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Abstract

The common practice in developing a locking-free curved beam element is to ensure that its interpolation functions of

displacement explicitly satisfy the inextensible bending mode condition for the membrane locking-free instead of the rigid

body modes. In this paper, we study the impact of this practice on the dynamic characteristics of a finite element by

conducting vibration analysis using our newly developed three-node locking-free curved beam element. In this case, the

inextensible bending mode condition is satisfied explicitly, while the rigid body modes are satisfied implicitly to 4th-order

accuracy. Numerical and experimental examples show that with the newly developed curved beam element, developed by

using the implicit representation of a rigid body mode condition, it is possible to recover the rigid body modes of curved

beams with low and medium slenderness ratios. This is even true for cases involving a half-circular element and the

vibration of the curved beam is predicted with high accuracy.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Curved beam elements, which are based on the curvilinear strain field description, outperform their straight
counterparts in modeling curved beams with higher accuracy by coarse meshes. However, the formulation of
curved beams is not a simple extension of the straight beam formulations because of the membrane-locking
problem. This phenomenon was initially attributed to the inability of low-order polynomial displacement
interpolation functions to represent the rigid body modes of the curved element properly [1]. The requirement
for the terms of rigid body modes in the displacement interpolation functions leads to the addition of
trigonometric terms to the coupled polynomial displacement interpolation functions which yielded better
results [1,2]. Unfortunately, the trigonometric terms will become trivial as the curved beam’s curvature
approaches zero. The degenerated displacement interpolation functions are insufficient to represent the
bending deformation of the straightened beam. To overcome the limitation of the trigonometric terms,
alternative studies [3,4] showed that adopting higher order polynomial displacement interpolation functions,
without including the terms of rigid body modes explicitly, would alleviate the membrane locking. Stolarski
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.04.051

ing author. Tel.: +1 416 9785741; fax: +1 416 9787753.

ess: meguid@mie.utoronto.ca (S.A. Meguid).

ead, Aerospace Engineering Division, MAE, Nanyang Technological University, Singapore.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.04.051
mailto:meguid@mie.utoronto.ca


ARTICLE IN PRESS
Z.H. Zhu, S.A. Meguid / Journal of Sound and Vibration 309 (2008) 86–95 87
and Belytschko [5] and Prathap and Bhashyam [6] further identified the cause of the locking as the failure of
the independently interpolated displacement functions to recover correct constraints from the membrane
strains in the state of inextensible bending and not because those displacement functions did not contain the
rigid body modes explicitly. Reduced integration of membrane strain energy was proposed to improve the
behavior of the curved beam element. In addition, Prathap and Babu [7] and Balasubramanian and
Prathap [8] proposed a field consistency interpolation method, in which the axial displacement function is
required to be one order higher than the transverse displacement function. Among the curved beam
element formulations, the field consistency concept is the most appealing since it allows predicting a priori any
poor convergence due to the locking. Detailed reviews of curved element formulations can be found in the
works of Raveendranath et al. [9–11] and Bucalem and Bathe [12]. To improve the computational
efficiency further, while being able to recover the inextensible bending mode of curved beams, Raveendranath
et al. [9] proposed a brilliant approach to derive the lower order, field consistent, polynomial displacement
interpolation functions for curved beam elements by coupling the axial and transverse displacement
interpolation functions through the equilibrium equations. Recently, Zhu and Meguid [13,14] extended
the coupled field consistency interpolation method into the geometrically nonlinear curved beam
analysis by proposing a three-node, three-dimensional curved beam element. The polynomial displacement
interpolation functions are derived by coupling the axial and transverse displacement fields with presumably
linear membrane and torsional strain fields in order to avoid the mathematical complexity of the equilibrium
equations in case of large displacements and rotations. However, all the above works focused on the
recovery of the inextensible bending mode, which is the membrane locking-free of the curved beam
element. The effects of not including the rigid body modes explicitly in the displacement interpolation
functions on the vibration and dynamic characteristics of the derived curved beam elements are not
investigated thoroughly. By satisfying the inextensible bending mode explicitly instead of the rigid body
modes, the polynomial interpolation functions of the curved beam elements [7–11,13,14] will give the
correct rigid body modes only in the limit of zero length of the element. This is referred to as the
implicit representation of rigid body modes [15]. In order to ensure the convergence of the derived curved
beam element in the vibration and dynamic analyses, we will examine the implicit representation of the
rigid body modes used in our earlier curved beam element formulations [14] for its accuracy and efficiency
in recovering the rigid body modes, predicting the natural frequencies and analyzing the vibrations of the
curved structures.

