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Abstract

Quadratic pencils, l2M þ lC þ K , where M, C, and K are n� n real matrices with or without some additional properties

such as symmetry, connectivity, bandedness, or positive definiteness, arise in many important applications. Recently an

existence theory has been established, showing that almost all n-degree-of-freedom second-order systems can be reduced to

n totally independent single-degree-of-freedom second-order subsystems by real-valued isospectral transformations. In

contrast to the common knowledge that generally no three matrices can be diagonalized simultaneously by equivalence

transformations, these isospectral transformations endeavor to maintain a special linearization form called the Lancaster

structure and do break down M, C and K into diagonal matrices simultaneously. However, these transformations depend

on the matrices in a rather complicated way and, hence, are difficult to construct directly. In this paper, a second part of a

continuing study, a closed-loop control system that preserves both the Lancaster structure and the isospectrality is

proposed as a means to achieve the diagonal reduction. Consequently, these transformations are acquired.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Given n� n real matrices M0, C0 and K0, the task of finding scalars l 2 C and nonzero vectors u 2 Cn

satisfying

QðlÞu ¼ 0, (1)

where

QðlÞ:¼Qðl;M0;C0;K0Þ ¼ l2M0 þ lC0 þ K0, (2)

is known as the quadratic eigenvalue problem. The scalars l and the corresponding vectors x are
called, respectively, eigenvalues and eigenvectors of the quadratic pencil QðlÞ. It is known that the
quadratic eigenvalue problem possesses 2n eigenvalues over the complex field, provided the leading
coefficient matrix M is nonsingular. The eigeninformation ðl; uÞ is critical to the understanding of the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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dynamical system

M0 €xþ C0 _xþ K0x ¼ f ðtÞ, (3)

which arises frequently in many important applications, including applied mechanics, electrical oscillations,
vibro-acoustics, fluid mechanics, and signal processing.

There are extensive discussions about the quadratic eigenvalue problems. Both the theory and the
numerical methods are fairly complete. See, for example, the review article [1], the books [2,3], the recent
application [4], and the references contained therein. One principal tool used for analyzing quadratic
eigenvalue problems is to linearize a quadratic pencil to a linear pencil. The linearization may appear in
several different forms among which one is of particular interest to us—the so-called Lancaster structure in the
linear pencil

LðlÞ:¼Lðl;M0;C0;K0Þ ¼
C0 M0

M0 0

" #
lþ

K0 0

0 �M0

" #
. (4)

The equivalence between QðlÞ and LðlÞ can be seen from the fact that

C0 M0

M0 0

" #
lþ

K0 0

0 �M0

" # !
u

v

� �
¼ 0 (5)

if and only if

ðlC0 þ K0Þuþ lM0v ¼ 0,

lM0u�M0v ¼ 0. (6)

Indeed, if M is nonsingular, then we know further that v ¼ lu. Obviously, the Lancaster structure implies that
if QðlÞ is self-adjoint, then so is LðlÞ.

The main reason that the Lancaster structure is important to us is because it has been proved recently that
for almost all quadratic pencils there exists real-valued 2n� 2n real matrices P‘ and Pr such that

P>‘ LðlÞPr ¼ Lðl;MD;CD;KDÞ ¼
CD MD

MD 0

" #
lþ

KD 0

0 �MD

" #
, (7)

where MD;CD;KD are all real-valued n� n diagonal matrices [5–7]. In other words, there exists a real-valued
equivalence transformation which not only preserves the Lancaster structure but also transforms the
pencil LðlÞ isospectrally into a pencil with diagonal blocks. Note that the eigenstructure is equivalent in the
sense that

ðl2MD þ lCD þ KDÞz ¼ 0 3
u

lu

� �
¼ Pr

z

lz

� �
.

Such a transformation is significant in that it links the dynamical behavior of a multiple-degree-of-freedom
system directly to that of a system consisting of n-independent single-degree-of-freedom subsystems. It breaks
down the interlocking connectivity in the original system into totally disconnected subsystems while preserving
the entire spectral properties. Thus it will be of great value in practice if the transformations P‘ and Pr can be
found from any given pencil. The theory of existence ofP‘ andPr in Refs. [5,6] was established on the basis of
the complete spectral information of LðlÞ. To construct P‘ and Pr from the availability of spectral
information certainly is impractical. The focus of this paper is to constructP‘ andPr numerically by structure
preserving isospectral flows without knowing the spectral information.

The isospectral transformation from the triplet ðM0;C0;K0Þ to the triplet ðMD;CD;KDÞ is not an ordinary
equivalence transformation [9–11]. It depends nonlinearly on matrices ðM0;C0;K0Þ. To see this relationship,
denote

P‘ ¼
‘11 ‘12

‘21 ‘22

" #
; Pr ¼

r11 r12

r21 r22

" #
, (8)



ARTICLE IN PRESS
M.T. Chu, N. Del Buono / Journal of Sound and Vibration 309 (2008) 112–128114
where each ‘ij or rij is an n� n matrices. In order to maintain the Lancaster structure in the product
P>‘ LðlÞPr, it is necessary that the following five equations hold:

�‘>11K0r12 þ ‘
>
21M0r22 ¼ 0,

�‘>12K0r11 þ ‘
>
22M0r21 ¼ 0,

‘>12C0r12 þ ‘
>
22M0r12 þ ‘

>
12M0r22 ¼ 0,

‘>11C0r12 þ ‘
>
21M0r12 þ ‘

>
11M0r22 ¼ ‘

>
12C0r11 þ ‘

>
22M0r11 þ ‘

>
12M0r21

¼ � ‘>12K0r12 þ ‘
>
22M0r22. ð9Þ

Additionally, the matrices P‘ and Pr must be such that the left-hand sides of the following three expressions:

�‘>12K0r12 þ ‘
>
22M0r22 ¼MD,

‘>11C0r11 þ ‘
>
21M0r11 þ ‘

>
11M0r21 ¼ CD,

‘>11K0r11 � ‘
>
21M0r21 ¼ KD, (10)

are diagonal matrices. The conditions equations (9) and (10) together constitute a homogeneous second-degree
polynomial system of 8n2 � 3n equations in 8n2 unknowns. It is not obvious how the system could be solved
analytically. The nature of the underdetermined system does suggest, however, that there is plenty of leeway to
choose the transformation matrices P‘ and Pr. In particular, the ‘‘orbit’’ of LðlÞ under (Lancaster) structure
preserving equivalence transformations is a nontrivial manifold on which perhaps a smooth path connecting
ðM0;C0;K0Þ to ðMD;CD;KDÞ can be defined.

A special kind of isospectral flow preserving the Lancaster structure has been proposed in Ref. [8]. What is
needed is a more specific control of the flow so that it starts from ðM0;C0;K0Þ and moves toward
ðMD;CD;KDÞ.

Our contribution in this paper is that we describe a closed-loop feedback control system to drive such a
flow. The resulting dynamical system can be tracked numerically. We hasten to point out that our approach,
with its slow convergence and costly overhead, is far from being an ideal numerical algorithm. Nonetheless,
our approach puts forth one means by which second-order systems can be transformed isospectrally toward
the diagonal form without the a priori knowledge of spectral information.

