a multiple impact at the plunger (contact case 2) occurs, i.e. a repeated contact

between ball and plunger without an intermediate contact between ball and deflector, we are going to calculate
the impact time tjþ1. The necessary condition for a plunger–ball contact is given in Eq. (11). Inserting
subsequently Eqs. (1), (7) and (9) into Eq. (11) yields

ð _yþj � _xþj Þðt
�
jþ1 � tjÞ ¼ �u0ðcosOt�jþ1 � cosOtjÞ �

F A

2M
ðt�jþ1 � tjÞ

2. (13)

We have to find the smallest real t�jþ1 with tjot�jþ1 solving Eq. (13). This task describes no trivial problem, since
Eq. (13) is of transcendent type. In general, this type of problem can be stated as: ‘‘Find all points of
intersection between a parabola and a cosine.’’

Then the calculated time t�jþ1 has to be compared with the time tW j
which was calculated under the

assumption of a deflector–ball impact. If

tW j
ot�jþ1 _ t�jþ1 2 ;, (14)

then a ball–deflector contact occurs. In any other case

t�jþ1otW j
(15)

holds and a multiple impact occurs at the plunger. In either case the corresponding ball–plunger impact time
tjþ1 has to be found.

The dissipated energy during impacts between ball and deflector is modelled via a coefficient of restitution

a2 :¼ �
_yðtþW j
Þ

_yðt�W j
Þ
. (16)

Computing the time derivative of yðtÞ given in Eq. (7) and inserting _yðt�W j
Þ into Eq. (16) yields

_yðtþW j
Þ ¼ a2ðgðtW j

� tjÞ � _yþj Þ. (17)

It is _yðt�W j
Þ ¼ _yðtW j

Þ the velocity of the ball before the impact with the deflector and _yðtþW j
Þ the velocity of the

ball after the impact with the deflector. The motion of the ball after the impact with the deflector is described
by the initial value problem

€y2ðtÞ ¼ �g with y2ðtW j
Þ ¼ 0; _y2ðtW j

Þ ¼ _yðtþW j
Þ; t 2 ½tW j

; tjþ1Þ (18)

with the solution

y2ðtÞ ¼ �
g

2
ðt� tW j

Þ
2
þ _yðtþW j

Þðt� tW j
Þ. (19)

The necessary condition to compute the contact time tjþ1 between plunger and ball is

y2ðtjþ1Þ ¼ uðtjþ1Þ. (20)
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Substituting y2ðtÞ given in Eq. (19) and uðtÞ given in Eq. (1) into Eq. (20) again yields a transcendent equation
in tjþ1, i.e. again real numbers of intersections between a cosine and a parabola have to be determined. The
smallest real number tjþ1 with tW j

otjþ1 is the sought time of impact. If it does not exist the rare case of a
multiple impact at the deflector occurs.

2.3. Calculation of the remaining state variables

In the preceding subsection the impact time tjþ1 at which the ball rebounds off the plunger was determined
for both possible cases of a plunger–plunger multiple impact and a plunger–deflector–plunger impact. For the
complete definition of the systems state, the calculation of the three remaining state variables is still missing.
These are the departure velocity _yþjþ1 of the ball after the impact at the plunger, the oscillator’s velocity _xþjþ1
after the impact and the displacement xjþ1 of the oscillator and the ball at impact, respectively.

For a kinematic description of the impact at the plunger the coefficient of restitution

a1 :¼ �
vþball � vþplunger

v�ball � v�plunger
¼ �

_yþjþ1 � _uþjþ1
_y2ðtjþ1Þ � _uðtjþ1Þ

(21)

is introduced. Conservation of momentum yields a second equation for the two sought velocities

m � v�ball þM � v�oscillator ¼ m � vþball þM � vþoscillator

or with the short notation

m � _yð2Þðtjþ1Þ þM � _xðtjþ1Þ ¼ m � _yþjþ1 þM � _xþjþ1, (22)

where m and M in Eq. (22) are the mass of the ball and the oscillator, respectively. The ball’s velocity before
the impact v�ball is obtained in the case of a multiple impact by _yðtjþ1Þ and in the case of an impact with the
deflector it is obtained by _y2ðtjþ1Þ.

Note further that the ball’s mass m only appears in the conservation of momentum Eq. (22) and does not
influence its equation of free motion Eq. (5). However, the oscillator’s mass M is included in its equation of
motion Eq. (8) in the case that the axial preload F A exists.

