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Abstract

Slip damping is a mechanism exploited for dissipating noise and vibration energy in aerodynamic and machine

structures. Such slip in layered structures can be simulated by applying pressure to hold the members together at the

interface. However, while most analyses of the mechanism assume an environment of uniform pressure at the interface,

experiments to date have confirmed that this is rarely the case. There have been recent attempts to relax the restriction of

uniform interface pressure to allow for more realistic pressure profiles that are encountered in practice. However, such

works have mostly been limited to static loading for which it has been established that the interfacial pressure gradient does

play a dominant role in modulating the level of energy dissipation. This paper is an attempt to extend such analyses to

account for cases of realistic dynamic loading that drive such structural vibration in the first instance. In particular, it is

shown that under dynamic loads, frequency variation more than non-uniformity in the interface pressure can have

significant effect on both the energy dissipation and the logarithmic damping decrement associated with the mechanism of

slip damping in such layered structures.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Following the requirements of modern technology, there is increasing demand for machine tools with high
stiffness, high damping capacity and light weight. Such requirements necessitated and popularised the use of
welded and bolted layered cantilever beams as structural members. In the alternative cast layered cantilever
beams can be used, but unfortunately, these are more expensive to produce. As a result, the deployment of
welded and bolted layered beams is becoming increasingly common in the machine tool industry. Thus
illustrations abound of links of the cantibeam model with real mechanical systems; one common case of
practical significance is where a portion of a machine frame containing beam members is subjected to the
action of bending load where the beam is fastened to a vertical or horizontal member at one end via bolted
connections. Another example is in the line of industrial design of power plants, where the mounting of a gas
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

b width of laminated beam
d
dx

differential operator
E modulus of rigidity
F applied end force amplitude
h depth of laminated beam
I moment of inertia
L length of laminated beam
P clamping pressure at the interface of the

laminated beams
t time coordinate
u1 displacement of the lower laminate
u2 displacement of the upper laminate
W dynamic response
WF transverse response in Fourier plane

x space coordinate along the beam interface
z space coordinate perpendicular to the

beam interface

Greek letters

m coefficient of friction at the interface of
the laminated beams

x dummy variable
r density of laminate material
(sx)1 bending stress at the upper half of the

laminates
(sx)2 bending stress at the lower half of the

laminates
txz shear stress at the interface of the

laminated beams
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turbine blade root in the holder (hub), can be well posed as a satisfactory idealisation of clamped sandwich
elastic beams under harmonic excitation or bending load. In fact, this was one of the earliest contexts in which
the problem was examined in the literature by Goodman and Klumpp [1].

Service failures of gas turbine blades can, in many cases, be attributed to high stresses accompanying
resonant vibration. Such stresses are known to reduce not only the fatigue life of the blades in gas turbines but
can cause damage even in cases of machine tool structures and equipment. This is particularly important for
cases where in the construction of such machines, many of the components are fabricated in sections as built
up beams or plates that are held together by bolted joints.

Consequently, the mechanism of damping as a means of controlling undesirable effects of vibration has
received considerable attention in the literature over the years either in the context of aerodynamic structures
or within the machine tool industry. There are in fact, several ways of effecting such damping; including the
introduction of either constrained, unconstrained and even viscoelastic layers. One of such techniques is
layered construction made possible by externally applied pressure that holds the members together at the
interface. Under such circumstances, the profile of the interface pressure assumes a significant role, especially
in the presence of slip, to dissipate the vibration energy. Another way of getting rid of unwanted vibration is
through material damping as characterised by the strain energy of the structural member.

Within the context of the cantilever beam, one of the earliest works on slip damping is attributed to
Goodman and Klumpp and although they are credited as the originators of the theory of slip damping, the
topic has continued to attract the attention of researchers over the years. In fact, previous investigators such as
Cockerham and Symmons [2], Hess et al. [3] and Gyran et al. [4] considered various friction and excitation
models, while Barnett et al. [5] and Maugin et al. [6] considered interfacial or slip waves between two surfaces.
The effect of viscoelasticity was also investigated by Gosz et al. [7] in the context of fiber-reinforced
composites.

The nature of the interface pressure profile across the beam layer is a separate and important issue
that has also received some attention over the years. Indeed, there are several ways of simulating such
interfacial pressure including mechanisms such as bonded (welded) connections or the use of bolted
connections and even bonded–bolted connections placed at appropriate locations along the laminate interface.
Notwithstanding the importance of this issue, almost all previous analytical works have assumed a uniform
pressure profile across the interface. However several workers, especially in the machine tool literature have
tried to measure the actual nature of the pressure that is generated by investigating various forms of securing
the layers.

Following the work of Goodman and Klumpp, early workers, such as Masuko et al. [8], Nishiwaki et al.
[9,10], Motosh [11] had assumed uniform or constant intensity of pressure distribution at the interface of such
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layered structures without considering the effects of surface irregularities and asperities. In metal-forming
process of elastic beam structures, for example, surface irregularities appear in the form of microscopic
structural composition defects arising from varying dislocation density especially in the region of plastic
deformation. When such elastic structures are fastened via bolted connections, stress variation through the
contacting layers occurs and tends to be maximum in the asperity junctions, which ultimately result in varying
pressure distribution at the interface. Another property resulting from the handling of metals that can also
affect the pressure distribution along such interface is the degree of alignment between the directions of lay on
the surfaces of the two metal slices that define the laminate interface. In particular, when the direction of lay
along the interface of different but adjoining slices of beam laminates are not properly aligned, such laminates
do not make uniform contact when fastened together, resulting in variation in pressure distribution along the
interface.

In fact, early studies from several authors such as Ferlund [12], Lardner [13], Sidorov [14],
El-Zahry [15], Kaboyashi and Matsubayashi [16,17], Tsai and Chou [18], Shin et al. [19] and Song
et al. [20] reported on the actual experimental values obtained for the pattern and intensity of pressure
distribution at the interface of bolted joints and presented the corresponding damping characteristics for
plates and shells.

