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Abstract

An improved damage detection method based on the concept of Element Modal Strain Damage Index is introduced.

The proposed methods attempts to address some of the weaknesses of the damage detection method based on modal

curvatures. The use of numerical differentiation procedures is identified as the main cause for the poor performance of the

modal curvature method under sparse and noisy measurement. An improved damage index that does not rely on numerical

differentiation is then formulated. The proposed damage index can be calculated using only modal displacement and

modal rotation. A penalty-based minimization approach is then used to find the unknown modal rotation using sparse and

noisy modal displacement measurement. Numerical simulation and experiment validation confirm the relative advantage

of the proposed method compared with modal curvature-based approaches.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

It is a well established fact that structural damage results in a change in mass, stiffness and/or damping of
the structure. These changes in turn exhibit themselves in the dynamic characteristics of the structure as
changes in natural frequencies, mode shapes and modal damping. There have been many attempts in the past
three decades making use of measured changes of modal parameters to localize and quantify damage. In fact,
the modal approach can be considered as the main stimulus for the growth of the field of vibration-based
structural health monitoring and damage detection. The attractiveness of this approach can be attributed to
the fact that dynamic characterization of the structure is in many cases easier to perform in the field than static
characterization. Due to the advances in sensor technology, low-input energy levels are usually sufficient to
produce sets of measurable dynamic response. Hence, ambient sources can be used as the excitation for
structures eliminating the need for expensive excitation devices. Technologies such as Experimental Modal
Analysis (EMA) and Operational Modal Analysis (OMA) have been developed to levels whereby relatively
accurate results of natural frequencies, mode shapes and modal damping can be extracted from vibration-
based measurements. The success of such vibration-based damage detection approaches intrinsically depends
on the damage producing measurable changes in the structural modal parameters.
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.07.060

ing author. Tel.: +1858 534 6470; fax: +1 858 534 6373.

ess: vkarbhari@ucsd.edu (V.M. Karbhari).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.07.060
mailto:vkarbhari@ucsd.edu


ARTICLE IN PRESS
H. Guan, V.M. Karbhari / Journal of Sound and Vibration 309 (2008) 465–494466
Early attempts to use frequency shifts to detect and localize damage include those by Lifshitz and Rotem [1],
Vandiver [2] and Adams et al. [3]. At about the same time, researchers started using mode shape changes for
damage detection purposes [4,5]. Since then, many techniques have been developed utilizing frequency and
mode shape changes to locate and quantify damage. These techniques have been well documented in the
extensive literature reviews published by Salawu [6] and Doebling et al. [7] and hence will not be repeated
herein. A major limitation of such damage detection techniques, is that natural frequencies and mode shapes
are generally not very sensitive to local and moderate level of damages.

Pandey et al. [8] first proposed using curvature mode shapes as a means to locate structural damage. In their
research, curvature mode shape, also referred to as mode shape curvature or modal curvature, was shown to
be able to correctly locate damage in cases where traditional damage localization techniques, such as the
modal assurance criterion (MAC) and the coordinate MAC (COMAC), had failed. Curvature mode shapes
can be obtained from transverse displacement mode shapes through numerical differentiation procedures such
as the central difference approximation. Abdo and Hori [9] pointed out that for localized damage in beam like
structures, the curvature at a damage location suffers a sudden jump while the displacement, bending moment
and shear force remain relatively smooth. Thus, curvature mode shapes are more sensitive to localized damage
compared to displacement mode shapes. Yam et al. [10] compared the damage sensitivity of curvature with
those of out-of-plane deflection and slope in the context of static analysis of plate-like structures and
concluded that because curvature is the most sensitive parameter of the three, curvature mode shape be used
for damage detection using dynamic measurement.

Stubbs and Kim [11] presented the ‘‘Damage Index Method’’ using the concept of modal strain energy.
For an Euler–Bernoulli beam model, modal strain energy can be computed by integrating the product of
bending stiffness and modal curvature along the length of the beam. The damage index was then defined
as the ratio of normalized modal energy of the pristine and damaged states of the structure. They applied
this technique to the numerical model of a continuous beam test specimen and showed that the damage
index can provide accurate information about the location of damage. Cornwell et al. [12] further extended
the concept to plate-like structures where the calculation involves double integration of modal curvature
along two coordinate axes. Farrar and Jauregui [13,14] compared the mode shape curvature method and
the damage index method with three other damage identification methods using data from a damaged
bridge and concluded that the damage index and mode shape curvature methods were better using both
experimental and numerical simulation data. Studies from other researchers [15,16] also seem to support this
conclusion.