Introducing the ratio of masses

m :¼
M

m
(23)

the two Eqs. (21) and (22) which linearly depend on the sought velocities are reorganised with respect to the
velocities:

_xþjþ1 ¼
1

1þ m
½ð1þ a1Þð _yð2Þðtjþ1Þ þ _̄uðtjþ1ÞÞ þ ðm� a1Þ _xðtjþ1Þ�, ð24Þ

_yþjþ1 ¼
1

1þ m
½mð1þ a1Þð _xðtjþ1Þ � _̄uðtjþ1ÞÞ � ðma1 � 1Þ _yð2Þðtjþ1Þ�. ð25Þ

Finally, the oscillator’s displacement during impact time is obtained by substituting tjþ1 into the equation of
motion for xðtÞ, compare Eq. (9)

xjþ1 ¼ xðtjþ1Þ ¼ �
gþ F A=M

2
ðtjþ1 � tjÞ

2
þ _xþj ðtjþ1 � tjÞ þ xj. (26)

2.4. Summary of the contact-impact model

The model parameters are a1, a2, m and M, which are the coefficient of restitution between impacting mass
and the oscillator tip, the coefficient of restitution between impacting mass and deflector, the mass ratio
between the mass of the oscillator and the impacting mass, and the oscillator’s mass, respectively. The process
parameters are u0, O and F AðtÞ, corresponding to the amplitude of the oscillator tip, the circular excitation
frequency of the oscillator and the axial preload, respectively. The model’s discrete state variables are the time



ARTICLE IN PRESS
N. Neumann, T. Sattel / Journal of Sound and Vibration 308 (2007) 831–844838
of impact tj , the oscillator displacement xj at the time of impact, the velocity _xþj of the oscillator immediately
after the impact and the velocity of the impacting mass _yþj immediately after the impact.

Beginning with a state xj ¼ ½tj ;xj ; _x
þ
j ; _y
þ
j �

T at a contact between ball (which is the impacting mass) and
plunger (which is the oscillator tip), the mapping from state j to state j þ 1 is given as an implicit function

fðxj ; xjþ1Þ ¼ 0 (27)

composed of Eqs. (12), (13), (14), (20) and (24)–(26). The computation of xjþ1 is split into two steps. In the first
step the contact time tjþ1 is determined. In the second step the remaining state quantities, xjþ1; _x

þ
jþ1; _y

þ
jþ1 can be

computed. To determine the contact time tjþ1, it must be distinguished between a single or a multiple
ball–plunger impact. To do so, two time instants are computed and compared. This is on the one hand the
time

tW j
¼ tj þ

1

g
_yþj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _yþj Þ

2
þ 2gðxj � u0 cosOtjÞ

q� �
, (28)

given in Eq. (12), which contains the duration until a contact between ball and deflector occurs. On the other
hand it must be checked whether a multiple impact between ball and plunger may occur before the next
ball–deflector contact could take place. Therefore, the time instant t�jþ1 must be computed by solving

ð _yþj � _xþj Þðt
�
jþ1 � tjÞ ¼ �u0ðcosOt�jþ1 � cosOtjÞ �

F A

2M
ðt�jþ1 � tjÞ

2, (29)

as stated in Eq. (13). According to the contact condition given in Eq. (14) both time instants are compared: the
case that a ball–plunger contact is followed by a ball–deflector contact is described by Eq. (14):

tW j
ot�jþ1 _ t�jþ1 2 ; ) tjþ1 ¼ t��. (30)

Thus, the subsequent time instant tjþ1 for the next ball–plunger contact is obtained by solving Eq. (20):

�
g

2
ðt�� � tW j

Þ
2
þ _yðtþW j

Þðt�� � tW j
Þ ¼ xj � u0 cosOt��. (31)

Contrary, in case that a multiple ball–plunger contact occurs, i.e. two successive ball–plunger contacts occur
without a ball–deflector contact in-between, the corresponding instant of time is given by Eq. (15):

tW j
4t�jþ1 ) tjþ1 ¼ t�jþ1. (32)

Now, with the known discrete state tjþ1, in the second step the remaining discrete states follow in an explicit
manner from Eqs. (24)–(26)

_xþjþ1 ¼
1

1þ m
½ð1þ a1Þð _yð2Þðtjþ1Þ þ _̄uðtjþ1ÞÞ þ ðm� a1Þ _xðtjþ1Þ�, ð33Þ

_yþjþ1 ¼
1

1þ m
½mð1þ a1Þð _xðtjþ1Þ � _̄uðtjþ1ÞÞ � ðma1 � 1Þ _yð2Þðtjþ1Þ�, ð34Þ

xjþ1 ¼ �

gþ
F A

M
2
ðtjþ1 � tjÞ

2
þ _xþj ðtjþ1 � tjÞ þ xj. ð35Þ

The result of this procedure is the state vector xjþ1.