In particular, Gould and Mikic [21]; Ziada and Abd [22] reported that the pressure distribution at the
interface of a bolted joint is parabolic and has a circular influence zone circumscribing the bolt. The pressure
profile was also reported to be independent of the tightening load applied.

Following the reported experimental results on the nature of the interfacial pressure distribution, recent
workers have investigated the effect of non-uniformity in the pressure at the interface on the damping
characteristics of such structures. Such analysis includes the work of Nanda and Behera [23,24].

On the analytical side, Hansen and Spice [25] have investigated the structural damping in laminated beams
due to interfacial slip. In their formulation, a model in which slip can occur along the interface was analysed
for a two-layered plate under the assumption that an adhesive layer of negligible thickness and mass, bonds
the two adjoining surfaces such that a restoring force that is proportional to the amount of slip is created by
the adhesive medium.

With the introduction of composite materials and the possible beneficial effects it can have on slip damping,
several authors have revisited the problem of layered or jointed structures subjected to uniform pressure
distribution. In this regard, Nanda [26] studied the effect of structural members under controlled dynamic slip
while Nanda and Behera examined the problem of slip damping of jointed structures with connection bolts as
found in machine structures [27]. Nanda and Behera [23,24,28] went further to studying the distribution
pattern of the interface pressure as well as the damping capacity of such layered and jointed structures by
carrying out both numerical analysis and experiments to ascertain the effects of a number of layers, diameter
of bolts and use of washers.

One of the difficulties encountered in earlier analyses of this problem is the assumption of uniform pressure
profile at the interface of the layers. Experiments and earlier analysis had clearly shown [12–15] that this was
rarely the case. In fact, Gould and Mikic [21] and Ziada and Abd [22] established that the pressure distribution
at the interface of bolted joints is parabolic in nature and its influence zone is roughly 3.5 times the diameter of
the connecting bolt through which the restraining torque is applied. In particular, Nanda and Behera in their
paper [27] were able to establish a polynomial expression for the resultant interface pressure emanating from
such a bolt. However they went further than this by using Dunn’s curve fitting software to calculate the exact
spacing between bolts that would result in a uniform interfacial pressure distribution along the entire length of
the beam. Using the exact spacing of 2.00211 times the diameter of the connecting bolts, Nanda and Behera
were able to simulate an environment of uniform interface pressure and thereafter investigated the behaviour
of dynamic slip damping.

The theoretical expression derived by Nanda and Behera in Ref. [27] for the pressure distribution at the
interface of a bolted joint was obtained by curve fitting the earlier data reported by Ziada and Abd [22]. In
particular, by postulating, a priori, an even function, they obtained an eighth-order polynomial in terms
of the normalized radial distance from the centre of the bolt such that the function assumes its maximum
value at the centre of the bolt and decreases monotonically radially. Their result also indicated that apart from
the first two terms, the coefficients obtained for the polynomial were relatively insignificant. This suggests
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that for a cantilever beam where interface pressure is effected through use of bolted joints, a linear
profile radiating from the clamped end can be reasonably postulated as a first-order approximation
for the pressure distribution across the interface. The argument here is not based on the pressure distri-
bution profile around a single bolt but rather that if in actual practice a fairly uniform pressure
can be achieved by carefully deploying a set of such bolts as was done by Nanda and Behera, further clamping
of the built-in end of the cantilever that is usually used in experiments will superpose greater clamping
pressure at the built-in end than at the free end, and such variation can, as in this case, be modelled as linear
variation.

Furthermore, by following the method used by Nanda and Behera for simulating uniform interfacial
pressure distribution, one mechanism for simulating a pressure gradient where the beams are held together by
bolts, as in the case of Ziada and Abd, is to progressively vary monotonically (linearly for this case) the
tightening torque on the securing bolts as one moves away from the clamped end to the free end of the
cantilever beam. In any case, it is unlikely that the restraining torque on all the bolts can remain constant over
time in actual practice.

The effect of non-uniform interface pressure distribution on the mechanism of slip damping for layered
beams was also recently examined by Damisa et al. [29] but their analysis was limited to the case of static load.
In particular, while the investigation by Damisa et al. [29] was limited to the case of linear pressure profile, the
analysis in Olunloyo et al. [30] included other forms of interfacial pressure distributions such as polynomial or
hyperbolic representations but the results obtained demonstrated that the effects of such distributions in
comparison with the linear profile were largely incremental in nature and no fundamental differences were
found. This provides additional justification for the linear pressure profile selected for the present
investigation.

The aim of the present work is to extend our earlier analysis to cover the case of dynamic load so as to
unravel the effect of the interplay between non-uniformity in interfacial pressure on the one hand as well as the
frequency of the driving load on the other in the context of energy dissipation and logarithmic damping
decrement.
2. Problem definition

As illustrated in Fig. 1, the problem here is to examine analytically the effect of the nature of load, frequency
variation and the pressure gradient on
(i)
 the dynamic response of a clamped layered beam made from the same material and held together by some
externally applied non-uniform force,
(ii)
 the profile of interfacial slip,

(iii)
 the slip energy dissipation under dynamic conditions, and

(iv)
 the logarithmic damping decrement associated with the mechanism of slip damping in such layered

structures.
F = F(t)

(1) 

(2) 

P0 (x)

P0 (x)

h

hE, �

F (t) =  (a) F0H (t-t0)

(b) F0ei�t

z

x

Fig. 1. Coordinate axes and geometry for layered beam from same material under dynamic load.
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A general theory of the energy dissipation properties of press-fit joints in the presence of coulomb friction as
originally developed by Goodman and Klumpp provides the basis for the physics of the problem. The contact

conditions between the two layers are:
(i)
 there is continuity of stress distributions at the interface to sufficiently hold the two layers together both in
the pre- and post-slip conditions,
(ii)
 a stick elastic slip with presence of coulomb friction occurs at the interface of the sandwich elastic beams to
dissipate energy and does not remain constant as a function of some other variable such as spatial
distance, time or velocity.
3. The dynamic response for linear interface pressure profile

For the case of layered beam of similar material, Osheku [31] has shown that the governing equation of
motion can be written in the form:

q4W

qx4
þ b

q2W
qt2
¼ a

dPðxÞ

dx
, (1)

where the following parameters have been defined viz:

a ¼
6m

Eh2
; b ¼

rbh

EI
.