This paper consists of four sections. Following this introduction, a brief summary of the theoretical
development of curved beam element is provided in Section 2. In Section 3, we discuses the accuracy of the
implicit representation of rigid body modes. In Section 4, we demonstrate the capability of the curved beam
element in recovering the rigid body modes, the convergence characteristic of the element in predicting the
natural frequencies by comparison with existing theoretical results, and the accuracy of the element in
dynamic analysis by experimental work using a free vibrating cantilever beam and high-speed imaging
technique. In Section 5, we conclude the paper.
2. Finite element formulation of curved beam element

Consider a three-dimensional curved beam element shown in Fig. 1. The geometry of the element is
described by its length tL, curvature tk, and nodal coordinates (Xi, Yi, Zi) in the global Cartesian coordinate
system OXYZ. Local curvilinear coordinates x, y and z are defined with the z-axis along the neutral axis of the
beam, the x-axis in the normal direction and the y-axis in the bi-normal direction.

In the follow sections, the preceding superscript/subscript t notations are used to represent the time status of
a variable: t() denotes the time increment of a variable with respect to time t; t() denotes the variable at time t;
tþDt
t ðÞ denotes the variable at time t+Dt with respect to time t, respectively.

The incremental Green–Lagrange strains of the curved beam at time t+Dt are defined with respect to time t

[14], such as

tE33 ¼ t�� x1ðto2 � 2tkt�Þ þ x2to1; tE13 ¼
x2

2
tZ; tE23 ¼

x1

2
tZ, (1)
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Fig. 1. Geometry of a general spatial curved beam element.
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where te, to1, to2, tZ are the incremental membrane strain and curvature rates of the neutral axis and can be
expressed in terms of the displacements (tui) and rotations (tyi)of the neutral axis, such that,

t� ¼ tu3;3 �
tktu1 þ 1=2 ðtu1;3 þ

tktu1Þ
2
þ ðtu2;3Þ

2
þ ðtu3;3 �

tktu1Þ
2

h i
, (2a)

to1 ¼ �tu2;33 þ
tkty3þty3ðtu1;33 þ 2tktu3;3 �

tk2tu1Þ þ tu2;3ðtu3;33 � 2tktu1;3 �
tk2tu3Þ , (2b)

to2 ¼ �tu1;33 þ
tktu3;3þty3tu2;33 � ðtu1;3 �

tktu3Þðtu3;33 � 2tktu1;3 �
tk2tu3Þ, (2c)

tZ ¼ �ty3;3 þ tktu2;3 þ
tkty3ðtu1;3 þ

tktu3Þ þ tu2;3ðtu1;33 þ
tktu3;3Þ. (2d)

The underlined terms in the above expressions are the nonlinear parts of the incremental membrane strain and
curvature rates of the neutral axis due to the large displacements and rotations. Assume the displacement
interpolations for the three-node curved beam element as

tu1 ¼ a0 þ a1x3 þ a2x2
3 þ a3x

3
3 þ a4x

4
3 þ a5x5

3, (3a)

tu2 ¼ b0 þ b1x3 þ b2x2
3 þ b3x

3
3 þ b4x

4
3 þ b5x5

3, (3b)

tu3 ¼ a6 þ a7x3 þ a8x
2
3 þ

tk
3

a2x
3
3 þ

tk
4

a3x
4
3 þ

tk
5

a4x
5
3 þ

tk
6

a5x
6
3, (3c)

