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Abstract

The bifurcation resulted from moving force may lead to instability for the system. Based on time delay feedback

controller, a nonlinear beam under moving load is discussed in the case of the primary resonance and the 1/3 subharmonic

resonance. The bifurcation may be eliminated or the bifurcation point’s position may be changed. The perturbation

method is used to obtain the bifurcation equation of the nonlinear dynamic system. The result indicates time delay

feedback controller may work well on this system, but the selection of a proper time delay and its coefficient may depend

on the engineering condition. This paper presents some theoretical results.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Beams are widely used in machines, architectural structures and aircrafts. The dynamic behavior becomes
more complicated due to edging operating environments and more severe dynamic loads. Therefore, proper
active control is essential in order to ensure the beam structure stays will constrained. Besides, time delay
always exists in feedback control loop due to sensing or computation process. The problem of the system’s
dynamic stability, which is caused by the time delay effect, has made the system more controllable and
unstable. Thus, the issue of how to enhance the system’s robustness to the time delay effect is worth further
study. In order to obtain a proper control force exerted on the system, accurate and optimal computation is
necessary. However, it will cause time delay in the system in the actuating force. The results will not match the
system’s need on real time. Therefore, the need for a methodology that is simple in calculation and effective in
control is critical.

During the 20th century, many studies were carried out to analyze the dynamics of structures under moving
loads. The interest was originally oriented toward bridges and railways to study the conditions under which
these structures are stable [1,2]. The principal results show that compared to a beam under a static load, the
load inertia modifies the beam dynamics in two ways: the inertia renders the beam deflection higher, and
resonance is reached at a lower moving load velocity [3,4]. Dugush and Eisenberger [5] applied modal analysis
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Dynamic beam structure.
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in combination with integral transformation methods to determine the dynamic deflection and the internal
forces of a multi-span non-uniform beam under moving loads. They showed that a small number of mode
shapes are required to obtain accurate solutions. Zhu and Law [6] studied the dynamic loading on a multi-lane
continuous bridge due to vehicles moving on top of the bridge deck and highlighted the influence of the
transverse vehicle position and road surface roughness on the dynamic impact factor, defined as the ratio of
the maximum dynamic response to the maximum static response. Gbadeyan and Oni [7] developed a general
approach to determine solutions of both moving force and moving mass problems for both Euler–Bernoulli
and Rayleigh beams having any of the classical end-support conditions.

Recently, stabilization of systems with time delay has received considerable attention. Several linear state
feedback controllers have been proposed by Su [8], Chou [9] and Shen [10]. The fundamental designs are based
on (1) pole placement approach, (2) Lyapunov approach, and (3) linear quadratic regulator approach. In these
cases, time delay can be the source of instability. Basharkhah and Yao [11] found that time delay could make
the control system lose its reliability. In 1985, Abdel-Roham [12] applied the pole placement method to
compensate for the system’s time delay. Lo’pez-Almansa and Rodellar [13] applied independent mode space
control for predictive control, and their experiments showed that when the number of sensors and actuators is
less than the system’s mode number, the control system becomes unstable if the time delay effect is taken into
account.

In this paper, a dynamic beam structure under active control by a servomechanism is shown in Fig. 1.
For this nonlinear dynamic system, moving fore may lead to bifurcation and the bifurcation resulted from

moving force may lead to instability for the system. So studying the bifurcation control is meaningful. In this
paper, two cases, the primary resonance and the 1/3 subharmonic resonance are discussed theoretically.

2. Equations of motion

In discussing beams, attention is restricted to planar and non-rotating motions. The equations of motion are
obtained by a combination of the inertial effect of the moving load and the nonlinear effect in the beam
dynamics [14]. Assuming that plane sections remain plane and material meets linear stress–strain law, the
equations of motion governing the nonlinear dynamics of a beam with uniform shape subjected to a moving
load P and velocity v are given by

rSutt � ESuxx ¼
1

2
ðESÞ

q
qx
ð1� 2uxÞy

2
x

� �
, (1)

rSytt þ EIyxxxx þ cyt ¼ Pdðx� vtÞ þ ES
q
qx
ðeyxÞ þM0d

0
ðx� aÞ �M0d

0
ðx� Lþ aÞ, (2)

where e ¼ ux � u2
x þ 1=2y2

x, E is Young’s modulus of the beam, r is the beam density, S and I denote the area
and inertia moment the beam cross-section, respectively. y(x, t) is the vertical deflection of the beam, while u is
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the axial displacement, y and u depend on the spatial coordinate x and the time t. d is Dirac delta function and
d0 is the derivative. Control torque M0 is exerted by the servomechanism, installed beneath the central portion
of the beam at a distance a measured from both end supports, which tends to balance the bending
phenomenon or control the nonlinear dynamic characters caused by the moving load. When the
servomechanism is in action, the actuator will increase or decrease the spring displacement according to the
control system’s needs. The terms M0d