We now introduce the Laplace transform namely:

ð~�Þ ¼

Z 1
0

ð�Þe�st dt; ð�Þ ¼
1

2pi

Z Zþi1

Z�i1
ð�Þest ds. (2)

When we take the Laplace transform of Eq. (1), we obtain:

d4 ~W ðx; sÞ

dx4
þ bðs2 ~W ðx; sÞ � sW ð0Þ � _W ð0ÞÞ ¼

a
s

dP

dx
. (3)

We limit our analysis for now to the case of linear pressure variation along the laminate interface namely:

PðxÞ ¼ P0 1þ
�

L
x

� �
,

so that on substitution for the pressure in Eq. (3), we obtain

d4 ~W ðx; sÞ

dx4
þ bðs2 ~W ðx; sÞ � sW ð0Þ � _W ð0ÞÞ ¼

a
s

P0�

L
. (4)

We next introduce the Fourier finite sine transform

½�� ¼

Z L

0

½�� sin
npx

L
dx; ½�� ¼

2

L

X1
n¼1

½�� sin
npx

L
. (5)

By invoking the following Fourier finite sine transform namely:

Isð ~W xxxxðx; sÞÞ ¼
n4p4

L4
~W

F
ðln; sÞ �

n3p3

L3
ð ~W ð0; sÞ þ ð�1Þnþ1 ~W ðL; sÞÞ

þ
np
L
ð ~W xxð0; sÞ þ ð�1Þ

nþ1 ~W xxðL; sÞÞ ð6Þ

and the boundary conditions at the clamped end of the beam in the Laplace transform plane as

~W ð0; sÞ ¼
d

dx
~W ð0; sÞ ¼

d2

dx2
~W ðL; sÞ ¼ 0, (7)
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we may use the first and third conditions in the preceding equation to reduce Eq. (6) to

Isð ~W xxxxðx; sÞÞ ¼
n4p4

L4
~W

F
ðln; sÞ �

n3p3

L3
ð�1Þnþ1 ~W ðL; sÞ þ

np
L

~W xxð0; sÞ, (8)

so that on assuming zero initial conditions for W, we obtain the Fourier sine transform of Eq. (3) as

n4p4

L4
~W

F
ðln; sÞ þ bs2 ~W

F
ðln; sÞ ¼

a
s

P0�

np
ð1þ ð�1Þnþ1Þ

þ
n3p3

L3
ð�1Þnþ1 ~W ðL; sÞ �

np
L

~W xxð0; sÞ. ð9Þ

To further simplify Eq. (9), we can proceed to evaluate the term ~W xxð0; sÞ by applying the Goodman and
Klumpp end condition in the spatial-state form asZ h

0

tðxzÞ1 ðx; tÞ ¼
f ðtÞ

2b
at x ¼ L. (10)

By using the out-of-plane shear stress relation namely

tðxzÞ1ðx; tÞ ¼
1

2
Eðz2 � hzÞW xxxðx; tÞ �

mP

h
ðz� hÞ, (11)

we now rewrite Eq. (10) in the Laplace transform plane asZ L

0

Z h

0

1

2
Eðz2 � hzÞ ~W xxxðx; sÞdzdx�

Z L

0

Z h

0

mP

h
ðz� hÞdzdx ¼

Z L

0

~F ðsÞ

2b
dx. (12)

Integration of this equation then reveals that the bending moment of the Euler–Bernoulli’s clamped laminated
beams admits the form:

~W xxð0; sÞ ¼
6 ~F ðsÞ

Ebh3
�

1

s

6mP0

Eh2
�

6mP0�

sEh2

� �
L. (13)

This result clearly indicates that the value for expression (13) cannot be fully determined until the forcing
function f(t) is fully specified. Consequently, we limit our analysis to the following cases namely:
(a)
 f ðtÞ ¼ F 0Hðt� t0Þ,

where H(t) is the Heaviside function and
(b)
 f ðtÞ ¼ F 0e
iot.
4. Case of heaviside loading function

For this case, the forcing function is f ðtÞ ¼ F 0Hðt� t0Þ and we evaluate the Laplace transform as
~F ðsÞ ¼ ðF 0=sÞe�t0s � F 0

~HðsÞ.
By recalling the only unutilised boundary condition in Eq. (7), viz ðd=dxÞ ð ~W ð0; sÞÞ ¼ 0 and guided by the

Laplace transform, we rewrite the bending moment as

~W xxð0; sÞ ¼
6F0

~HðsÞ

Ebh3
�

1

s

6mP0

Eh2
�

1

s

6mP0�

Eh2

� �
L. (14)

Hence, the corresponding response of the Euler–Bernoulli’s laminated beam in the Fourier–Laplace transform
plane as presented in Eq. (9) admits the form:

~W
F
ðln; sÞ ¼

n3p3

L3
ð�1Þnþ1s ~W ðL; sÞ �

np
L

6F0

Ebh3
�

6mP0

Eh2
�

6mP0�

Eh2

� �
Lþ

aP0�

np
ð1þ ð�1Þnþ1Þ

� �
bsðs� ionÞðvÞ

, (15)
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where o2
n ¼ n4p4=bL4 is the natural frequency of vibration of the clamped laminated beam as can be derived

by setting the right-hand side of Eq. (9) to zero.
Our next step is to evaluate the Fourier inversion of Eq. (15) as

~W ðx; sÞ ¼

2s ~W ðL; sÞ
P1
n¼1

ð�1Þnþ1
sin npx̄

np
þ

2L3

32
aP0�

P1
n¼1

sin 2npx̄

n5p5
� 2L3 6F 0

Ebh
�

6mP0

Eh2
�

6mP0�

Eh2

� �P1
n¼1

sin npx̄

n3p3

� �

bsðs� ionÞðsþ ionÞ
L4

n4p4

.