ty1 ¼ �b1 � 2b2x3 � 3b3x
2
3 � 4b4x

3
3 � 5b5x4

3, (3d)

ty2 ¼ ða1 þ
tka6Þ þ ð2a2 þ

tka7Þx3 þ ð3a3 þ
tka8Þx

2
3 þ 4a4 þ

tk2

3
a2

� �
x3
3

þ 5a5 þ
tk2

4
a3

� �
x4
3 þ

tk2

5
a4x

5
3 þ

tk2

6
a5x6

3, ð3eÞ

ty3 ¼ b6 þ b7x3 þ b8x2
3 �

tkb3x3
3 �

tkb4x
4
3 � kb5x

5
3, (3f)

where ai and bi are the coefficients of the interpolation functions, and tk is the curvature of the curved beam
element. Obviously, the above displacement interpolation functions will decouple and reduce to the shape
functions for the three-node straight beam element as the curvature tk approaches zero.

By substituting the expressions for displacement tu1 and tu3 (Eqs. (3a) and (3b)) into Eq. (2a) and ignoring
the higher order terms, the inextensible bending condition can be written as

t� � a7 �
tka0 þ ð2a8 �

tka1Þx3 ¼ 0
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or

a7 �
tka0 ¼ 0 and 2a8 �

tka1 ¼ 0. (4)

From Eq. (4) it can be seen that there are no spurious terms in the constraint equations since each constraint
equation contains the contributions from the axial and transverse displacement fields. Thus, by using the
proposed displacement fields it is possible to recover the inextensible bending mode of the curved beam
element, which ensures that the proposed interpolations are free from the membrane locking.

The incremental principle of virtual work at time t+Dt with respect to the reference configuration at time t in
the Updated Lagrangian description can be written asZ

tL

dðtUÞ þ dðtW intÞ þ dðtW inertÞ þ dðtW extÞ
� �

dx3 ¼ 0, (5)

where

dðtUÞ ¼ tE
tAt�dðt�Þ þ

X2
i¼1

tE
tI itoidðtoiÞ þ tG

tJtZdðtZÞ,

dðtW intÞ ¼
tTdðt�Þ þ

X2
i¼1

tMidðtoiÞ þ
tM3dðtZÞ,

dðtW inertÞ ¼
tþDtr tþDtA

X3
i¼1

tþDt €uidðtuiÞ þ
X2
i¼1

tþDtI it
€yidðtyiÞ þ

tþDtJt
€y3dðty3Þ

 !
,

dðtW extÞ ¼ �
X3
i¼1

tþDtf idðtuiÞ;

and d is the variational operator, tE and tG are the tangent Young’s and shear modulus, tA is the area of cross
section, tIi (i ¼ 1,2) and tJ are the moments of inertia and the polar moment of inertia of cross section, tT is the
tension, tMi (i ¼ 1,2,3) are the bending and torsional moments, t+Dtr is the material density and t+Dtfi is the
distributed force along the beam, respectively.

By substituting Eqs. (2)–(3) into Eq. (5), we derive the discretized finite element equation of motion of the
curved beam element,

½ttM�ft €ug þ ½
t
tC�ft _ug þ ½

t
tK�ftug ¼ f

tþDtFg � ftFSg � f
tFI g, (6)

where ½ttM�; ½
t
tC�; ½

t
tK� are the mass, damping and stiffness matrices, ft €ug; ft _ug; ftug are, respectively, the

acceleration, velocity and displacement vectors, and ftþDtFg; ftFSg; f
tFI g are the external, initial stress, and

inertia load vectors, respectively. The damping matrix is the Rayleigh damping matrix [16], so

½ttC� ¼ av½
t
tM� þ bv½

t
tK�; av ¼

4pf 1f 2ðf 2x1 � f 1x2Þ

f 2
2 � f 2

1

; bv ¼
f 2x2 � f 1x1
pðf 2

2 � f 2
1Þ

, (7)

where av and bv are the Rayleigh damping coefficients, f1 and f2 are the lower and upper bound frequencies of
interest in Hz, and x1 and x2 are the corresponding critical damping ratios, respectively.