0
ðx� aÞ �M0d

0
ðx� Lþ aÞ are the control forces produced by

servomechanism. The active control torque M0 is designated as

M0 ¼ lKDðtÞ ¼ Kl uðtÞ þ l
qyða; tÞ

qx
� l

qyðL� a; tÞ

qx

� �
, (4)

where K is the stiffness of the spring, u(t) is the spring displacement caused by servomechanism and D(t) is the
displacement of the spring. Where u(t) ¼ 0 in Eq. (4) correspond to a passive structure control system.
Assuming that the longitudinal inertial terms utt and u2

x are negligible and using the assumed mode methods,
Eqs. (1) and (2) can be reduced to

€Y jðtÞ þ 2xoj
_Y jðtÞ þ o2

j Y ðtÞ

¼

2P
mL

sin jotþ j2p4r2

L4 Y j

P1
k¼1

Y 2
kk2; j ¼ 2; 4; . . .

2P
mL

sin jotþ j2p4r2

L4 Y j

P1
k¼1

Y 2
kk2
�

4jpM0ðtÞ

mL2 sin jpa
L
; j ¼ 1; 3; . . .

8>>><
>>>:

(5)

whereY jðtÞ ¼ ð2=LÞ
R L

0 yðx; tÞ sinðjpx=LÞdx is the beam displacement of the jth mode, x is the damping ratio,

oj ¼ ðjp=LÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
EI=m

p
is the natural angular frequency of the jth mode, o ¼ pv=L is the natural angular

frequency, m ¼ rS and

M0ðtÞ ¼ Kl uðtÞ þ 2L
X1

j¼1;3;...

jp
L
cos

jpa

L
Y jðtÞ

" #
. (6)

Since the high order modes of motion contribute little to bending displacement and the nonlinear
characters, only the basic mode is considered. Then the equation of motion can be written as

€Y ðtÞ þ o2
0Y ðtÞ þ �m _Y ðtÞ ¼ �f sin otþ �aY 3ðtÞ þ �puðtÞ, (7)

where

o2
0 ¼ o2

1 � 2pKl cos
pa

L
; �m ¼ 2xo1; �f ¼

2P

mL
; �a ¼

p4r2

L4
; r2 ¼

E

S
.

In Eq. (7), u(t) is the active control function, which can be designated or be designed for needs. When the
function is designed as displacement time-delay feedback control, the simplest form can be written as
uðtÞ ¼ Y ðt� tÞ. Where t is the time delay, p40 corresponding to positive feedback and po0 corresponding to
negative feedback. So the equation of motion with displacement feedback can be written as

€Y ðtÞ þ o2
0Y ðtÞ þ �m _Y ðtÞ ¼ �f sin otþ �aY 3ðtÞ þ �pY ðt� tÞ. (8)

In the following sections, the primary and 1/3 subharmonic resonances will be, respectively, studied by using
the method of multiple scales.
3. Primary resonance

By using the method of multiple scales [15–17], the perturbation solution of Eq. (8) is assumed as follows:

Y ¼ Y 0ðT0;T1Þ þ �Y 1ðT0;T1Þ þ . . . , (9)
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where T0 ¼ t, T1 ¼ �t. In the case of primary resonance, we let

o0 ¼ oþ �s. (10)

Hence o2
0 ¼ o2 þ 2�osþ �2s2, s is the detuning parameter. Substituting Eqs. (9) and (10) into Eq. (8) and

equating coefficients of like powers of e yield the following equations:

D2
0Y 0 þ o2Y 0 ¼ 0, (11)

D2
0Y 1 þ o2Y 1 ¼ �2D0D1Y 0 � 2osY 0 � mD0Y 0 þ aY 3

0 þ f sinoT0 þ pY 0ðt� tÞ, (12)

The solution of Eq. (11) is written as follows:

Y 0 ¼ AðT1Þe
ioT0 þ ĀðT1Þe

�ioT0 . (13)

Substituting Eq. (13) into Eq. (12) we obtain

D2
0Y 1 þ o2Y 1 ¼ �2ioD1A� 2osA� imoAþ 3aA2Ā�

f

2
iþ pðcosot� i sinotÞA

� �
eioT0 þ aA3e3ioT0 þ cc:

(14)