(16)

To further simplify the series in Eq. (16), we invoke the well-known closed-form Fourier series representations
namely:

x̄ ¼
1

p

X1
n¼1

ð�1Þnþ1

n
sin npx̄; 8 0ox̄o1; (17a)

X1
n¼1

sin nx̄

n3
¼

p2x̄
6
�

px̄2

4
þ

x̄3

12
8 0ox̄o2 (17b)

and

X1
n¼1

sin nx̄

n5
¼

p4x̄
90
�

px̄3

36
þ

px̄4

48
�

x̄5

240
8 0ox̄o2. (17c)

Consequently, we can write Eq. (16) in the form:

~W ðx̄; sÞ ¼

2s ~W ðL; sÞx̄� 2L3 6F0

Ebh3
�

6mP0

Eh2
�

6mP0�

Eh2

� �
x̄

6
�

x2

4
þ

x̄3

12

� �

bsðs� ionÞðsþ ionÞ
L4

n4p4

0
BB@

1
CCAþ

L33

8

mP0�

Eh2

x̄

45
�

2x̄3

9
þ

x̄4

3
�

2x̄5

15

� �

bsðs� ionÞðsþ ionÞ
L4

n4p4

0
BB@

1
CCA

8>><
>>:

9>>=
>>;.

(18)

By imposing the boundary condition q ~W ð0; sÞ=qx̄ ¼ 0 in Eq. (18), we can evaluate the deflection at the end of
the laminated Euler–Bernoulli’s cantilever beam in the Laplace domain as

~W ðL; sÞ ¼
L3

s

F0

Ebh3
�

mP0

Eh2
�

mP0�

Eh2

� �
�

L3

s

3

ð16Þð45Þ

mP0�

Eh2

� �� �
. (19)

Thus, we can now express Eq. (18) in the form:

~W ðx̄; sÞ ¼

L3 F 0

Ebh3
�

mP0

Eh2

� �
ð3x̄2 � x̄3Þ þ

mP0�

Eh2
�3x̄2 þ

11x̄3

12
þ

x̄4

8
�

x̄5

20

� �� �

bsðs� ionÞðsþ ionÞ
L4

n4p4

. (20)

By invoking Laplace inversion

W ðx̄; tÞ ¼
1

2pi

Z Zþi1

Z�i1

~W ðx̄; sÞest̂ ds, (21)

where

t̂ ¼ t� t0,

we find the dynamic response in state-space domain as

W̄ ðx̄; tÞ ¼ F1ðtÞ ð1� mP̄0Þð3x̄2 � x̄3Þ þ mP̄0� �3x̄2 þ
11x̄3

12
þ

x̄4

8
�

x̄5

20

� �� �
(22)
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and

F 1ðtÞ ¼ ð1� cos 2ptÞ,

where the following non-dimensionalised parameters have been introduced viz:

W̄ ðx̄; tÞ ¼
W ðx̄; tÞEbh3

L3F
; P̄0 ¼

P0

ðF=bhÞ
(23a)

and

t̂ ¼
2pt
on

. (23b)

A casual examination of this result reveals that we can in fact extract the stationary solution as the earlier
result reported for the case of static loading in Ref. [29] viz:

W̄ ðx̄Þ ¼ ð1� mP̄0Þð3x̄2 � x̄3Þ þ mP̄0� �3x̄2 þ
11x̄3

12
þ

x̄4

8
�

x̄5

20

� �� �
.

4.1. Analysis of dynamic slip

As pointed out by Goodman and Klumpp [1], when microscopic slip occurs, there is relative displacement of
points on opposite sides of the interface in the slipped region.

The dynamic relative slip at the interface of the laminated beam now reads:

Duðx; tÞz¼0 ¼ u1ðx; 0
þ; tÞ � u2ðx; 0

�; tÞ, (24)

from which we rewrite relation (24) as

Duðx; tÞz¼0 ¼ E�1
Z x

0

fðsxÞ1ðx; 0
þ; tÞ � ðsxÞ2ðx; 0

�; tÞgdx, (25)

where x is a dummy axial spatial variable of integration across the interface; 0+, 0� denote the origin of the
transverse spatial variable for each layer and t is the time (state) variable.

We can in fact express the corresponding bending stress relations in state-space domain as

ðsxÞ1ðx; z; tÞ ¼ �
Eð2z� hÞ

2

q2W ðx; tÞ
qx2

þ
mPavðx� LÞ

h
(26a)

and

ðsxÞ2ðx; z; tÞ ¼ �
Eð2zþ hÞ

2

q2W ðx; tÞ

qx2
�

mPavðx� LÞ

h
, (26b)

so that Eq. (25) can be rewritten in the form:

Duðx̄; tÞ ¼
Z x̄

0

h
q2W̄ ðx̄; tÞ

qx2
þ

2mP̄av

Eh
ðx� 1Þ

� �
dx (27)

and on introducing the non-dimensionalised parameters viz:

Dū ¼
Duðx̄; tÞEbh2

L2F
; P̄av ¼

Pav

ðF=bhÞ
.