2. Isospectral flow

Our closed-loop feedback control system is built upon the structure preserving isospectral flows proposed in
Ref. [8]. For later reference, we briefly review what has been introduced in Ref. [8]. It has to be stressed that
the flows described in this section can only maintain the Lancaster structure and the isospectrality. The flows
will have to be further refined in order to acquire the additional capability of reducing matrices to diagonals.

For convenience, denote the Lancaster pair in Eq. (4) by ðA0;B0Þ, that is,

A0 ¼
K0 0

0 �M0

" #
; B0 ¼

C0 M0

M0 0

" #
. (11)

We are interested in characterizing two one-parameter families of structured preserving transformations
TLðtÞ;TRðtÞ 2 R

2n�2n, with t 2 R as the parameter and TLð0Þ ¼ TRð0Þ ¼ I2n. Let the actions of these families
of transformations on ðA0;B0Þ be denoted by

AðtÞ ¼ T>L ðtÞA0TRðtÞ,

BðtÞ ¼ T>L ðtÞB0TRðtÞ, (12)

respectively. Clearly, so long as TLðtÞ and TRðtÞ are nonsingular, ðAðtÞ;BðtÞÞ is isospectral to ðA0;B0Þ. A special
class of transformations is to require that matrices TLðtÞ and TRðtÞ satisfy, respectively, the following
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differential systems:

dTLðtÞ

dt
¼ TLðtÞLðtÞ ¼ TLðtÞ

L11ðtÞ L12ðtÞ

L21ðtÞ L22ðtÞ

" #
,

dTRðtÞ

dt
¼ TRðtÞRðtÞ ¼ TRðtÞ

R11ðtÞ R12ðtÞ

R21ðtÞ R22ðtÞ

" #
, (13)

where each LijðtÞ or RijðtÞ, i; j ¼ 1; 2, is a one-parameter n� n real-valued matrix yet to be defined. The task
now is to impose conditions on the matrices LðtÞ and RðtÞ so that the resulting ðAðtÞ;BðtÞÞ maintains the
Lancaster structure for every t.

For convenience, denote the differentiation dg=dt of any function gðtÞ by the symbol _g. It is easy to see from
Eq. (12) that

_A ¼ _T>L A0TR þ TLA0
_TR ¼L>Aþ AR,

_B ¼ _T>L B0TR þ TLB0
_TR ¼L>Bþ BR.

It is interesting to note that these differential equations are similar to those discussed in Ref. [12] which leads
to a Lie–Poisson system. By insisting that ðAðtÞ;BðtÞÞ maintains the Lancaster structure, that is,

AðtÞ ¼
KðtÞ 0

0 �MðtÞ

" #
; BðtÞ ¼

CðtÞ MðtÞ

MðtÞ 0

" #
, (14)

we see that

_K 0

0 � _M

" #
¼

L>11K þ KR11 �L>21M þ KR12

L>12K �MR21 �L>22M �MR22

" #
,

_C _M
_M 0

" #
¼

L>11C þ CR11 þ L>21M þMR21 L>11M þMR22 þ CR12

L>12C þ L>22M þMR11 L>12M þMR12

" #
. (15)

It follows that the following five equations must be satisfied by the matrices Lij and Rij for i; j ¼ 1; 2:

KR12 � L>21M ¼ 0,

L>12K �MR21 ¼ 0,

L>12M þMR12 ¼ 0,

L>11M � L>22M þ CR12 ¼ 0,

MR11 �MR22 þ L>12C ¼ 0. (16)

The conditions in Eq. (16) constitute a homogeneous linear system of 5n2 for the 8n2 entries in the matrices
Lij and Rij , i; j ¼ 1; 2. It is a much easier system than the nonlinear system equations (9) and (10). Its solution
space contains 3n2 free parameters which we can identify as three n� n matrix parameters. The
transformations TLðtÞ and TRðtÞ can now be characterized in terms of these three free matrix parameters.

In fact, by assuming that the matrix MðtÞ is invertible, we may set forth the first matrix parameter DðtÞ 2

Rn�n by requiring that the relationship

R12ðtÞ ¼ �DðtÞMðtÞ

holds between R12ðtÞ and MðtÞ. It is not difficult to derive after some algebraic manipulations that the
solutions to the system equation (16) can now be identified as follows:

R12 ¼ �DM,
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R21 ¼ DK ,

L12 ¼ D>M>,

L21 ¼ �D>K>, (17)

and

L11 � L22 ¼ D>C>,

R11 � R22 ¼ �DC. (18)

Now that we have obtained these formulas, it is worth mentioning in retrospect that even without the
assumption that MðtÞ is nonsingular the matrices defined by Eqs. (17) and (18) satisfy the system (16). Note
also that implicit in Eq. (18) are the other two free matrix parameters. There are several possible ways to
arrange the diagonal blocks of LðtÞ and RðtÞ. The choice suggested in Ref. [8] is to define LðtÞ and RðtÞ
according to the following formulas:

L ¼
D> 0

0 D>

" # C>

2
M>

�K> �
C>

2

26664
37775þ N>L 0

0 N>L

" #
,

R ¼
D 0

0 D

� � �C

2
�M

K
C

2

2664
3775þ NR 0

0 NR

" #
, (19)

where the matrices DðtÞ, NLðtÞ and NRðtÞ are free matrix parameters in Rn�n. Upon substituting the blocks of
L and R into the differential systems equation (15), we obtain a flow of the triplet ðMðtÞ;CðtÞ;KðtÞÞ which is
governed by the autonomous system:

_K ¼ 1
2
ðCDK � KDCÞ þN>L K þ KNR,

_C ¼ ðMDK � KDMÞ þN>L C þ CNR,

_M ¼ 1
2
ðMDC � CDMÞ þN>L M þMNR. (20)

We could also choose to define LðtÞ and RðtÞ, for example, in the following way:

L ¼
D> 0

0 D>

" #
0 M>

�K> C>

" #
þ

NL 0

0 NL

" #
,

R ¼
D 0

0 D

� �
0 �M

K C

� �
þ

NR 0

0 NR

" #
. (21)

The corresponding differential system for ðMðtÞ;CðtÞ;KðtÞÞ becomes somewhat simpler:

_K ¼ N>L K þ KNR,

_C ¼ ðMDK � KDMÞ þN>L C þ CNR,

_M ¼ ðMDC � CDMÞ þN>L M þMNR. (22)

It is interesting to note that simplicity does not necessarily mean benefit because the first equation in Eq. (22)
implies KðtÞ is an equivalent transformation of K0, which might limit the way KðtÞ can change. We shall
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concentrate on the system defined in Eq. (20) henceforth. The main question now is how to exploit the three
free matrix parameters D, NL, and NR so that the resulting flow behaves in some desirable ways.

3. Selecting free parameters

In this section, we demonstrate some of the possible choices of the three parameters in the system equation
(20). Ultimately, we want to control the free parameters D, NL and NR in such a way that the isospectral flow
ðMðtÞ;CðtÞ;KðtÞÞ is driven into a block diagonal triplet ðMD;CD;KDÞ.