Eliminating secular terms from Eq. (14), we have

�2ioD1A� 2osA� imoAþ 3aA2Ā�
f

2
iþ pðcosot� i sinotÞA ¼ 0. (15)

Let A ¼ aeij. Substituting it into Eq. (15) and separating the real and imaginary part yields the averaged
equation as follows:

da

dT1
¼ �

1

2
mþ

p

o
sinot

� �
a�

1

4o
f cosj,

a
df
dT1
¼ s�

p

2o
cosot

� �
a�

3a
2o

a3 þ
1

4o
f sinj. ð16Þ

For the case of da=dT1 ¼ dj=dT1 ¼ 0, there is steady-state response in the system (8). The result is

�
1

2
mþ

p

o
sinot

� �
a�

1

4o
f cosj ¼ 0,

s�
p

2o
cosot

� �
a�

3a
2o

a3 þ
1

4o
f sinj ¼ 0. ð17Þ

Eliminating j from Eq. (17), we obtain the bifurcation equation

1

4
m2ea2 þ se �

3a
2o

a2

	 
2

a2 ¼
1

16o2
f 2, (18)

where

me ¼ mþ
p

o
sinot; se ¼ s�

p

2o
cosot. (19)

Obviously, the amplitude of the response is a function of the external detuning, feedback with time delay
and the amplitude of the excitation.

The peak amplitude of the primary resonance, obtained from Eq. (18), is given by

ap ¼
f

2jmejo
. (20)

The real solution a of Eq. (18) determines the primary resonance response amplitude. There can be
either one or three real solutions. Three real solutions exist between two points of vertical tangents
(saddle-node bifurcation), which are determined by differentiation of Eq. (18) implicitly with respect to a2.
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This leads to the condition

s2e �
6

o
aa2se þ

27

4o2
a2a4 þ

1

4
m2e ¼ 0. (21)

With solutions

s�e ¼
3a
o

a2 �
1

2

9

o2
a2a4 � m2e

	 
1=2

. (22)

For the case ð9=o2Þa2a44m2e , there exists an interval s�oseosþ in which three real and positive solutions a

of Eq. (18) exist. In the limit ð9=o2Þa2a4! m2e this interval shrinks to the point se ¼ ð3=oÞaa2. The critical
force amplitude obtained from Eq. (18) is

f crit ¼ 2omeð5ome=3aÞ
1=2. (23)

For fof crit there is only one solution while for f4f crit there are three. The stability of the solutions is
determined by the eigenvalues of the corresponding Jacobian matrix of Eq. (16). The corresponding
eigenvalues are the root of

l2 þ melþ
1

4
m2e þ se �

3

2o
aa2

	 

se �

9

2o
aa2

	 

¼ 0. (24)

It turns out that the sum of the two eigenvalues is �me. For the uncontrolled system, the sum of two
eigenvalues is �m, which is negative. The addition of the feedback gains and time-delays varies the sum of the
two eigenvalues. Three cases such as me40, me ¼ 0 and meo0 may occur depending on the values of the
feedback with time-delays. If the feedback with time-delays are chosen in such a way that the sum of the two
eigenvalues is positive (meo0), at least one of the eigenvalues will always have a positive real part. The system
will be unstable. The selection of the feedback with time-delays is not possible. On the other hand, if the sum
of the two eigenvalues is zero (me ¼ 0) by a certain value of the feedback with time-delays, a pair of purely
imaginary eigenvalues and hence a Hopf bifurcation may occur. Anyhow, the above two cases should be
avoided from the viewpoint of bifurcation control. The feedback should be implemented at least in such a way
that me40 is guaranteed. Under such feedback gains and time-delays, the sum of two eigenvalues is always
negative, and accordingly, at least one of the two eigenvalues will always have a negative real part. The other
eigenvalues is zero when

m2e þ se þ
3

2o
aa2

	 

se þ

9

2o
aa2

	 

¼ 0. (25)

Based on the before-mentioned analyses, the sufficient condition of guaranteeing the system stability is
letting me satisfying

9

o2
aa4 � m2eo0; me40. (26)

As a case, the parameters m, o, a are confirmed as m ¼ 0:2, o ¼ 1, a ¼ 0:4. The curves relate with time delay
are obtained and figured in Fig. 2.