Eq. (27) is integrated to give

Dū ¼
qW̄

qx̄
þ mP̄0ðx̄

2 � 2x̄Þ þ mP̄0�
2

3
x̄3 � x̄2

� �
, (28)

where we have used the result

P̄av ¼ P̄0

Z 1

0

ð1þ �x̄Þdx̄ ¼ P̄0 1þ
�

2

� �
,
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so that substitution for W̄ from Eq. (22) then gives the result

Dū ¼

½mP̄0ð3F1ðtÞ þ 1Þ � 3F1ðtÞ�ðx̄2 � 2x̄Þ

þmP̄0� �6F1ðtÞx̄þ
11

4
F1ðtÞ � 1

� �
x̄2 þ

F1ðtÞ
2
þ

2

3

� �
x̄3 �

F 1

4
ðtÞx̄4

� 	8><
>:

9>=
>;. (29)

Furthermore, we can set e-0 in Eq. (29) to obtain the dynamic slip at uniform pressure as

Dū ¼ ðmP̄0ð3F1ðtÞ þ 1Þ � 3F 1ðtÞÞðx̄2 � 2x̄Þ (30)

from which the parabolic profile Dū ¼ ð4mP̄0 � 3Þðx̄2 � 2x̄Þ first derived by Goodman and Klumpp for the case
of uniform interface pressure under static load can be recovered in the limit as F1ðtÞ ! 1 in Eq. (30).
4.2. Energy dissipation

The energy dissipated per cycle, following Goodman and Klumpp [1] is given by the relation

D ¼ 4mb

Z p=2o

0

Z L

0

PðxÞDuðx; tÞdxdt, (31)

which can also be expressed as

D̄ ¼ 4m
Z 1=4

0

Z 1

0

P̄av Dūdx̄dt, (32)

where D̄ ¼ Dðx̄; tÞEbh3=L3F2
0 is the dimensionless dynamic energy dissipated so that on substituting for Dū

from Eq. (29) we obtain

D̄ ¼ 8
11
mP̄0 �

46
33
m2P̄

2
0

� �
þ � 4

11
mP̄0 �

263
165

m2P̄
2
0

� �
� 74

165
�2m2P̄2

0

h i
. (33)

Here again, by making appropriate substitutions in Eq. (33), the results for energy dissipation obtained by
earlier workers who treated the static analysis of the problem can also be recovered.
5. Case of harmonic loading function

For this case, the forcing function is f(t) ¼ F0e
iot. This gives us the Laplace inversion as

~F ðsÞ ¼
F0

s� io
, (34)

where o is the excitation frequency.
By applying the technique used in Eqs. (16) and (17), we write that

~W ðx̄; sÞ ¼

2s ~W ðL; sÞx̄� 2L3 6sF0

s� ioð ÞEbh3
�

6mP0

Eh2
�

6mP0�

Eh2

� �
L1 þ

3

8

mP0�

Eh2
L3L2

� �

bsðs� ionÞðsþ ionÞ
L4

n4p4

, (35)

where

L1 ¼
x̄

6
�

x̄2

4
þ

x̄3

12

� �
; L2 ¼

x̄

45
�

2x̄3

9
þ

x̄4

3
�

2x̄5

15

� �
.

Use of the boundary condition q ~W ð0; sÞ=qx̄ ¼ 0 in Eq. (35) enables us to evaluate the deflection at the end of
the laminated Euler–Bernoulli’s cantilever beam in the Laplace domain as

~W ðL; sÞ ¼ L3 F0

ðs� ioÞEbh3
�

mP0

sEh2
�

mP0�

sEh2
�

1

240s

mP0�

Eh2

� �� �
. (36)
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Subsequent substitution into Eq. (35) and carrying out the Laplace inversion for the non-dimensionalised
variable as outlined in Eq. (23) gives the result

W̄ ðx̄; tÞ ¼ ½F2ðtÞ � mP̄0F 1ðtÞ�ð3x̄2 � x̄3Þ þ mP̄0F1ðtÞ �3x̄2 þ
11x̄3

12
þ

x̄4

8
�

x̄5

20

� �
�

� �
, (37)

where

F1ðtÞ ¼ ð1� cos ontÞ (38)

and

F2ðtÞ ¼
1

1� ðo=onÞ
2
ðcos ot� cos ontÞ þ i sin otþ

o
on

sin ont

� �� �
. (39)

Here we have replaced the non-dimensionalisation introduced in Eq. (33a) with

W̄ ¼
W ðx̄; tÞEbh3

L3F0

; P̄0 ¼
P0

ðF 0=bhÞ
. (40)

We may also introduce the factor

o
on

¼ Z, (41)

where Z can be regarded as the associated frequency ratio.
If in addition we replace the non-dimensionalisation (23b) with

2pt
on

¼ t, (42)

this then allows us to rewrite our expressions for F1(t) and F2(t) as

F 1ðtÞ ¼ F 1ðtÞ ¼ ð1� cos 2ptÞ (43)

while

F2ðtÞ ¼ F2ðtÞ ¼
1

ð1� Z2Þ
fðcosð2pZtÞ � cos 2ptÞ þ iðsinð2pZtÞ þ Z sin 2ptÞg. (44)

5.1. Evaluation of slip and energy dissipation

Following the procedure introduced for the case of Heaviside function, it is now possible to express the
slip as

Dūðx̄; tÞ ¼
½mP̄0ð3F 1ðtÞ þ 1Þ � 3F2ðtÞ�ðx̄2 � 2x̄Þ

þmP̄0� �6F 1ðtÞx̄þ 11
4

F1ðtÞ � 1

 �

x̄2 þ 1
2
F 1ðtÞ þ 2

3


 �
x̄3 � 1

4
F 1ðtÞx̄4

� 
( )
. (45)

Furthermore, the non-dimensionalised energy dissipated per cycle, for this case is given by

D̄ ¼ 8DðZÞ � mP̄0 �
46
33
m2P̄2

0

� �
þ 4DðZÞmP̄0�� 263

165
m2P̄

2
0��

74
165

m2P̄
2
0�

2
� �n o

, (46a)

where

DðZÞ ¼
1

ð1� Z2Þ
sin ðp=2Þ Z

 �
2pZ

�
1

2p

� �
� i

cos ðp=2ÞZ

 �

� 1

2pZ
þ

Z
2p

� �� 	
. (46b)
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5.2. Analysis of logarithmic damping decrement

Logarithmic damping coefficient can be used as a measure of the damping capacity of a structure under
consideration. In particular, we wish to examine to what extent the damping capacity is influenced by factors
such as dynamic slip or interfacial pressure. Following Masuko et al. [8], the relationship between the energy
dissipation from two consecutive cycles and the associated logarithmic damping decrement satisfies the
relation

d ¼
1

2
ln

En

Enþ1

� �
. (47)

Here,

En ¼ Ene þ E loss (48a)

and

Enþ1 ¼ En � Eloss, (48b)

where Ene is the strain energy of the laminate material, whereas Eloss is the energy loss per cycle and d the
logarithmic damping decrement.