3.1. Maintaining symmetry

In additional to the Lancaster structure, it might be desirable to maintain the symmetry in the initial value
ðM0;C0;K0Þ, if there is any, throughout the flow ðMðtÞ;CðtÞ;KðtÞÞ for all t. This task can be accomplished by
selecting the free matrix parameters with proper symmetric properties. Several sufficient conditions have
already been mentioned in Ref. [6]. For example, by assuming NRðtÞ ¼ NLðtÞ, the symmetry specified for the
matrix parameter D in Table 1 will preserve the symmetry for the flow ðMðtÞ;KðtÞ;CðtÞÞ defined by the
dynamical system equation (20).

3.2. Nahm equations

Another choice of the free matrix parameters might be worth mentioning because it makes a remarkable
connection to the Nahm equations [13,14]. More specifically, if we choose NRðtÞ ¼ NLðtÞ ¼ NðtÞ to be an
arbitrary one-parameter flow and define

DðtÞ:¼FðtÞCðtÞ, (23)

where FðtÞ and CðtÞ are solution flows to the linear system

_F ¼ �NF,

_C ¼ �CN>, (24)

then DðtÞ satisfies the differential equation

_D ¼ �ND�DNT (25)

and remains skew-symmetric if Dð0Þ is skew-symmetric. In this way, we know from Table 1 that the triplet
ðMðtÞ;CðtÞ;KðtÞÞ defined by Eq. (20) remains symmetric if ðM0;C0;K0Þ is symmetric to begin with. Using FðtÞ
and CðtÞ to define the equivalent transformation:eMðtÞ ¼ CðtÞMðtÞFðtÞ; eCðtÞ ¼ CðtÞCðtÞFðtÞ; eKðtÞ ¼ CðtÞKðtÞFðtÞ, (26)

where ðMðtÞ;CðtÞ;KðtÞÞ satisfies the system equation (20), we find from straightforward substitution that the
transformed triplet ð eMðtÞ; eCðtÞ; eKðtÞÞ satisfies the differential system

_eM ¼ ½ eM; 1
2
eC�,
Table 1

Symmetry preserving of ðMðtÞ;CðtÞ;KðtÞÞ by DðtÞ, if NRðtÞ ¼ NLðtÞ

DðtÞ MðtÞ CðtÞ KðtÞ

Skew-symmetric Symmetric Symmetric Symmetric

Symmetric Symmetric Skew-symmetric Symmetric

Symmetric Skew-symmetric Skew-symmetric Skew-symmetric

Skew-symmetric Skew-symmetric Symmetric Skew-symmetric
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_eC ¼ ½ eM ; eK �,
_eK ¼ ½1

2
eC; eK �, (27)

where ½X ;Y �:¼XY � YX represents the Lie bracket operator. It we define

U :¼
Mffiffiffi
2
p þ

C

2
þ

Kffiffiffi
2
p ,

V :¼i
C

2
þ i

Kffiffiffi
2
p ,

W :¼i
Mffiffiffi
2
p þ i

C

2
, (28)

with i ¼
ffiffiffiffiffiffiffi
�1
p

, then it is not difficult to see that the system equation (27) is equivalent to the system [14]

_U ¼ ½V ;W �,

_V ¼ ½W ;U �,

_W ¼ ½U ;V �, (29)

which is known as the Nahm equations arising in the study of Yang–Mills theory. On the other hand, observe

that the solution flow ð eMðtÞ; eCðtÞ; eKðtÞÞ in Eq. (27) depends only on the initial value ð eMð0Þ; eCð0Þ; eKð0ÞÞ and is
independent of how FðtÞ and CðtÞ at any other t. In other words, the selection of NðtÞ will not affect the
dynamics of system equation (27). Though interesting, this choice of free matrix parameters might not be
helpful in diagonalizing the triplet ðM0;C0;K0Þ.

3.3. Gradient flow

One possible way to force the flow ðMðtÞ;CðtÞ;KðtÞÞ to converge to the diagonal form ðMD;CD;KDÞ is to
construct the structure preserving isospectral flow ðAðtÞ;BðtÞÞ defined in Eq. (14) in such a way that it is also a
gradient flow for a certain properly selected objective function. To see how this can be achieved, we outline the
idea below.

Consider the following open-loop optimal control problem:

minx2Rn f ðxÞ,

subject to _x ¼ GðxÞu; xð0Þ ¼ x0, ð30Þ

where the objective function f : Rn ! R is sufficient smooth, G : Rn ! Rn�p is piecewise continuous with
rankðGðxÞÞ ¼ p, and u ¼ uðtÞ 2 Rp is the control. The problem as is given is not well-posed in that there are
infinitely many ways to administer the control. Some additional constraints must be imposed on the
admissible control uðtÞ. We shall not pursue that avenue in this discussion. For our application, however, we
notice that without the differential equation constraint, a natural direction for x to move to minimize f ðxÞ is
the steepest descent direction. Now that the motion of x is governed by the differential system equation (30),
perhaps one way we can do is to choose the control u so that the vector _x is as close to �rf ðxÞ as possible. This
amounts to the selection of the least-squares solution u defined by

uðtÞ ¼ �GðxðtÞÞyrf ðxðtÞÞ, (31)

where GðxÞy stands for the Moore–Penrose generalized inverse of GðxÞ. In this way, the closed-loop dynamical
system,

_x ¼ �GðxÞGðxÞyrf ðxÞ, (32)

defines a descent flow xðtÞ for the objective function f ðxÞ.
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In our setting, we seek matrix parameters NR, NL and D to minimize the following objective function:

f ðK ;C;MÞ:¼1
2
fkoffdiagðMÞk2F þ koffdiagðCÞk

2
F þ koffdiagðKÞk

2
F g

þ dhðdiagðMÞ; diagðCÞ; diagðKÞÞ, ð33Þ

subject to the condition that ðMðtÞ;CðtÞ;KðtÞÞ is governed by the differential system equation (20).
In the above, k � kF denotes the Frobenius matrix norm, diagðMÞ denotes the diagonal matrix of M,
offdiagðMÞ denotes the complementary part of diagðMÞ in M, and h is a scalar function depending
upon the diagonal entries of M, C and K. Our idea is to minimize the off-diagonal entries of ðM ;C;KÞ while
using the function h to monitor the behavior of diagonal entries by a factor of d. Such a monitoring is
sometimes important because our structure preserving isospectral flows are not norm preserving. Our
experience indicates that the diagonal entries can evolve to fairly large or small numbers. By choosing,
for example,

h1ðdiagðMÞ;diagðCÞ;diagðKÞÞ ¼
1

ðminðdiagðMÞÞÞ2
þ

1

ðminðdiagðCÞÞÞ2
þ

1

ðminðdiagðKÞÞÞ2
, (34)

where minðdiagðMÞÞ denote the minimum entry in the diagonal of M, we can penalize small diagonal entries in
M, C and K and, hence, avoid singular pencils. Likewise, by choosing

h2ðdiagðMÞ;diagðCÞ;diagðKÞÞ ¼ kdiagðMÞk
2
F þ kdiagðCÞk

2
F þ kdiagðKÞk

2
F , (35)

we can damp the growth of diagonal entries. At the moment, the choice of h is on an ad hoc basis which
varies from problem to problem. We do not know of a general rule by which h should be used, but we
do want to point out that modifying the definition of h and, hence, the objection function f with the hope to
effect the behavior of the isospectral flow is not difficult to do. We can modify the objective function
adaptively during the integration and, hence, offer a dynamical control of the flow. The free matrix parameters
D, NL and NR are used as controls to direct the flow. It is important to note that the dynamical system
equation (20) is linear in the matrix parameters D, NL and NR. So our situation fits well to the model described
in Eq. (31). In particular, the ‘‘controls’’ D, NL and NR can be obtained as the least-squares solution to the
equation

K � C � C � K

2
K � I I � K

K �M �M � K C � I I � C
C �M �M � C

2
M � I I �M

266664
377775

vecðDÞ

vecðN>L Þ

vecðNRÞ

264
375 ¼

vec �offdiagðKÞ � d
qh

qK

� �
vec �offdiagðCÞ � d

qh

qC

� �
vec �offdiagðMÞ � d

qh

qM

� �

2666666664

3777777775
, (36)

where vecðX Þ denotes the vectorization of the matrix X by columns and qh=qK denotes the partial gradient
of h with respect to K. Once these controls are calculated, they are fed to Eq. (20) to define the flow
ðMðtÞ;CðtÞ;KðtÞÞ.