In Fig. 2(a), assumed amplitude of excitation f ¼ 0:1, and in Fig. 2(b), assumed detuning parameter s ¼ 0.
The thin line is corresponding to origin system and dashed line corresponding controlled system with time
delay, time delay t ¼ p=2. Obviously, when t is assumed some values, the bifurcation can be eliminated or the
bifurcation point be changed. Fig. 2(c) and (d) are corresponding to the critical force amplitude and the peak
of the primary resonance changing with time delay t. Fig. 2(c) and (d) indicate that the change rule of the
critical force amplitude and the peak of the primary resonance is not whole conformable. So the proper value
of t may take into account the requirement of engineering.
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Fig. 2. The curves relate with time delay.
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4. Subharmonic resonance

For the case of subharmonic resonance, it is assumed that

F ¼ �f ; o0 ¼
1

3
oþ �s. (27)

Substituting Eqs. (9) and (27) into Eq. (8) and equating coefficients of like powers of e yield the following
equations:

D2
0Y 0 þ

1

9
o2Y 0 ¼ F sin oT0, (28)

D2
0Y 1 þ

1

9
o2Y 1 ¼ �2D0D1Y 0 �

2

3
osY 0 � mD0Y 0 þ aY 3

0 þ pY 0ðt� tÞ. (29)

The solution of Eq. (28) is written as follows:

Y 0 ¼ AðT1Þe
ið1=3ÞoT0 �

9

16
F ieioT0 þ cc: (30)
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Substituting Eq. (30) into Eq. (29) we obtain

D2
0Y 1 þ

1

9
o2Y 1 ¼ �

2

3
ioD1A�

2

3
osA�

i

3
moAþ 3aA2Ā

�
�

243

128
aAF 2

�
27

16
iaĀ

2
F � p cos

1

3
ot� i sin

1

3
ot

	 

A

�
ei=3oT0 þNSTþ cc: ð31Þ

Eliminating secular terms from Eq. (31), we have

�
2

3
ioD1A�

2

3
osA�

i

3
moAþ 3aA2Ā�

243

128
aAF 2

�
27

16
iaĀ

2
F � p cos

1

3
ot� i sin

1

3
ot

	 

A ¼ 0. ð32Þ

Let A ¼ aeij. Substituting it into Eq. (32) and separating the real and imaginary part yield the average
equation as follows:

da

dT1
¼ �

1

2
mþ

3p

o
sin

1

3
ot

	 

a�

81

32
aFa2 cos 3j,

a
df
dT1
¼ s�

3p

2o
cos ot

	 

aþ

729

256
aF 2a�

9a
2o

a3 �
81

32
aFa2 sin 3j. ð33Þ

For the case of da=dT1 ¼ dj=dT1 ¼ 0, there is steady-state subharmonic resonance response in the
system (8). The result is

�
1

2
mþ

3p

o
sin

1

3
ot

	 

a�

81

32
aFa2 cos j ¼ 0,

s�
3p

2o
cos ot

	 

aþ

729

256
aF2a�

9a
2o

a3 �
81

32
aFa2 sin j ¼ 0. ð34Þ

Eliminating j from Eq. (34), we obtain the bifurcation equation

1

4
m2ea2 þ se þ

729

256
aF 2 �

9a
2o

a2

	 
2

a2 ¼
81

32
aF

	 
2

a4, (35)

where

me ¼ mþ
3p

o
sin

1

3
ot; se ¼ s�

3p

2o
cos

1

3
ot. (36)
Fig. 3. The curves of subharmonic bifurcation.
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There are two possibilities: either a trivial solution a ¼ 0, or non-trivial solutions, which are given by

1

4
m2e þ se þ

729

256
aF2 �

9a
2o

a2

	 
2

¼
81

32
aF

	 
2

a2. (37)

The steady-state solutions of subharmonic resonance response is determined by the eigenvalues of the
characteristic equation, which are the roots of

l2 þ melþ
1

4
m2e þ se þ

729

256
aF 2 �

9

2o
aa2

	 

se þ

729

256
aF2 �

27

2o
aa2

	 

¼ 0. (38)

As a case, the curves of Fig. 3 are corresponding to the system with parameters m ¼ 0:2, o ¼ 3, a ¼ 0:4.
Fig. 3 indicates that the subharmonic bifurcation cannot be eliminated by changing time delay. For this case,
we can only chose the proper value of t to change the bifurcation point’s position.

5. Conclusion

The motion equation for governing the nonlinear dynamics of a beam with uniform shape subjected to a
moving load and velocity is set up. The bifurcation resulted from moving force may lead to instability for the
system. Based on time delay feedback controller, the bifurcation may be eliminated or the bifurcation point’s
position may be changed. The result about the primary resonance and the 1/3 subharmonic resonance
indicates time delay feedback controller may work well on this system, but the detailed chosen for proper time
delay and its coefficient may reckon on the engineering requirement.
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