3. Accuracy of implicit representation of rigid body modes

The accuracy of the implicit representation of rigid body modes of the displacement interpolations for the
three-node curved beam element in Eq. (3) is examined by using the polynomial approximation of the rigid
body modes. The six rigid body modes of the curved beam element in space can be expressed as
(i)
 in-plane translation modes:

tu1 ¼ c1 cosðtkx3Þ þ c2 sinðtkx3Þ,
tu3 ¼ c1 sinðtkx3Þ � c2 cosðtkx3Þ, ð8aÞ
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out-of-plane translation mode
(ii)
tu2 ¼ c3, (8b)
(iii)
 in-plane rotation

tu3 ¼ c6, (8c)
(iv)
 (iv) out-of-plane rotation

tu2 ¼ c4 sinðtkx3Þ þ c5 cosðtkx3Þ,
ty1 ¼ � c4

tk cos ðtkx3Þ þ ct
5k sinðtkx3Þ,

ty3 ¼ � ct
4k sinðtkx3Þ � c5

tk cosðtkx3Þ, ð8dÞ
where ci (i ¼ 1,2,y6) are the constants representing the rigid body modes of the six degrees of freedom.
Substituting Eq. (8) into Eq. (2) will generate zero strains, i.e., they are rigid body modes. By expanding and

approximating the trigonometric terms in Eq. (8) with the elemental interpolation functions in Eq. (3),
we obtain

tu1 � c1 1�
1

2
ðtkx3Þ

2
þ

1

24
ðtkx3Þ

4

� �
þ c2 ð

tkx3Þ �
1

6
ðtkx3Þ

3
þ

1

120
ðtkx3Þ

5

� �
, (9a)

tu2 � c3 þ c4 ð
tkx3Þ �

1

6
ðtkx3Þ

3
þ

1

120
ðtkx3Þ

5

� �
þ c5 1�

1

2
ðtkx3Þ

2
þ

1

24
ðtkx3Þ

4

� �
, (9b)

tu3 � c1 ð
tkx3Þ �

1

6
ðtkx3Þ

3
þ

1

120
ðtkx3Þ

5

� �
� c2 1�

1

2
ðtkx3Þ

2
þ

1

24
ðtkx3Þ

4
�

1

720
ðtkx3Þ

6

� �
þ c6, (9c)

ty1 � �c4
tk 1�

1

2
ðtkx3Þ

2
þ

1

24
ðtkx3Þ

4

� �
þ ct

5k ð
tkx3Þ �

1

6
ðtkx3Þ

3

� �
, (9d)

ty2 ¼ 0, (9e)

ty3 � �c4
tk ðtkx3Þ �

1

6
ðtkx3Þ

3
þ

1

120
ðtkx3Þ

5

� �
� ct

5k 1�
1

2
ð
tkx3Þ

2
þ

1

24
ð
tkx3Þ

4

� �
. (9f)

Eq. (9) is the best approximation of the rigid body modes that can be represented by the displacement
interpolation functions given in Eq. (3) for the three-node curved beam element.

Substituting Eq. (9) into the linear portion of the membrane strain and curvature changes in Eq. (2) leads to

t� ¼ tZ ¼ 0,

to1 ¼ �c4
ðtkÞ2

120
ðtbÞ5 � c5

ðtkÞ2

24
ðtbÞ4; to2 ¼ c1

ð
tkÞ2

24
ðtbÞ4 þ c2

ð
tkÞ2

120
ðtbÞ5, (10)

where (tb) ¼ tktL is the angle subtended by the element. Eq. (10) shows that the approximation of rigid body
modes gives zero membrane and torsional strain but non-zero bending strain. For instance, the approximation
of translational displacement causes zero membrane strain but non-zero bending strain. The corresponding
non-zero bending strain energy is

tU ¼ fc2; c1; c4; c5g
T

tKi 0

0 tKi

� � c2

c1

c4

c5

8>>><
>>>:

9>>>=
>>>;
; tKi ¼

tE
tI ið

tkÞ3ðtbÞ9

2851200

18ðtbÞ2 99ðtbÞ

99ðtbÞ 550

" #
. (11)
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As the element size decreases, the subtended angle (tb) decreases. Consequently the non-zero bending strain
energy in Eq. (11) caused by the implicit representation approaches zero at the rate of 9th order as the length
of the beam approaches zero. Therefore, the displacement interpolation functions of the curved beam element
satisfy the implicit representation of the rigid body modes. The higher the order of the interpolation functions
of the element, the less the error in recovering the rigid body mode and the faster the convergence to the
correct rigid body modes as the element length approaches to zero. Finally, from Eq. (11) it can also be seen
that the interpolation functions of displacement in Eq. (3) will give the correct rigid body modes as the
curvature of the element approaches zero.

4. Numerical examples

4.1. Recovery of rigid Body modes of free circular arc

Consider the vibration of a free circular arc. Let its shape vary from a half-circular arc to a straight beam.
The corresponding angle b subtended by the arc ranges from p to zero. The frequencies of the first seven
modes are calculated by using our newly developed element. Theoretically, the six lowest modes of the free arc
should be rigid body modes with zero frequency. As expected from Eq. (11), the new element recovers all six
rigid body modes for the straightened beam (b ¼ 0 and k ¼ 0). For b ¼ p/4, the new element recovers five zero
frequency modes accurately. The sixth zero frequency mode is recovered approximately. As the subtended
angle b increases to p, only two zero frequency modes are recovered accurately and the rest four zero
frequency modes are recovered approximately. Shown in Fig. 2 are the results of approximately recovered zero
frequency modes as a function of the slenderness ratio L/d of the arc, where L and d are the length and the
depth of the arc cross-section. All the results are normalized by the frequency of the lowest mode of non-rigid
body modes (7th mode). It is found that the implicit representation is accurate at low to moderate values of the
slenderness ratio (L/dp1 0 0). For instance, the maximum error margin is less than 0.5% for b ¼ p/4, 1.7%
for b ¼ p/2, and 2.8% for b ¼ p compared with the frequency of the lowest mode of non-rigid body mode. At
L/dp105, the maximum error margin is less than 17% for b ¼ p/4, 16% for b ¼ p/2, and 25% for b ¼ p.
Although the accuracy of the rigid body modes recovered when the beam is extremely thin is not good, the
results in the following example will demonstrate that even in this case there is no significant error in
predicting the natural frequencies of the non-rigid body modes

4.2. Convergence and locking check

In the second example we examine the convergence and anti-membrane locking characteristics of the newly
developed element in predicting the natural frequencies of curved structures. Consider the free vibration of a
Fig. 2. Recovery of rigid body modes using one new curved beam element. half circular, quarter circular, and one eighth

circular.
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full circular ring. The vibration of the circular ring can be divided into four modes: flexural in-plane, flexural
out-of-plane, axial extensional and torsional vibrations. The fundamental frequencies of the extensional and
torsional vibrations are much higher than the inextensible flexural vibration. In order to compare our work
with an existing theoretical solution [17], the rotation inertia is neglected but the rotary inertia associated with
the beam twisting about its own axis is included. In Table 1 are shown the non-dimensional natural
frequencies (Oi ¼ 2pfiR