4. Self-adjoint pencils

Thus far, we have been considering general quadratic pencils. In applications, often we are facing a self-
adjoint quadratic pencil, that is, the matrix coefficients M, C and K are all symmetric. Many of the discussions
above can be simplified due to the fact established in Ref. [5] that a self-adjoint quadratic pencil can be totally
decoupled by congruence transformations.

To exploit this congruence transformation, we may take TRðtÞ ¼ TLðtÞ :¼ TðtÞ and reduce the transforma-
tions equation (12) to merely

AðtÞ ¼ T>ðtÞA0TðtÞ,

BðtÞ ¼ T>ðtÞB0TðtÞ, (37)
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while TðtÞ satisfies Eq. (13). The algebraic system equation (16) which is necessary for maintaining the
Lancaster structure is reduced to

KR12 � R>21M ¼ 0,

R>12M þMR12 ¼ 0,

MR11 �MR22 þ R>12C ¼ 0. (38)

Note the second equation in Eq. (38) is symmetric, so the conditions equations (38) constitute a linear
algebraic system of nðnþ 1Þ=2þ 2n2 equations in the 4n2 unknowns matrices Rij . In other words, in the self-
adjoint case, a total of nðn� 1Þ=2þ n2 parameters can be chosen arbitrarily for the structure preserving
isospectral flows. Motivated by the fact that MR12 has to be skew-symmetric, we set forth the first matrix
parameters DðtÞ by assuming that the matrix MðtÞ is invertible and that

R12 ¼ �DM

for some skew-symmetric matrix D 2 Rn�n. Upon substitution, we find that the solution to the system
equation (38) can be parameterized via the representation:

R12 ¼ �DM,

R21 ¼ DK ,

R11 � R22 ¼ �DC, (39)

with D> ¼ �D as the parameter. We choose to define the R matrix in Eq. (13) in exactly the same way as in
Eq. (19), i.e.,

R ¼
D 0

0 D

� � �C

2
�M

K
C

2

2664
3775þ N 0

0 N

� �
, (40)

where the matrices N 2 Rn�n is the second free matrix parameter. The corresponding differential equations for
ðMðtÞ;CðtÞ;KðtÞÞ are given by

_K ¼ 1
2
ðCDK � KDCÞ þN>K þ KN,

_C ¼ ðMDK � KDMÞ þN>C þ CN,

_M ¼ 1
2
ðMDC � CDMÞ þN>M þMN, (41)

respectively. The system equation (41) is a special case of Eq. (20) under the additional conditions that
NL ¼ NR and D> ¼ �D.

In the same spirit as that proposed in Section 3.3, we may choose the controls D and N to formulate
structure preserving isospectral gradient flow with the hope that the self-adjoint triplet ðMðtÞ;CðtÞ;KðtÞÞ will
converge to a diagonal triplet ðMD;CD;KDÞ. Obviously, the symmetry has the advantage that the size of the
optimal control problem is nearly halved. The implementation, however, requires some straightforward but
tedious extra details to reflect that D is skew-symmetric and that only the upper triangular part of
ðMðtÞ;CðtÞ;KðtÞÞ is needed for the computation. We shall report some numerical experiments in the next
section without elaborating upon the programming details.

5. Coordinate transformation flows

We have developed a gradient flow for the triplet ðMðtÞ;CðtÞ;KðtÞÞ which in theory preserves the Lancaster
structure and maintains the isospectrality. In practice, however, we have to caution that traditional ODE
integrators generally cannot preserve these properties in the long run. Isospectral flows need to be solved by
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using special integration techniques. The recently developed research area, known as the geometric
integration, is for that purpose. In geometric integration the underlying geometric structure which
influences the qualitative nature of the phenomena are built into the numerical method, which gives the
method markedly superior performance and accuracy. See for example, the web site [15], the review
paper [16] and the many linkages or references contained therein. In this paper we have not investigated
the applicability of any geometric integration method to our flow yet. We do observe, however, that
for our application maybe it is sufficient to consider only the flow for the transformations TLðtÞ

and TRðtÞ instead of the flow for the triplet ðMðtÞ;CðtÞ;KðtÞÞ. Our idea is that the geometric
structure imposed on the transformation matrices are automatically satisfied by the way we define the
matrices L and R. We apply the transformations to ðA0;B0Þ as in Eq. (12) only at the end of integration to
obtain the reduced form. In this way, there is no danger of drifting from the original eigenvalues in the course
of integration.

Using the self-adjoint pencils to illustrate the idea, write

TðtÞ ¼
T11ðtÞ T12ðtÞ

T21ðtÞ T22ðtÞ

" #
.

We see upon substituting Eq. (40) into Eq. (13) that the transformation flow TðtÞ is governed by the
differential system

_T11 ¼ T11 N �
DðT>11C0T11 þ T>11M0T21 þ T>21M0T11Þ

2

� �
þ T12DðT>11K0T11 � T>21M0T21Þ,

_T12 ¼ T11DðT>12K0T12 � T>22M0T22Þ þ T12 N þ
DðT>11C0T11 þ T>11M0T21 þ T>21M0T11Þ

2

� �
,

_T21 ¼ T21 N �
DðT>11C0T11 þ T>11M0T21 þ T>21M0T11Þ

2

� �
þ T22DðT>11K0T11 � T>21M0T21Þ,

_T22 ¼ T21DðT>12K0T12 � T>22M0T22Þ þ T22 N þ
DðT>11C0T11 þ T>11M0T21 þ T>21M0T11Þ

2

� �
,

which makes no explicit reference to the intermediate values MðtÞ, CðtÞ and KðtÞ. The computation
is not as complicated as it appears because many of the products of matrices repeatedly occur. We can
rewrite the objective function equation (33) in terms of T whose gradient can easily be calculated.
Since _T depends linearly on D and N, the model equation (30) remains applicable. The idea of closed-loop
control described in Section 3.3 can now be used to obtain the matrix parameters D and N for a gradient
flow TðtÞ.

We do caution that there is a second danger in the above consideration. It is true that by integrating TðtÞ

and performing the transformations equation (37) afterwards the isospectrality is preserved. We have to point
out that TðtÞ itself should satisfy the algebraic constraints in Eq. (38) in order to preserve the Lancaster
structure. A numerical approximation of TðtÞ might have lost this property.