3. Analysing the vibro-impact system by applying set-oriented techniques

In order to obtain an impression on the dynamical behaviour of the system components, one possibility is to
look at a time series representation of the displacements. As an example we use the following system
parameters: u0 ¼ 10 mm, O ¼ 2p � f ¼ 2p � 20 kHz ¼ 4p104 s�1, m ¼ 200, a1 ¼ 0:9, a2 ¼ 0:7, FA �M ¼ 10m=s2,
g ¼ 9:81m=s2. As initial conditions for the state space variables t0 ¼ 0 s, _yþ0 ¼ �0:001m=s, x0 ¼ 0:001m and
_xþ0 ¼ 0m=s were used. Then xðtÞ, yðtÞ and uðtÞ were determined by iteratively applying the map given in
Eqs. (27)–(35) and using the solutions Eqs. (7), (9) and (19) of the initial value problems between every two
impact times. Fig. 4 graphs the results for a simulation time of 55ms. The oscillator—released at t0 ¼ 0 at an
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initial height of x0 ¼ 1mm—moves in the first instance under gravitational force and preload towards the
deflector. This leads to an increase of the ball’s bouncing frequency which accomplishes to keep the oscillator
at a level of xðtÞ ¼ 0:2mm for 10msoto11ms.Fig. 5 enlarges this situation. Here, multiple impacts at the
oscillator can be observed at t ¼ 9:2ms (see detail in Fig. 6) and t ¼ 10:6ms. As time increases
beyond t ¼ 11ms the oscillator–ball impacts transmit enough momentum to the oscillator to raise it to a
level of xðt ¼ 45msÞ ¼ 2:3mm as can be seen in Fig. 4. Fig. 7 shows the time series solution for a simulation
length of approx. 0:5 s. As it could be observed in laboratory experiments with a prototype of the USDC an
irregular motion of the ball and the oscillator is revealed. This refers to a chaotic nature of the time discrete
system map.

3.1. The set-oriented method

In the model based design of deterministic nonlinear dynamical systems it may be important to obtain
information about their global long-time behaviour. This may include the detection of equilibrium points,
periodic or chaotic solutions as well as their basins of attraction. Classic analysis approaches like equivalent
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Fig. 4. Time series for first 55ms of oscillator xðtÞ (dark curve) and ball yðtÞ (light grey parabolae) displacements.
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Fig. 5. Time series detail around t ¼ 10ms of oscillator xðtÞ and ball yðtÞ displacements. At the provided resolution the harmonic

oscillation of the plunger uðtÞ is also visible here.
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Fig. 6. A multiple impact at the plunger: detail of Fig. 5 around 9:17ms.
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Fig. 7. Time series for first 550ms of oscillator xðtÞ (upper envelope, dark curve) and ball yðtÞ (lower trajectory parabolae) displacements.
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linearisation or continuation methods are not applicable in case the dynamical system shows chaotic
behaviour. Also, in dynamic systems having low damping, as it is the case for example in many vibro-impact
systems, the determination of periodic solutions may be difficult.

From a topological point of view, equilibrium points as well as periodic or chaotic solutions are classified as
invariant sets. Thus, they depend on system parameters only and are invariant with respect to time. At this
point it is helpful to introduce the concept of an attractor. An attractor or an attracting set describes that part
or subset of a phase space, towards which the systems dynamics will eventually evolve. With evolution in time,
an attractor is an invariant set. That is, once the systems state is on the attractor, it will never again leave this
part of its phase space under the influence of the underlying dynamics. Thus, to find attractors is an essential
way in characterising the long-term behaviour of a dynamical system.

Assume, the dynamical system under investigation can be explicitely stated in the form

xjþ1 ¼ TðxjÞ; j ¼ 0; 1; 2; . . . ; T : Rn 7!Rn (36)
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with an initial state x0 2 Rn where xj ¼ xðtjÞ describes the system’s state at time step tj . In the case of Section
2.4 T describes the numerical solution of Eq. (27).

Considering the map T, the definitions of an invariant set and an attractor can be stated, see Ref. [5]:
�

1

in

ima
A subset A � Rn is called invariant, if TðAÞ ¼ T�1ðAÞ ¼A.

�
 If there exists a basin of attraction DA with A � DA and DA � Rn then A is called an attractor. If
DA ¼ Rn, then A is called a global attractor.