Although damage identification methods based on modal curvature or modal strain energy have been used
successfully in a number of cases, there is one serious limitation associated with the application of such
methods in the field. In all the aforementioned papers, modal curvatures were obtained from displacement
mode shapes via numerical differentiation procedures that are essentially approximations. For example, the
error introduced by the central difference approximation increases with the square of the spacing of
measurement sites, at which two adjacent mode shape measurement are taken. In the case of experimentally
measured displacement mode shape data, the spacing of measurement sites is dictated by the structural
configuration and availability of equipment and often cannot be easily modified in the field. It will be shown
later in this paper that when there is only a limited number of spatial points that can be measured dynamically,
which is often the case during field applications, the errors associated with numerical differentiation can have a
masking effect over the change caused by damage. Perhaps more importantly, noise in the mode shape
measurements tend to propagate through the numerical differentiation process and cause the final results to
deteriorate significantly. It is noted that this has been raised as a concern by previous researchers. For
example, Abdel Wahab and De Roeck [17] applied a modal curvature-based method to an actual bridge
damage scenario and concluded that an extensive measurement grid was required in order to get a good
estimation for modal curvature. They also introduced a new parameter called ‘‘CDF’’ in which the difference
in modal curvature was averaged over all modes to improve results. Maeck and De Roeck [18] pointed out
that direct calculation of first and second derivatives from measured mode shapes (i.e., by using the central
difference approximation), results in oscillating and inaccurate values and hence proposed the use of a
weighted residual penalty-based smoothing procedure to account for the inherent inaccuracies of the
measured mode shapes.
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In some of the aforementioned studies, mode shapes at sparse measurement locations obtained from
experiment were first expanded to a denser array of locations using interpolation. This approach reduced the
error introduced by large spacing of data sites. However, the problem associated with propagated noise was
still not solved. Sazonov and Klinkhachorn [19] showed in the case of computing the modal curvature from a
displacement mode shape using central difference method that merely reducing the spacing between sensors
did not always improve results. In fact, when the sensor spacing is relatively small, the error due to propagated
noise from the displacement mode shape starts to dominate the result. One hence is forced to find a
compromise between errors introduced by central difference approximation and errors from propagated noise.

In this paper, an improved damage identification technique based on the concept of Element Modal Strain
Damage Index (EMSDI) is presented. The proposed method shares some common aspects with some of the
previous studies [8,11,12,17,18] in that the displacement mode shape extracted from vibration measurements is
used as the starting point of the approach. The proposed method, however, attempts to address some of the
weaknesses of the numerical differentiation procedures noted in previous research in the calculation of modal
curvature and strain energy. Numerical simulation results as well as experimental validation results are
presented to demonstrate the potential of the formulation and its relative advantages over currently existing
approaches.

2. Theoretical formulation

2.1. Errors associated with the calculation of modal curvature through numerical differentiation

For beam-like structures, modal curvature k is defined as the second derivative of the corresponding
transverse displacement mode shape f, i.e., k�f00. When an analytical representation of the mode shape is not
available, as is the case of experimentally measured mode shapes, the calculation of modal curvature has to be
performed numerically. If f(xi) is the mode shape value at a measurement site xi, f(xi+1) and f(xi�1) can be
expressed in terms of f(xi) using a Taylor series expansion as

fðxiþ1Þ ¼ fðxiÞ þ f0ðxiÞhþ
f00ðxiÞ

2!
h2
þ � � � ; fðxi�1Þ ¼ fðxiÞ þ f0ðxiÞð�hÞ þ

f00ðxiÞ

2!
ð�hÞ2 þ � � � . (1)

The summation of the two equations in Eq. (1) and reorganization of terms gives

f00ðxiÞ ¼
fðxiþ1Þ � 2fðxiÞ þ fðxi�1Þ

h2
þOðh2

Þ ¼
fðxi þ hÞ � 2fðxiÞ þ fðxi � hÞ

h2
þOðh2

Þ, (2)

in which, xi, xi�1, xi+1 are the current, previous, and next measurement sites where displacement mode shapes
are available. f00(xi) ¼ k(xi) is the modal curvature at data site xi, and h is the spacing between measurement
sites. It should be noted that the spacing between measurement sites must remain constant in order for Eq. (2)
to be valid. Eq. (2) is called the second central finite divided difference, or in short, central difference. It is
apparent that Eq. (2) is an approximation due to the truncation error term O(h2). The accuracy of Eq. (2) can
be further improved following Chapra and Canale [20] by including additional terms in the Taylor series
expansion, leading to an expression where the truncation error is of order h4:

kðxiÞ ¼
�fðxiþ2Þ þ 16fðxiþ1Þ � 30fðxiÞ þ 16fðxi�1Þ � fðxi�2Þ

12h2
þOðh4

Þ. (3)