6. Numerical experiments

In this section, we report some experimental results from using the above-mentioned dynamical
system of gradient flow. At the moment, our primary concern is not so much on the efficiency of the
method. Rather, our goal is to establish some numerical evidence showing that the proposed structure
preserving isospectral gradient flows work. To make this approach computationally effective requires
additional ruminations, such as a specially designed geometric integrator, which are not investigated in
this paper.

For demonstration purpose, we shall employ existing routines in Matlab as the ODE integrator. It is
understood that many other ODE solvers can be used as well, although none of these packages are designed to
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Fig. 1. A three-degree-of-freedom mass-spring system.

M.T. Chu, N. Del Buono / Journal of Sound and Vibration 309 (2008) 112–128122
preserve our geometric properties for a long period of time. The ODE Suite [18] in Matlab
contains in particular a Klopfenstein–Shampine, quasi-constant step size stiff system solver ode15s

and the classical Adams–Bashforth–Molton solver ode113. We find that the isospectrality is deteriorated
quicker by ode15s than by ode113, though neither solver can maintain the isospectrality in the long
run. We set both local tolerance AbsTol ¼ RelTol ¼ 10�12 while maintaining all other parameters
at the default values of the Matlab codes. The numerical tests have been conducted using randomly
generated initial values for the dynamical system matrices in M;C;K . The choice of the penalty
function h depends on how we want to effect the flow. In the first two examples below, h2 is used
where the penalty factor is taken to be d ¼ 10�1. In the third example, h1 with d ¼ 10�8 is used to keep
the flow from converging to a singular pencil. For the ease of running text, we shall report all numerals in
5 digits only.

Example 1. Consider the three-degree of freedom mass-spring system depicted in Fig. 1 which was discussed
in Ref. [17]. Assume that the mass, damping and stiffness matrices are given by

M0 ¼

0:5056 0 0

0 0:9198 0

0 0 0:9440

264
375,

C0 ¼

0:9814 0 0

0 0:9602 �0:4582

0 �0:4582 1:0794

264
375,

K0 ¼

1:1550 �0:4673 �0:2788

�0:4673 0:5849 �0:1176

�0:2788 �0:1176 0:3964

264
375.

Our theory asserts that this interlocking self-adjoint system can be decoupled into three single-degree-of-
freedom subsystems which bear exactly the same spectral information. To obtain these subsystems, we
integrate our gradient flow equation (41) with D and N being defined in the same spirit of Eq. (31), that is, the
free matrix parameters D and N are selected in such a way that the resulting vector field ð _M ; _C; _KÞ is the least-
squares approximation to the negative gradient of the objection function equation (33). At t � 16 we find that
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the triplet ðM;C;KÞ has evolved into the following matrices:

M ¼

2:6362eþ 00 1:5263e� 08 1:7655e� 08

1:5263e� 08 3:8736eþ 00 2:4375e� 08

1:7655e� 08 2:4375e� 08 4:8376eþ 00

264
375,

C ¼

4:0251eþ 00 5:0428e� 08 �9:0397e� 09

5:0428e� 08 5:8081eþ 00 �7:6755e� 08

�9:0397e� 09 �7:6755e� 08 5:3330eþ 00

264
375,

K ¼

5:0903eþ 00 �1:3823e� 07 �3:9939e� 08

�1:3823e� 07 2:9065eþ 00 �5:9834e� 09

�3:9939e� 08 �5:9834e� 09 1:1113eþ 00

264
375,

suggesting that the matrices are being diagonalized as t goes to infinity.

Example 2. To demonstrate that our gradient flow works reasonably well in general, in our second experiment
we generate three 8� 8 self-adjoint initial matrices randomly with no concern of whether the resulting
quadratic pencil is physically realizable or not. The initial matrices are given as follows:

M0 ¼

5:3235eþ 00 �7:7083e� 01 �1:7021eþ 00 5:2962e� 01 6:3322e� 01 �9:2241e� 01 �6:3554e� 01 5:8556e� 01

�7:7083e� 01 9:2417eþ 00 �1:7353eþ 00 5:1740eþ 00 �3:7535eþ 00 2:6184e� 02 �3:2625eþ 00 1:2013eþ 00

�1:7021eþ 00 �1:7353eþ 00 9:2284eþ 00 �6:4989eþ 00 �1:8649eþ 00 3:0272eþ 00 7:9076eþ 00 2:6297e� 01

5:2962e� 01 5:1740eþ 00 �6:4989eþ 00 9:4077eþ 00 2:1911e� 01 �4:3342eþ 00 �7:3370eþ 00 3:840eþ 00

6:3322e� 01 �3:7535eþ 00 �1:8649eþ 00 2:1911e� 01 6:0898eþ 00 �9:8487e� 01 2:0184eþ 00 �7:3590e� 01

�9:2241e� 01 2:6184e� 02 3:0272eþ 00 �4:3342eþ 00 �9:8487e� 01 9:1233eþ 00 6:2714eþ 00 �2:9034eþ 00

�6:3554e� 01 �3:2625eþ 00 7:9076eþ 00 �7:3370eþ 00 2:0184eþ 00 6:2714eþ 00 1:4541eþ 01 �1:7151eþ 00

5:8556e� 01 1:2013eþ 00 2:6297e� 01 3:840eþ 00 �7:3590e� 01 �2:9034eþ 00 �1:7151eþ 00 4:5468eþ 00

266666666666664

377777777777775
,

C0 ¼

1:0777eþ 01 5:0180e� 01 2:6108e� 01 4:6112eþ 00 �2:8607eþ 00 �3:6377eþ 00 �2:3615eþ 00 2:9215eþ 00

5:0180e� 01 3:8908eþ 00 2:8436e� 01 1:8618e� 01 8:6016e� 01 3:0443e� 01 �9:6059e� 01 4:4675e� 01

2:6108e� 01 2:8436e� 01 1:1905eþ 01 2:2132e� 01 �4:3222eþ 00 �2:9963eþ 00 4:2085eþ 00 5:4883eþ 00

4:6112eþ 00 1:8618e� 01 2:2132e� 01 4:7964eþ 00 5:1232e� 01 �1:108eþ 00 �8:7565e� 01 1:6242eþ 00

�2:8607eþ 00 8:6016e� 01 �4:3222eþ 00 5:1232e� 01 9:4669eþ 00 4:3679eþ 00 8:9368e� 01 �1:5694eþ 00

�3:6377eþ 00 3:0443e� 01 �2:9963eþ 00 �1:108eþ 00 4:3679eþ 00 6:6132eþ 00 �6:5587e� 01 1:1057eþ 00

�2:3615eþ 00 �9:6059e� 01 4:2085eþ 00 �8:7565e� 01 8:9368e� 01 �6:5587e� 01 5:4341eþ 00 4:2017eþ 00

2:9215eþ 00 4:4675e� 01 5:4883eþ 00 1:6242eþ 00 �1:5694eþ 00 1:1057eþ 00 4:2017eþ 00 1:1347eþ 01

266666666666664

377777777777775
,

K0 ¼

5:095eþ 00 �3:1576eþ 00 �1:2604eþ 00 �3:4265eþ 00 8:6552e� 01 2:7751eþ 00 1:1638eþ 00 �5:3069eþ 00