However, for the determination of an attractor, for obvious reasons it is not possible to treat the entire Rn

numerically. Instead one has to limit the state space under investigation to a subset of interest, which is called
Q � Rn. Here with the so called relative global attractor, denoted by AQ, can be introduced (see also
Refs. [9,5]): AQ—the global attractor relative to some given set Q of interest—is defined as the intersection of
all forward images of Q, or

AQðTÞ :¼
\1
k¼0

TkðQÞ. (37)

3.2. Approximating the relative global attractor

This section is going to show how the relative global attractor of some given time-discrete dynamical
system T can be numerically found. Here, the idea behind the set-oriented approach which gives the
basis for the set-oriented numerical methods will be introduced. The aim is to approximately cover
the attractor with a set of small rectangular (n-dimensional) boxes. In case of the model suggested in
this paper, n ¼ 4. The first step is the choice of a rectangular subset Q of the underlying phase space Rn.
The dynamics of the system will only be analysed within this subset. If the analysis has to be started
without any a priori knowledge of the system, it is recommended to choose a rather large section of the
phase space. Next, a box subdivision algorithm [9,10] is applied. It consists of two steps which are iteratively
repeated a finite number of times. The rectangular subset Qð0Þ ¼ Q is the initial box to begin with. The two
steps are:
(1)
T

su

g

Subdivision: Given the ith subdivision iteration step with N ðiÞ boxes B
ðiÞ
k , k ¼ 1; . . . ;N ðiÞ, and

[NðiÞ
k¼1

B
ðiÞ
k ¼ QðiÞ 	 Qð0Þ � Rn. (38)

At the next subdivision iteration step i þ 1 bisect each box B
ðiÞ
k into two smaller boxes of same size using

hyperplanes P � Rn�1. This results in 2N ðiÞ boxes with
S2N ðiÞ

k¼1 B
ðiþ1Þ
k ¼ QðiÞ.
(2)
 Selection: Determine the preimage T�1ðB
ðiþ1Þ
k Þ, k ¼ 1; . . . ; 2N ðiÞ of each of the refined boxes by applying the

inverted map. Then discard those boxes B
ðiþ1Þ
k , whose preimage does not intersect with the current

collection of boxes.1 Thus, the subset Qðiþ1Þ of the next iterative step i þ 1 follows from the remaining
boxes.
For the bisection of the current boxes B
ðiÞ
k during the subdivision step the cutting direction is cyclic

permuted along the n dimensions of the phase space. The algorithms for global numerical analysis of
dynamical systems described above have been implemented in a software package called Global Analysis of

Invariant Objects (GAIO) [9].
he existence of the inverted map T�1 is in practice not required. The selection of those refined boxes, which will be discarded, is done

ch a way, that forward-images are determined of each box. Then those boxes are discarded which do not intersect with any of the

es.
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Fig. 8. Relative global attractor AQ approximated by a box covering projected on _y– _x-plane.
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3.3. Relative global attractors of the vibro-impact system

Applying the set-oriented technique to the four-dimensional state space of the model derived in this paper
yields information on the system’s global dynamics. For one set of parameters the computation was applied to
the model. Fig. 8 shows a projection of the resulting four-dimensional box-approximated attractor on the _y– _x-
plane. Long-term trajectories in phase-space or time series analysis in the case of a non-smooth system like the
one under consideration could not reveal dynamical features and properties of the system. As a particular
information extracted from this view, it can be gained that only a limited range of velocities can occur during
the chaotic type of motion as it is covered by boxes in Fig. 8. A straight diagonal line in the figure indicates
states with _yj ¼ _xj. No states can exist on the lower right-hand side of this line, otherwise penetration between
ball and plunger would happen. It is apparent that most possible states appear in the range of negative
velocities _x. This means, during most impacts the oscillator is about to move towards the deflector. It is
possible to compute a numerical estimate for the mean momentum which gets transfered from the oscillator to
the free mass. In this way we can evaluate the quality of the specific set of parameters with which this
calculation has been performed. Fig. 9 shows a projection of the relative global attractor projected into the
_y–x– _x-space. Again the border beyond which penetration would be violated is included as a tilted plane. From
the three-dimensional view one can deduce that high velocities of the ball do only occur at very small
displacements of the oscillator, i.e. only if the gap between plunger and deflector is very small.

Summarising these results it is possible to determine, which possible states the system can accept during its
long-term behaviour without any long-term integration of the map which can be erroneous.

4. Outlook

The efficiency of the method encourages further analysis. Analysing the model for a large set of parameter
combinations shall reveal the nature of the underlying dynamics, and shall indicate whether the performance



ARTICLE IN PRESS

−200

−100

0

100

0

0.002

0.004

0.006

0.008

0.01

−40

−20

0

20

40

60

80

100

x+ j

x
j

y
+

j

Fig. 9. Relative global attractor AQ approximated by a box covering projected into _y–x– _x-space.

N. Neumann, T. Sattel / Journal of Sound and Vibration 308 (2007) 831–844 843
of a scaling up of the drill’s dimensions is technologically feasible. Therefore, statistical measures based on the
energy transfer from the piezoelectric actuator to the drill stem must be defined and combined with a material
removal model. Furthermore, the modification of the GAIO tool [9] to determine basins of attraction is
important to evaluate the robustness of operation of the drilling device. Beyond the theoretical work a
comparison of measured time series data with the simulated data is planned, e.g. by determining correlation
coefficients of chaotic time series.
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