2/(EI/rA)1/2) of the first three modes of the extensional, torsional, in-plane and out-of-
plane vibrations. The extensional and torsional modes converge with only two elements. With 10 new
elements, the flexural modes converge with a maximum discrepancy less than 0.1%. Next, the natural
frequencies of flexural in-plane modes are calculated as a function of different slenderness ratios of the ring
ranging from moderately thick to extremely thin. Shown in Fig. 3 are the different frequencies of the flexural
in-plane modes as a function of slenderness ratio predicted by using the newly developed curved beam
element, a tetrahedral solid p-element and thin beam theory. The thin beam theory neglects the effect of the
rotation inertia of the beam and its prediction of natural frequencies of flexural modes is independent of
the slenderness ratio (the solutions from thin beam theory are shown as flat dotted-lines in Fig. 3). However,
the predictions of the solid element theory show that the effect of the rotation inertia of beam is no longer
negligible for a moderately thick beam (L/dp40). The natural frequencies of the flexural modes decrease as
the slenderness ratio decreases. The higher the natural frequency, the more significant the effect of the rotation
Table 1

Non-dimensional natural frequencies of a full circular ring

Element no. Extension Torsion In-plane bending Out-of-plane bending

Mode 1 Mode 1 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

2 200.001 141.421 2.956 12.278 2.773 8.665

3 200.001 141.421 2.699 8.020 16.763 2.688 7.785 16.323

4 200.000 141.421 2.683 7.681 15.203 2.640 7.617 14.845

5 200.000 141.421 2.683 7.595 14.736 2.621 7.573 14.627

6 200.000 141.421 2.683 7.590 14.587 2.614 7.528 14.573

7 200.000 141.421 2.683 7.590 14.558 2.610 7.506 14.518

8 200.000 141.421 2.683 7.589 14.556 2.609 7.495 14.482

9 200.000 141.421 2.683 7.589 14.553 2.608 7.489 14.461

10 200.000 141.421 2.683 7.589 14.552 2.607 7.485 14.449

Theory [17] 200.000 141.421 2.683 7.589 14.552 2.606 7.478 14.425

Fig. 3. Natural frequencies of the flexural in-plane modes of a full circular ring: - - - - - - - theory [17], new curved beam element, and

W tetrahedral solid p-element.
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inertia. The newly developed curved beam element is based on a thin beam assumption, but includes the effect
of the rotational inertia. It is shown that the predictions of the newly developed curved beam element agree
exactly with the theoretical solution for a thin beam in cases ranging from extreme slenderness ratios
(L/dp105) to the moderate thick region (L/d ¼ 40) without any locking. In the region of low slenderness
ratios (L/dp40), the predictions of the newly developed curved beam element are in good agreement with the
predictions from solid elements without any locking. The small discrepancy between the new curved beam
element and the solid element is due to the shear deformation of the cross-section of beam and not due to the
membrane locking. The results shown in Table 1 and Fig. 3 also indicate that the error in recovering the rigid
body modes caused by the implicit representation does not affect the prediction accuracy of the frequencies of
the non-rigid body modes.

4.3. Experimental validation—Free vibration of a cantilever beam

Consider the cantilever beam shown in Fig. 4. The parameters of the selected test beam are:
Length, L ¼ 1150mm; cross-section area, A ¼ 25.19mm2; Moment of inertia, I ¼ 96.86mm4; polar

moment of inertia, J ¼ 193.72mm4; young’s modulus, E ¼ 2900Mpa; and density, r ¼ 1.25� 10�6 kg/mm3.
The beam was initially bent by a point load applied laterally at its free end. The load was then suddenly
released and the beam was allowed to vibrate freely. The free vibration of the by beam was captured by using a
high-speed digital camera at every 1/125 s. The camera resolution was set to 480� 420 pixels and the image
data were sent to a computer for post-processing. The measured beam length on the image plane was 366
pixels. Thus, the image resolution is 1150/366 ¼ 3.14mm/pixel. The error margin of the image measurement is
70.5 pixels. Hence, the accuracy of the experiment measurement is 71.57mm. The experimental
measurements captured from the motion images are shown in Figs. 5 and 6. Shown in Fig. 5 are the
successive positions of the beam, showing that the beam experienced large displacement and rotation. Shown
in Fig. 6 are the measured time histories of the tip displacements of the beam in the axial and transverse
directions, From the experimental data in Fig. 6 it can be seen that the frequency of the vibrating beam is
1.25Hz, which is very close to the theoretical prediction of 1.26Hz for this cantilever beam [16]. By using
logarithmic decrement on the data in Fig. 6 the damping ratio was estimated to be 3.8% [16].