By substituting for En, En+1 from (48a) and (48b) respectively into Eq. (47), we obtain the relation

d ¼ 1
2
lnð1þ jmÞ, (49)

where

jm ¼
Eloss

Ene

.

In order to relate our work to the results of earlier workers such as Nanda and Behera [27] or Masuko et al.
[8], we define the damping ratio C as

C ¼
Eloss

Ene þ Eloss
¼

jm

1þ jm

. (50)

Thus,

jm ¼
C

1�C
(51)

and

d ¼
1

2
lnð1þ jmÞ ¼

1

2
ln

1

1�C

� �
. (52)

Hence, by computing either C or jm we can evaluate d.
However, in order to compute C or jm we need to find Ene and Eloss.
Our point of departure is that Eloss and Ene are computed differently here than what was done by earlier

workers. In particular, Eloss, the slip energy is computed from Eq. (46a), i.e., D̄, whereas Ene is presently
analysed.

5.3. Analysis of strain energy of the clamped laminated beams

The total strain energy of the clamped laminated cantilever beams for our problem is a combination of the
energy introduced by the bending moment as well as that stored from the deflection of the free end. The energy
from the bending moment is given by the theorem of Castigliano as

U1 ¼

Z L

0

M2

2EI
dx (53)
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while the energy stored at the free end is computed from the theory of strength of materials as

U2 ¼
3

2

EI

L3
W 2

L. (54)

Here, M is the bending moment; E the modulus of rigidity of the material; I ¼ 2/3bh3 is the moment of inertia
of the clamped laminated beam and WL the deflection at the free end.

For our problem, we calculate our non-dimensionalised strain energy components as

Ū1 ¼ 27fei4pZ � 2mP̄0ð1þ �Þe
i2pZ þ m2P̄2

0ð1þ 2�þ �2Þg (55)

and

Ū2 ¼ ei4pZ � 2mP̄0 1þ
241�

240

� �
ei2pZ þ m2P̄

2
0 1þ

241

120
�þ

241

240

� �2

�2

 !( )
, (56)

where we have introduced the non-dimensionalisation

Ūn ¼
UnEbh3

F2
0L3

; n ¼ 1; 2.

This now allows us to write

d ¼
1

2
Ln 1þ

D̄

Ū1 þ Ū2

� �
. (57)

To be sure, we note that the formula derived for computing d as reported by Nanda and Behera [27] as well as
in the theoretical analysis of Masuko et al. [8] was based on invoking the Maclaurin series in the asymptotic
limit C51 (i.e. Eloss5Ene), whereas the present results as computed from Eqs. (42) and (47), do not suffer
from such a restriction and should hold for a wider spectrum of C. However, they should also converge to the
results of Nanda and Behera, Masuko et al. and earlier workers as the frequency spectrum approaches regions
where EnebEloss must necessarily hold.

An important point made by Nanda and Behera [27] relates to the dependence of the logarithmic damping
decrement on the number of interfacial layers. In particular, an expression was derived which showed that if m

laminates are jointed together with connecting bolts to construct multi-layered cantilever beams, the damping
ratio of such beams increases with the number of laminates as this arrangement ensures that there would be
some m� 1 interfaces where slip and therefore damping can occur. For our problem, the issue is to predict
what modifications are to be incorporated if the number of laminates exceeds two. The authors have in fact
derived results for multi-layered similar and dissimilar sandwich elastic and viscoelastic beams, but the details
of this will be published elsewhere.

6. Analysis of results

In discussing our results we would like to investigate to what extent the response, slip and dissipated energy
are affected by the frequency of the forcing function. Damisa [32] for example has established that when the
interfacial pressure is uniform the maximum energy that can be dissipated by slip can in fact exceed the value
reported by Goodman and Klumpp for their problem. In coming to this conclusion, Damisa carried out a
limit analysis in the neighbourhood of the resonance frequency.

More recently, other workers such as Damisa et al. [29] and Olunloyo et al. [30] have also shown that by
carefully selecting the interfacial pressure profile, slip energy dissipation in excess of that reported by
Goodman and Klumpp can be arranged for the case where the cantibeam is subjected to static external load.
The interest here is to see if the maximum energy that can be arranged where the applied external load is a
dynamic forcing function is also frequency dependent or if it is solely a function of the interfacial pressure
profile.

Figs. 2 and 3 show the displacement and slip at the free end of the cantilever beam while Fig. 4 displays the
dissipated energy for the entire structure at the indicated frequency factor Z ¼

ffiffiffi
3
p

=2.
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Fig. 3. Dynamic slip profile at the free end of the cantibeam at optimum interfacial pressure for case Z ¼ O3/2. — e ¼ 0; e ¼ 0.2;

- - - - - - e ¼ �0.2; e ¼ 0.6; e ¼ �0.6.
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It is significant that irrespective of the value of the pressure gradient e, the energy dissipation assumes the
same parabolic profile reported for the static case by earlier workers. This is a direct consequence of the
derived expression for energy dissipation viz: Eq. (46a), from which we can deduce that the condition for
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optimal energy dissipation is given by

mPopt ¼
ð2þ �ÞDðZÞ

23
33þ

263
330 �þ

37
165 �

2

 � ¼ J DðZÞ, (58a)

where

J ¼ Jð�Þ ¼
ð2þ �Þ

23
33
þ 263

330
�þ 37

165
�2


 � . (58b)

This result highlights the effects of the pressure gradient e on the one hand and the associated frequency ratio
Z, on the other. The relation (58a) also confirms that even in the absence of interfacial pressure gradient, the
frequency of the load has a significant role to play in defining the optimal pressure for slip damping.