�3:1576eþ 00 9:6212eþ 00 �1:4043eþ 00 8:5129e� 01 3:9745e� 01 �1:0149eþ 00 3:1666eþ 00 6:4578eþ 00

�1:2604eþ 00 �1:4043eþ 00 4:2248eþ 00 �1:4245eþ 00 �1:9488eþ 00 1:5413eþ 00 �2:5609eþ 00 �6:7258e� 01

�3:4265eþ 00 8:5129e� 01 �1:4245eþ 00 7:0133eþ 00 2:3293eþ 00 �5:8867eþ 00 6:2474e� 01 4:2150eþ 00

8:6552e� 01 3:9745e� 01 �1:9488eþ 00 2:3293eþ 00 7:1340eþ 00 �4:0990eþ 00 3:7037eþ 00 1:8451eþ 00

2:7751eþ 00 �1:0149eþ 00 1:5413eþ 00 �5:8867eþ 00 �4:0990eþ 00 7:9290eþ 00 �9:4201e� 01 �5:7685eþ 00

1:1638eþ 00 3:1666eþ 00 �2:5609eþ 00 6:2474e� 01 3:7037eþ 00 �9:4201e� 01 7:2946eþ 00 1:3111eþ 00

�5:3069eþ 00 6:4578eþ 00 �6:7258e� 01 4:2150eþ 00 1:8451eþ 00 �5:7685eþ 00 1:3111eþ 00 9:0110eþ 00

266666666666664

377777777777775
.

Again, we use the gradient flow equation (41) to seek the diagonalization of the above three matrices.
As the integration marches on, we find that at t ¼ 18 the triplet ðMðtÞ;CðtÞ;KðtÞÞ has evolved into the
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following matrices:

M ¼

9:8696eþ 00 1:8872e� 06 �2:9059e� 06 �1:7974e� 05 2:1019e� 07 �1:2046e� 05 �1:3155e� 06 �3:6771e� 07

1:8872e� 06 3:9277eþ 01 �3:3041e� 07 2:3073e� 06 �4:2645e� 07 2:9113e� 06 4:6964e� 07 �3:3942e� 07

�2:9059e� 06 �3:3041e� 07 5:0117eþ 01 �9:2381e� 07 2:3446e� 07 �1:0293e� 07 1:0538e� 06 6:2995e� 07

�1:7974e� 05 2:3073e� 06 �9:2381e� 07 1:1038eþ 01 7:5763e� 07 �6:3820e� 05 6:170e� 07 1:0678e� 06

2:1019e� 07 �4:2645e� 07 2:3446e� 07 7:5763e� 07 1:5349eþ 01 3:4752e� 07 �7:0162e� 09 1:8576e� 07

�1:2046e� 05 2:9113e� 06 �1:0293e� 07 �6:3820e� 05 3:4752e� 07 8:2547eþ 00 1:1788e� 06 1:9319e� 07

�1:3155e� 06 4:6964e� 07 1:0538e� 06 6:170e� 07 �7:0162e� 09 1:1788e� 06 3:8841eþ 01 2:4136e� 07

�3:6771e� 07 �3:3942e� 07 6:2995e� 07 1:0678e� 06 1:8576e� 07 1:9319e� 07 2:4136e� 07 9:3683e� 02

266666666666664

377777777777775
,

C ¼

3:1910eþ 01 �4:3944e� 07 5:2498e� 06 4:3910e� 06 2:9588e� 07 9:6416e� 07 2:0965e� 07 1:0194e� 06

�4:3944e� 07 9:1654eþ 00 2:8050e� 07 �1:2528e� 06 1:0689e� 07 �1:0687e� 06 �6:8847e� 07 �5:1075e� 08

5:2498e� 06 2:8050e� 07 4:9507eþ 01 2:8435e� 07 �4:2462e� 07 �5:540e� 07 �2:8281e� 07 �9:6140e� 07

4:3910e� 06 �1:2528e� 06 2:8435e� 07 1:1911eþ 01 �8:5491e� 08 1:3644e� 05 �6:8026e� 07 3:8892e� 08

2:9588e� 07 1:0689e� 07 �4:2462e� 07 �8:5491e� 08 6:0835eþ 01 5:380e� 07 �1:3286e� 07 �2:7331e� 07

9:6416e� 07 �1:0687e� 06 �5:540e� 07 1:3644e� 05 5:380e� 07 1:8138eþ 01 9:3527e� 07 5:4394e� 07

2:0965e� 07 �6:8847e� 07 �2:8281e� 07 �6:8026e� 07 �1:3286e� 07 9:3527e� 07 3:2757eþ 01 1:3056e� 07

1:0194e� 06 �5:1075e� 08 �9:6140e� 07 3:8892e� 08 �2:7331e� 07 5:4394e� 07 1:3056e� 07 5:9449eþ 01

266666666666664

377777777777775
,

K ¼

1:6621eþ 00 �9:6927e� 07 �1:3292e� 05 1:1156e� 06 �9:4317e� 06 6:8078e� 07 1:4116e� 06 �1:5211e� 06

�9:6927e� 07 2:1574eþ 01 �6:0898e� 08 �2:9165e� 07 1:3859e� 07 �6:8694e� 07 1:7096e� 08 8:0610e� 07

�1:3292e� 05 �6:0898e� 08 1:5674eþ 01 �2:2511e� 07 �9:8188e� 07 4:0419e� 07 �3:7487e� 07 1:6344e� 06

1:1156e� 06 �2:9165e� 07 �2:2511e� 07 3:4844eþ 01 �2:6431e� 07 1:2303e� 05 �1:0540e� 07 �1:7776e� 07

�9:4317e� 06 1:3859e� 07 �9:8188e� 07 �2:6431e� 07 2:6028e� 01 �7:705e� 07 5:3461e� 07 �2:8792e� 07

6:8078e� 07 �6:8694e� 07 4:0419e� 07 1:2303e� 05 �7:705e� 07 2:3699eþ 01 �1:5434e� 06 �1:0864e� 06

1:4116e� 06 1:7096e� 08 �3:7487e� 07 �1:0540e� 07 5:3461e� 07 �1:5434e� 06 4:9072eþ 01 �3:5570e� 07

�1:5211e� 06 8:0610e� 07 1:6344e� 06 �1:7776e� 07 �2:8792e� 07 �1:0864e� 06 �3:5570e� 07 1:0512eþ 01

266666666666664

377777777777775
.

It might be more illustrative to represent the data in the initial triplet ðM0;C0;K0Þ and the triplet
ðMðtÞ;CðtÞ;KðtÞÞ graphically in Fig. 2 where entries of each matrix are plotted as z-values over a rectangle grid.

The dynamical behavior of the corresponding flow is depicted in Fig. 3 where we plot the sums of norms of
the three diagonal matrices (dashed line), the three off-diagonal matrices (dotted line), and the absolute value
of the objective function (solid line), respectively, versus the independent variable t. The dip in the solid line
for the objective function is a resolution artifact due to jf ðK ;C;MÞj � 0 or lnðjf ðK ;C;MÞjÞ � �1 at that
particular point. The near parallelism of the solid line and the dashed line when t48 shows that the objective
value the norm of the diagonal entries differ nearly by a scalar multiplication, i.e., d ¼ 10�1, and that the off-
diagonal entries converge to zero.