The finite element analysis of the beam was earned out by using four newly developed curved beam
elements. The equation of motion in Eq. (6) was solved numerically by the Predictor–Corrector method using
the Newmark time stepping scheme with Newton–Raphson iteration [18]. The parameters for time integration,
such as the time step, the spectral radius of numerical damping and Rayleigh damping coefficients, were
chosen carefully by examining the dynamic characteristics of the vibrating beam. From the experimental data
(Fig. 6) the lowest natural frequency of the vibrating beam is close to 1.25Hz with a damping ratio of 3.8%.
Fig. 4. Scheme of experimental setup.
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Fig. 5. Comparison of measured and predicted beam positions: finite element prediction, and experimental measurement.

Fig. 6. Time history of tip displacement of beam; finite element prediction, and experimental measurement.
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The highest natural frequency of the beam that can be calculated by using the finite element model, which is
limited because of the discretization, is 842.5Hz and this is the frequency of the membrane mode. The
membrane damping is usually low and is assumed as 1.0% of critical damping. By substituting the above
upper and lower frequencies and the corresponding damping ratios into Eq. (7), we obtain the Rayleigh
damping coefficients to be avE0.6 and bvE10�5 over the frequency range from 1.25 to 842.5Hz. In addition,
the work by Kuhl and Crisfield [19] demonstrated that the Newmark integration scheme with the spectral
radius rN ¼ 1.0 is sometime unstable in the nonlinear elastodynamic problem. A lower value of the spectral
radius rNo1.0 is required to maintain numerical stability. However, this selection would result in a decrease
of the total energy in the system . Consequently, a spectral radius of numerical damping of rN ¼ 0.9 was
selected to provide the minimum numerical damping required to dissipate the spurious high frequency
components, while minimizing the loss of the total energy. Finally, the finite element discretization of the beam
results in a smallest modal period of 1/842.5 ¼ 0.0012 s. A stable time step needs to be about one-tenth of the
smallest period [20]. Thus, the time integration step was set to 10�4 s for our finite element analysis.

The positions of the vibrating beam predicted by the finite element analysis are shown in Fig. 5 along with
the experimental measurements. The finite element predictions and experimental measurements are in
good agreement. Next, the predicted time histories of the tip displacements of the beam are shown in Fig. 6
with the experimentally measured displacements. Again, the finite element results agree with the experimental
data very well.
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5. Conclusion

In this work, we examined the dynamic characteristics of a new three-node curved beam element. The
displacement interpolation functions of the curved beam element are based on a field consistency interpolation
method and they satisfy the inextensible bending condition explicitly. Our effort shows that the resulting
displacement interpolation functions will generate no membrane and torsional strains as expected except the
flexural strain where the higher order non-zero terms approach zero at 4th order as the length of the element
decreases. Accordingly, the displacement interpolation functions of the curved beam element satisfy the rigid
body mode condition implicitly. In the case of a straight element, the displacement interpolation functions
represent the rigid body terms explicitly and the error disappears. The numerical example of a free circular are
shows that by using the implicit representation of the rigid body modes, it is possible to recover the rigid body
modes, when the curved beam slenderness ratio is in the low to moderate range. The maximum error margin in
these cases is 2.8%, even with a 1801 (half-circular) element, In the example of a full circular ring, the accuracy
in predicting the frequencies of non-rigid body modes was within 0.1%. The experimental work involving the
vibration of a cantilever beam further demonstrated that the curved beam element is accurate and robust in
analyzing this class of problems. It is concluded from the numerical and experimental works that the
satisfaction of the rigid body mode condition implicitly in displacement interpolation functions of the curved
beam element will not affect the accuracy and capability of the element in dynamic applications.
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