Also note that from relation (58a) it is now possible to compute the optimal energy dissipation from
Eq. (46a) as

D̄opt ¼ JD2 8� 46
33

J

 �

þ � 4� 263
165

J

 �

� 74
165

J�2
� �

(59)

which clearly demonstrates that the optimal slip energy is modulated by the coefficient D2 which derives from
the frequency ratio Z as earlier defined in relation (46b). In particular, we note that in the absence of pressure
gradient (i.e. e ¼ 0) we obtain:

D̄opt ¼
264
23

D2o3
2

for 0oZo1

as can be confirmed from the plot for D in Fig. 11. This means that the maximum energy that can be dissipated
through dynamic slip is always less than what is obtained in the static case even for the case of uniform
interfacial pressure. This agrees with the experimental results of Goodman and Klumpp.

In order to have a better appreciation of the interplay of parameters, typical results for the beam deflection
and interfacial slip have also been displayed in three dimensions in Figs. 5(a,b) and 6(a,b), respectively. It is
however to be noted that the graphs for the case of uniform interfacial pressure, i.e. e ¼ 0 as plotted in Figs. 2
and 3 appear similar to the oscilloscope photographs reported by Goodman and Klumpp.
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Fig. 5. Dynamic response profile to the forcing function F ¼ F0e
iot. (a) For the cases Z ¼ 0.1, e ¼ 0 and (b) Z ¼ 0.1, e ¼ �0.2.
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6.1. Effects of frequency ratio on transverse displacement, slip and energy dissipation

The general picture of the dynamic response and slip at optimum interface pressure as illustrated in
Figs. 7(a,b) and 9(a,b) respectively shows that the amplitude of vibration and the complementary interfacial
slip increase with higher frequency ratio in the pre-resonance regime on the one hand and behave conversely
post-resonance but based on the solution for static loading, we also expect our results to be strongly influenced
by the nature of the pressure distribution along the interface. On the contrary, we find that the dominant role
played by the pressure gradient in the ordering of the results for either the transverse response or slip is
significantly subdued in the case of dynamic loading.
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Fig. 6. Dynamic slip profile for the forcing function F ¼ F0e
iot. (a) For the cases Z ¼ 0.5, e ¼ 0 and (b) Z ¼ 0.5, e ¼ �0.2.
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However, we also observe here that for any fixed frequency ratio Z there is a departure from a uniform
ordering and progression of either the beam response or the interfacial slip as a function of the pressure
gradient e with the highest values recorded for negative pressure gradient and the lowest for the most positive
value of e as was reported for the static problem. Instead, we observe, as shown in Figs. 8(b,c) and 10(a–c),
respectively, that there is a tendency for the curves to bunch together without any clear cut ordering of the
curves as a function of the pressure gradient e. This does not apply to the same extent in the case of Fig. 8(a)
where frequency ratio Z ¼ 0.05 is close to zero (Figs. 8–10).

The reason for this can be attributed to the cyclic nature of the optimal pressure. In this regard we may note
that both the deflection and the interfacial slip at optimal pressure are necessarily functions of D(Z) as
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Fig. 7. Deflection at half cycle for optimum interface pressure (a) for the cases e ¼ 0.2 and (b) e ¼ �0.2.
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established in Eq. (58a) and plotted in Fig. 11; this provides a mechanism for effective modulation or re-
ordering of the deflection and slip profiles.

However, in the pre-resonance zone, the energy dissipation decreases with increase in the frequency ratio Z
as illustrated in Fig. 12. Nonetheless, this is not the full story because in the post-resonance zone, there are
regions where the converse is true as illustrated in the energy spectrum displayed in Fig. 14. Furthermore, the
bunching and relative re-ordering of curves at any fixed frequency ratio Z observed above for the
various values of the parameter e in respect of the beam response and interfacial slip prevails in respect
of the energy dissipation as shown in Fig. 13. The same observations can equally be made from a closer study
of Fig. 14.
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6.2. Effects of frequency ratio on logarithmic damping decrement and damping ratio

With respect to the logarithmic damping decrement curve, we note that Nanda and Behera [27] did not
specify the frequency range for their experiment. Nonetheless, the results reported by them when compared
with our present results appear to be only part of the story. In fact, Nanda and Behera’s results do not apply to
cases where the frequency ratio Z is very small, and their curves fail to capture the correct behaviour of d for
fairly small values of mP. This is clearly seen in Figs. 15(a–d). In particular, when we pick very small values for
Z and we restrict the normalized pressure to moderate values away from 0 (i.e. in the range 0.95omPo10), our
graphs for the logarithmic damping d are similar to those reported by Nanda and Behera (cf. Figs. 16(a–c).
However, when we extend the range of mP closer to the origin, even for reasonably low values of Z (e.g.
Z ¼ 0.05), we find that the nature of the curve changes as shown in Fig. 15(a). Furthermore, for the extended
range 0omPp20, we find that the curve for d is in fact similar to that reported by Nishiwaki et al. in their 1978
and 1980 papers as reflected in Figs. 15(a–d).

In the past, it has been argued that in actual practice the interface pressure in press-fit joints or mechanical
fasteners is never zero and plotting simulated curves for logarithmic damping decrement vs. mP starting from
zero would therefore appear to be a mere theoretical exercise. However, this does not preclude the range
0omP51 and the point to be made is that as long as the results for the logarithmic damping decrement
obtained here is uniformly valid for various domains of mP as illustrated for example in Figs. 15(a–d).
All previous results of earlier workers must be asymptotically recoverable from the present results as it was in
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fact noted above that Nanda and Behera’s plots for the logarithmic damping decrement did not cover small
values of mP. It is in order to demonstrate that Nanda and Behera’s results are embedded within those
reported here that our figures have been blown up in different ranges of mP. Figs. 16(a–c) demonstrate that the
Nanda and Behera plots can be recovered from the current solution if we restrict our attention like Nanda and
Behera to the zone 1omP; for example.