Example 3. In our third experiment, we first use the same objective function as that in Example 2 with
the following randomly generated initial matrices of size 7� 7. That is, we penalize only the growth of
diagonal entries and take no action to prevent the degenerateness of the these entries. The initial matrices are
given by

M0 ¼

6:4206eþ 00 2:7013eþ 00 �4:0538eþ 00 �3:9093eþ 00 3:5144eþ 00 �1:6145e� 01 �1:1971eþ 00

2:7013eþ 00 1:0326eþ 01 �5:4895eþ 00 �4:2758eþ 00 �4:5101eþ 00 6:2040eþ 00 �2:1748e� 01

�4:0538eþ 00 �5:4895eþ 00 8:7637eþ 00 1:0725eþ 00 1:5145eþ 00 �4:6242e� 01 1:0867eþ 00

�3:9093eþ 00 �4:2758eþ 00 1:0725eþ 00 4:8558eþ 00 �2:1136eþ 00 �2:6535eþ 00 �1:8584e� 01

3:5144eþ 00 �4:5101eþ 00 1:5145eþ 00 �2:1136eþ 00 1:8306eþ 01 2:9484eþ 00 1:6960eþ 00

�1:6145e� 01 6:2040eþ 00 �4:6242e� 01 �2:6535eþ 00 2:9484eþ 00 1:0953eþ 01 �7:6732e� 01

�1:1971eþ 00 �2:1748e� 01 1:0867eþ 00 �1:8584e� 01 1:6960eþ 00 �7:6732e� 01 6:4739eþ 00

2666666666664

3777777777775
,
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C0 ¼

2:8355eþ 00 �3:5329eþ 00 �9:0051e� 01 2:2403eþ 00 2:3916e� 01 �1:8860eþ 00 1:1730eþ 00

�3:5329eþ 00 9:1601eþ 00 3:1358e� 01 1:6880eþ 00 7:7742e� 01 �3:3175e� 02 �2:0576eþ 00

�9:0051e� 01 3:1358e� 01 5:8714eþ 00 �2:2298eþ 00 �2:1827e� 01 �1:2010eþ 00 6:5279e� 01

2:2403eþ 00 1:6880eþ 00 �2:2298eþ 00 8:3197eþ 00 1:7075e� 01 �2:8330eþ 00 �1:2423eþ 00

2:3916e� 01 7:7742e� 01 �2:1827e� 01 1:7075e� 01 3:0995eþ 00 1:2724eþ 00 1:8257eþ 00

�1:8860eþ 00 �3:3175e� 02 �1:2010eþ 00 �2:8330eþ 00 1:2724eþ 00 8:7520eþ 00 �8:4060e� 02

1:1730eþ 00 �2:0576eþ 00 6:5279e� 01 �1:2423eþ 00 1:8257eþ 00 �8:4060e� 02 2:3845eþ 00

2666666666664

3777777777775
,

K0 ¼

5:7454eþ 00 �5:5223e� 01 �1:3115eþ 00 2:1641eþ 00 2:3034e� 01 �9:2219e� 01 8:3982e� 02

�5:5223e� 01 2:3549eþ 00 �2:7189e� 01 1:9810eþ 00 1:9808e� 01 �6:1442e� 01 7:5386e� 01

�1:3115eþ 00 �2:7189e� 01 9:5935eþ 00 �1:0742e� 01 �5:5547eþ 00 �5:4112eþ 00 4:4360e� 01

2:1641eþ 00 1:9810eþ 00 �1:0742e� 01 8:0620eþ 00 �6:8328e� 02 3:2041e� 01 �1:1730eþ 00

2:3034e� 01 1:9808e� 01 �5:5547eþ 00 �6:8328e� 02 5:2168eþ 00 2:5000eþ 00 �1:4050eþ 00

�9:2219e� 01 �6:1442e� 01 �5:4112eþ 00 3:2041e� 01 2:5000eþ 00 7:2703eþ 00 7:9278e� 01

8:3982e� 02 7:5386e� 01 4:4360e� 01 �1:1730eþ 00 �1:4050eþ 00 7:9278e� 01 7:2693eþ 00

2666666666664

3777777777775
.

What we have observed is that at approximately t ¼ 16, the triplet ðMðtÞ;CðtÞ;KðtÞÞ has evolved into the
following matrices:

M ¼

2:2153e� 13 2:1177e� 06 �6:8153e� 07 �1:8384e� 07 1:1511e� 06 �7:0594e� 07 �4:8310e� 07

2:1177e� 06 2:7777eþ 01 �8:5516e� 07 �2:4470e� 06 �9:9352e� 07 1:7505e� 06 3:8014e� 07

�6:8153e� 07 �8:5516e� 07 3:1307eþ 01 3:1516e� 07 3:2599e� 07 2:9865e� 07 �1:7375e� 07

�1:8384e� 07 �2:4470e� 06 3:1516e� 07 2:8390eþ 00 �4:9293e� 07 �1:3284e� 07 1:4923e� 07

1:1511e� 06 �9:9352e� 07 3:2599e� 07 �4:9293e� 07 8:8150eþ 01 5:4243e� 07 3:7747e� 07

�7:0594e� 07 1:7505e� 06 2:9865e� 07 �1:3284e� 07 5:4243e� 07 4:8753eþ 01 �3:1072e� 07

�4:8310e� 07 3:8014e� 07 �1:7375e� 07 1:4923e� 07 3:7747e� 07 �3:1072e� 07 3:1905eþ 01

2666666666664

3777777777775
,

C ¼

�3:1703e� 13 �1:2169e� 06 �4:0357e� 07 �1:6317e� 06 �6:7147e� 08 �4:3025e� 07 �1:6132e� 08

�1:2169e� 06 4:2699eþ 01 1:9723e� 07 1:3068e� 06 1:1515e� 07 �3:7094e� 07 �3:0443e� 07

�4:0357e� 07 1:9723e� 07 2:2568eþ 01 �3:4856e� 07 5:2178e� 08 �2:2798e� 07 6:8085e� 09

�1:6317e� 06 1:3068e� 06 �3:4856e� 07 3:3206eþ 01 2:1429e� 07 �5:4923e� 07 �2:2280e� 07

�6:7147e� 08 1:1515e� 07 5:2178e� 08 2:1429e� 07 1:2109eþ 01 2:9003e� 08 2:0453e� 07

�4:3025e� 07 �3:7094e� 07 �2:2798e� 07 �5:4923e� 07 2:9003e� 08 4:5150eþ 01 2:8697e� 08

�1:6132e� 08 �3:0443e� 07 6:8085e� 09 �2:2280e� 07 2:0453e� 07 2:8697e� 08 5:6642eþ 00

2666666666664

3777777777775
,

K ¼

2:1121e� 13 �2:5786e� 07 �2:1259e� 08 2:6425e� 06 2:2480e� 07 �3:9657e� 07 �1:3054e� 07

�2:5786e� 07 4:5693eþ 00 1:6895e� 07 �3:3515e� 07 5:4747e� 07 �1:0080e� 07 3:1232e� 07

�2:1259e� 08 1:6895e� 07 4:3968eþ 01 �3:6565e� 07 �1:0213e� 06 �1:1184e� 06 1:5553e� 07

2:6425e� 06 �3:3515e� 07 �3:6565e� 07 4:1656eþ 01 �2:3364e� 07 4:4752e� 07 �2:2251e� 07

2:2480e� 07 5:4747e� 07 �1:0213e� 06 �2:3364e� 07 6:1404eþ 00 8:2303e� 07 �2:8470e� 07

�3:9657e� 07 �1:0080e� 07 �1:1184e� 06 4:4752e� 07 8:2303e� 07 1:5933eþ 01 1:5514e� 07

�1:3054e� 07 3:1232e� 07 1:5553e� 07 �2:2251e� 07 �2:8470e� 07 1:5514e� 07 3:3756eþ 01

2666666666664

3777777777775
.