The general profile of logarithmic damping decrement curve clearly displays the existence of two regions
that can be summarised as follows:
1.
 Starting from the origin and for very low values of pressure, d is a monotonic increasing variable
approaching a local peak. The peak value varies inversely as the frequency ratio Z except in the
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neighbourhood of resonance. In this domain, the d curves are ordered in consonance with the e values. Thus
d curves for positive values of e generally lie to the right of those with negative e. We can call this region A.
2.
 The initial peak terminating region A is followed by a region B where the logarithmic damping decrement
decreases monotonically to an asymptotic value characteristic of each case of Z. As for a comparative
analysis for different values of the interfacial pressure gradient e, we find that the relative ordering of the d
curves for the different values of e are in line with the ability to dissipate slip energy. Thus higher values of d
are recorded for cases when eo0. However, irrespective of the value of e, the logarithmic damping
decrement d decreases as the value of mP increases reflecting a higher normal force at the interface of the
laminates.
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Having described the general profile, we must also recognise the fact that since the objective of our
investigation is on the efficacy of slip damping, the entire curve for d is of interest from the view point of

engineering design and not just the behaviour within region B where d curves are monotonically decreasing
with increased pressure. It is therefore puzzling that Nanda and Behera limited their report to only zone B
even though they conceded that they too found that ‘‘the logarithmic damping decrement increases with an

increase in the tightening torque in the lower range as established by Masuko et al. which is not viable in real

application’’. This statement appears curious as the general shape of the d as derived in Eq. (57)
must necessarily be driven by the shape of the slip energy equation which is shown to be parabolic in mP from
Eq. (46a).

Three-dimensional plots for the logarithmic damping decrement d and the damping ratio C are plotted in
Figs. 17 and 18 respectively as functions of the interfacial pressure and frequency ratio.

The corresponding results for the case of Heaviside forcing function need no special discussion as there are
no new effects. However, all results for static loading can be fully recovered by restricting attention to the
stationary component of the Heaviside forcing function solution.
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7. Summary and conclusion
(a)
 In summary, we note that in this paper we have been able to find explicit solutions for the response, slip,
optimal pressure and dissipated energy (i.e. W, Du, Popt and D̄, respectively) for the layered cantibeam
under both periodic and non-periodic forcing functions of the Heaviside type.
(b)
 While a lot of numerical, semi-analytic and experimental investigations abound in the literature for the
layered cantibeam, this work is the first attempt to examine and present an analytical solution for the case
of non-uniform interfacial pressure profile and shows that although results reported in the literature for
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uniform pressure are correct, it is nonetheless possible to dissipate more energy than is predicted for the
case of uniform interfacial pressure profile. The required condition for this is that: dPav=dxo0. One way of
simulating such a pressure distribution is by progressively reducing the tightening torque on the bolts
holding the laminates as one moves from the clamped to the free end of the cantibeam. This can be the
subject of further experimental work. It is also conceivable that following the work of Nanda and Behera,
different interface pressure distribution patterns can be simulated by varying parameters such as number
and size of bolts, number of laminated layers and washers, etc.
(c)
 Having made the above observation, the next thing to note here is that the amount of energy that can be
dissipated through slip damping under externally applied dynamic load is less than the corresponding
value for the static case. This is not a new result as the same point was made by Goodman and Klumpp [1]
several decades ago; however, what is of interest here is to see how the amount of slip energy that can be
generated is influenced by factors like the interfacial pressure distribution on the one hand and the
frequency ratio on the other.
(d)
 The frequency ratio Z has its modulating effect on the various outputs of our problem. For example in the
pre-resonance zone, increasing frequency ratio Z has the effect of enhancing both the transverse
displacement and interfacial slip. Outside the resonance zone, the converse however holds in the case of
dissipated energy through slip. We also note from Eq. (58a) in respect to Popt that the effect of Z is to
modulate the value of mPopt since curve for D(Z)o1 for all values of Z as shown in Fig. 11.
This then means that the maximum energy that can be dissipated through slip occurs at a lower optimal
pressure and is less than what is obtained in the static case. Thus, in this respect, the effect of a forcing
function is to simultaneously lower the required externally applied interface pressure while reducing the
amount of energy dissipation. In practical terms and for the case of layered and jointed sections such a
reduction in the externally applied interfacial pressure could translate to the use of less number of bolts
and washers or an increase in the spacing in between such bolts. Alternatively, it may also lead to a
reduction in the sizes of such bolts as compared to what would be needed for the case of external
static load.
(e)
 With respect to the logarithmic damping decrement, the first thing to note here is that the derivation of the
expression for the logarithmic damping decrement is based on a formulation that is different from that
used by previous workers (i.e. Masuko, Nanda, Behera, etc.). Thus there is a need for comparison of our
results with those of earlier workers. Secondly, the results for the logarithmic damping as obtained by
earlier workers were either graphical or limited to different ranges of mP. In particular, Masuko’s results
were limited to small values of mP whilst those of Nanda and Behera prevail outside this range. However,
the analytical result presented for the logarithmic damping decrement in this work is uniformly valid in the
various domains of mP and being more generalised, is not constrained by the assumption implicit in the
Maclaurin series expansion adopted by earlier workers. As a check, it is shown that the reported results
agree with the work of Masuko on the one hand for mP51 and that of Nanda and Behera outside this
range.
On the issue of comparison of results, we find that for small values of mP, for which Nanda and Behera did
not present any results, there is close agreement between our results and those reported earlier by Masuko
et al. [4]. On the other hand, outside this domain, the results of Nanda and Behera [23] can also be
recovered from our generalised results.
The good agreement between the two results is quite reassuring in that whereas the solutions in Nanda and
Behera are couched in the context of bolt sizes, their location and number, the present result depends more
on the average interface pressure and its gradient. This is however not surprising as the work of Nanda
and Behera has shown that the effect of the bolts, washers, their sizes and locations is to determine the
pattern of the pressure distribution along the laminate interface.
(f)
 On the combined effect of pressure gradient and frequency ratio Z, our results do not show any clear
pattern that the combined effects of these factors are directly cumulative especially as they moderate the
displacement and slip. This aspect of the work would need further investigation.
These results can be positively exploited in the design of aerodynamic and machine structures. They can also
be extended to vibrating plates and shells of different materials and dimensions.
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