This example demonstrates that the triplet ðMðtÞ;CðtÞ;KðtÞÞ may converge to a singular pencil, which is not
desirable.

A remedy might come if we penalize the decaying of diagonal entries to zero by adding in the penalty
function g1 defined in Eq. (34). However, the penalty factor d has to be chosen carefully. If d is too large, the
flow tends to put more emphasis on discouraging the decay of the diagonal entries at the price of slowing down
the convergence of the off-diagonal entries. If d is too small, the flow converges to a near-singular pencil.
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Fig. 2. Graphical representation of initial matrices (a) M0, (b) C0, (c) K0 and the solution matrices (d) Mð18Þ, (e) Cð18Þ, (f) Kð18Þ in

Example 2.
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Fig. 3. Evolution of the sum of squares of the off-diagonal (. . . . . .) and diagonal (– – –) terms in matrices MðtÞ,CðtÞ and KðtÞ and the

evolution of the objection function (——) in Eq. (33).
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For our experiment, we adaptively use d ¼ 10�8 to discourage the diagonal entries from going to zero and
d ¼ 0 to encourage the off-diagonal entries to converge to zero. At the moment, the adaptive scheme is
inserted into the integration process manually and subjectively. We are able to improve the convergence to the
following matrices.

M ¼

1:4618e� 01 8:4229e� 21 �7:1889e� 20 �2:2598e� 20 �3:1102e� 20 2:2559e� 19 �1:6235e� 20

�1:4672e� 15 5:2520eþ 00 4:4173e� 20 8:5578e� 20 8:7294e� 21 2:7976e� 05 �1:8820e� 07

5:0709e� 15 4:5057e� 16 3:9248eþ 00 �4:7978e� 20 �1:2110e� 20 1:2027e� 19 3:3292e� 21

1:9132e� 15 1:1803e� 14 �8:9042e� 15 1:7497e� 01 1:0212e� 19 3:5002e� 20 2:0289e� 20

1:4079e� 15 2:8080e� 15 �6:7490e� 15 2:6045e� 16 9:6442e� 01 �3:2220e� 19 �6:3030e� 21

�1:2395e� 18 2:7976e� 05 �2:3740e� 19 5:4627e� 19 �2:0220e� 19 5:9730e� 08 �2:5479e� 05

4:3913e� 15 �1:8820e� 07 1:3186e� 15 �2:8604e� 15 �1:5211e� 14 �2:5479e� 05 9:1884eþ 00

2666666666664

3777777777775
,

C ¼

4:9848eþ 00 8:3472e� 23 4:2650e� 21 3:3450e� 20 3:1178e� 20 �5:3475e� 19 2:2401e� 20

�3:8580e� 14 6:9063eþ 00 1:4369e� 20 4:7488e� 20 6:4548e� 20 �3:4666e� 05 �4:3162e� 07

�5:9428e� 15 �6:6258e� 15 7:5498e� 01 �3:7208e� 20 1:7218e� 21 �2:3996e� 20 6:0364e� 21

1:4816e� 14 3:6117e� 15 3:5201e� 16 1:0704eþ 01 1:6483e� 20 �1:9994e� 19 �4:5170e� 20

�2:3898e� 14 6:6073e� 15 3:4875e� 14 2:9369e� 14 4:5047eþ 00 1:0176e� 19 �3:0356e� 20

�4:9065e� 19 �3:4666e� 05 �2:6450e� 18 �1:3797e� 19 2:4698e� 18 6:1934e� 08 �4:4886e� 05

�6:2580e� 15 �4:3162e� 07 1:9122e� 15 �3:4434e� 14 �2:4793e� 14 �4:4886e� 05 6:1427eþ 00

2666666666664

3777777777775
,

K ¼

8:9073e� 04 �6:7678e� 20 �6:0650e� 20 �7:9906e� 20 �3:3974e� 21 3:9575e� 19 7:8452e� 21

�9:1039e� 16 4:9464eþ 00 �3:5549e� 20 3:5156e� 20 6:6650e� 20 1:9716e� 05 6:0100e� 07

1:0159e� 14 8:8236e� 15 4:6964eþ 00 �6:7415e� 20 2:3783e� 22 �1:2507e� 19 �3:4392e� 20

�8:1779e� 16 3:8584e� 16 �2:4487e� 15 4:2010eþ 00 6:4197e� 21 2:1525e� 19 6:5043e� 20

4:7487e� 15 �9:4770e� 15 �3:7846e� 15 1:6717e� 14 1:6497eþ 01 �4:4318e� 20 1:0721e� 19

�1:3417e� 19 1:9716e� 05 �6:3702e� 19 1:2723e� 19 �7:8421e� 19 8:5473e� 09 8:9375e� 05

�2:4348e� 15 6:0100e� 07 1:0354e� 15 �2:5474e� 15 �1:0384e� 14 8:9375e� 05 5:6434eþ 00

2666666666664

3777777777775
.

7. Conclusion

In an earlier study, we have shown in theory that almost all quadratic pencils l2M þ lC þ K can be
transformed isospectrally into pencils with diagonal matrix coefficients. This result has two significant
implications: firstly, it shows that the conventional persuasion that no three general matrices can be
simultaneously diagonalized is perhaps because the question of diagonalization of a quadratic pencil has not
been posed in an appropriate context. Perhaps a right way to ask the question is how to diagonalize the blocks
of the Lancaster structure. Secondly, it asserts that the dynamical behavior of almost all n-degree-of-freedom
second-order systems can be identified from that of n-independent single-degree-of-freedom second-order
subsystems. Despite the importance, the transformations involved in the reduction are rather complicated and
difficult to realize numerically. The theoretical proof requires the knowledge of the entire spectral information.
Without using the spectral information, there does not seem to have any numerical algorithm in the literature
for this purpose.

In this paper, we exploit the free matrix parameters in the structure preserving isospectral flows. In
particular, we propose a simple closed-loop control that amends the structure preserving isospectral flow into
a gradient flow. The gradient flow intends to reduce the magnitude of off-diagonal elements. Since the gradient
flow can be tracked by available ODE integrator, it is feasible for numerical computation. Computer
simulations seem to suggest the working of this approach.

We would suggest two fronts for further study. The most interesting topic is to develop a numerical scheme
that can track the isospectral flow described in this paper. Note that our flow is subject to two structural
constraints—the spectral constraint and the Lancaster structure constraint, we do not think that current
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geometric integrators are adequate to handle problems with multiple constraints. Also, it is highly desirable to
develop some iterative schemes which can be employed to tackle diagonalization in the sense of Eq. (7) more
directly.
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