Sazonov and Klinkhachorn [19] demonstrated that the maximum error bound of Eq. (2) considering both
truncation error and measurement error in f(x) can be expressed as

jE½kðxiÞ�jp
�ðjfiþ1j þ 2jfij þ jfi�1jÞ

h2
þ

M4

12
h2, (4)

where E[k(xi)] is the modal curvature error bound, e is the maximum relative random multiplicative error of
mode shape f, and M4 is a constant term determined by the maximum value of the fourth derivative of f. The
first term on the right-hand side of Eq. (4) corresponds to the noise in mode shape data. The second term
corresponds to the truncation errors. When the spacing between measurement sites, h, is relatively large, the
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second term tends to dominate Eq. (4). With a reduction in h, the first term tends to grow larger and gradually
become the dominant factor in the error.

In most practical cases, modal testing experiments are carried out using accelerometers. The extracted mode
shape sites correspond to the location of accelerometers in a one-to-one fashion. The number of available
sensors thus becomes the main controlling factor for the number of sites that can be measured. Even with
approaches such as multiple setups during testing, the number of measurement sites is often still very limited.
Under these conditions, as will be shown later in this paper, the truncation error term in Eq. (4) will be the
dominant factor. In order to reduce the effects of this concern some researchers have proposed the use of
sensing equipment with high spatial resolution such as laser vibrometers [21,22]. However, in modal testing
experiments mode shapes are always prone to be contaminated by noise. With a reduction of measurement
spacing, the first term in Eq. (4) will increase and gradually become the dominant error factor. Thus it appears
that, contrary to common belief, the results of damage detection method may not be able to benefit from high-
spatial resolution measurements if it depends on modal curvature computed using a numerical differentiation
procedure.
2.2. Damage identification using Element Modal Strain Damage Index

The bending strain energy of an Euler–Bernoulli beam can be expressed as

Us ¼

Z
L

1

2
MðxÞdy ¼

1

2

Z
L

M2ðxÞ

EIðxÞ
dx ¼

1

2

Z
L

EIðxÞ � ðv00ðxÞÞ2 dx, (5)

where M(x) is the internal bending moment, EI(x) is the bending stiffness, and n00(x) is the second derivative of
the beam transverse displacement. Replacing v(x) with modal transverse displacement f(x) gives the
expression for modal strain energy of the beam as

Ums ¼
1

2

Z
L

EIðxÞ � ðf00ðxÞÞ2 dx. (6)

For simplicity we consider a single-beam element I with uniform stiffness EI and length le as shown in
Fig. 1, where fi and fj are the mode shape amplitude at transverse degree-of-freedom of node i and j,
respectively, and yi and yj are the mode shape amplitude at the rotation degree-of-freedom at node i and j. For
purposes of clarity in the current discussion, fi and fj will be referred to as nodal modal displacements and yi

and yj as nodal modal rotations. Assuming cubic displacement shape functions, the transverse modal
displacement at any point on this beam element can be expressed in terms of the nodal modal displacement
and rotation as

fI ð ~xÞ ¼ fi �N1ð ~xÞ þ yi �N2ð ~xÞ þ fj �N3ð ~xÞ þ yj �N4ð ~xÞ, (7)

where N1ð ~xÞ through N4ð ~xÞ are the Hermite cubic shape functions [23] shown in Fig. 2. The � symbol
above coordinate x indicates Eq. (7) is expressed in the local element coordinate system shown in Fig. 2 as
opposed to the global coordinate system of the entire structure that will be defined later. An expansion of
Eq. (7) gives

fI ð ~xÞ ¼ 1�
3

l2e
~x2 þ

2

l3e
~x3

 !
fi þ � ~xþ

2

le

~x2 �
1

l2e
~x3

 !
yi þ

3

l2e
~x2 �

2

l3e
~x3

 !
fj þ

2

le

~x2 �
1

l2e
~x3

 !
yj. (8)
�i �j

�i �j

le / EIi j

I

Fig. 1. Modal displacement of beam element.
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Fig. 2. Element shape function.
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Collecting terms of the same order gives

fI ð ~xÞ ¼ fi þ ð�yiÞ ~xþ �
3

l2e
fi þ

3

l2e
fiþ1 þ

2

l2e
yi þ

1

le

yiþ1

 !
~x2 þ

2

l3e
fi �

2

l3e
fiþ1 �

1

l2e
yi �

1

l2e
yiþ1

 !
~x3

¼ c1;I þ c2;I ~xþ c3;I ~x
2 þ c4;I ~x

3, ð9Þ

in which, c1, c2, c3, c4 are the coefficients of fourth-order polynomial fI ð ~xÞ. Similarly, the second derivative of
transverse modal displacement can be written as

f00I ð ~xÞ ¼ ½B�fDg, (10)

wherein

½B� ¼
d2N1

d ~x2

d2N2

d ~x2

d2N3

d ~x2

d2N4

d ~x2

" #
; fDg ¼

fi

yi

fj

yj

8>>>><
>>>>:

9>>>>=
>>>>;
. (11)

Substituting Eq. (10) into Eq. (6) and integrating over the length of the element yields

Ums ¼
1

2

Z
le

EIð ~xÞ � ðf00I ð ~xÞÞ
2 d ~x

¼
1

2

Z
le

EI � fDgT½B�T½B�fDgd ~x

¼
1

2
EI � fDgT �

Z
le

½B�T½B�d ~x � fDg, ð12Þ

that can then be solved as

Ums ¼
1
2
EI � fDgT � ½Ne� � fDg, (13)
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where the matrix [Ne] is given by

½Ne� ¼

12

l3e
�

6

l2e
�
12

l3e
�

6

l2e

�
6

l2e

4

le

6

l2e

2

le

�
12

l3e

6

l2e

12

l3e

6

l2e

�
6

l2e

2

le

6

l2e

4

le

2
66666666666664

3
77777777777775
. (14)

It is noted that the elements in [Ne] only rely on the geometric configuration of the element. The EMSDI can
then be defined as

Ae
m ¼ fDg

T � ½Ne� � fDg. (15)

Since Eqs. (13) and (15) provide an alternative means of calculating element modal strain energy and
EMSDI without calculating modal curvature, some of the problems associated with the numerical
differentiation procedure required in the conventional determination of modal curvature can be avoided. In
the current scheme, although the calculations of modal rotations still depend on the use of derivatives, the
method provides a means of avoiding the numerical differentiation procedures inherent in conventional
techniques such as the central difference method. A comparison of Eq. (13) with Eq. (6) shows that

Ae
m ¼ fDg

T � ½Ne� � fDg ¼
1

2

Z
le

ðf00I ð ~xÞÞ
2 d ~x. (16)

From Eq. (16) it can be seen that, for an element of length le, EMSDI is physically equivalent to the area
under the curve denoted by the integrand. If the structure is damaged at a particular element, it can be
expected that f00I ð ~xÞ in Eq. (16) will show a sudden increase at the damage location. Correspondingly, Ae

m of
the element will show an increase in comparison to its value in the undamaged state. Based on this the quantity
Ae

m can be used for the purpose of damage identification. It should be noted that the uniform stiffness
assumption in the formulation of Eqs. (7)–(15) does not signify that the damage has to be uniform within the
element. Rather, it reflects the fact that the observation made at measurement locations will only be able to
reveal information about the damage that occurred in between two measurement locations in an averaged,
integral sense.

It should be noted that the vector {D} in Eq. (13) includes both modal displacement and modal rotation.
Modal displacement is the most common quantity measured in most experiments in which modal tests are
conducted and hence it is important that a reliable method to estimate the modal rotation from measured
modal displacement is used. A proposed formulation to calculate modal rotation using modal displacement
measurement is discussed in the next section.

2.3. Calculation of modal rotation using modal displacement

2.3.1. Calculation of modal rotation using noise-free modal displacement measurement

Consider a beam-like structure that can be discretized into N elements (I ¼ 1,y,N) and N+1 nodes
(i ¼ 1,y,N+1), as shown in Fig. 3. Using the same mode shape estimation function for each element in the
I-1 I+1

i − 1 i i + 1 i + 2

xi+2xi+1xi−1 xi

I

Fig. 3. Discretization of beam-like structure.
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form of Eq. (7), an estimated mode shape function f(x) of the entire structure can be expressed using a
piecewise polynomial of order 4, i.e.,

fðxÞ ¼ fI ðxÞ for xipxpxiþ1 for some fI ðxÞ 2 Po4; i; I ¼ 1; . . . ; N, (17)

in which, Po4 is the linear space of the polynomials of order 4, and xi is the location of the node i separating
two adjacent elements. The relation between the global coordinate x and local element coordinates ~x of
element I is expressed by

~x ¼ x� xi for xipxpxiþ1. (18)

The expression of polynomial fI(x) can then be obtained from Eq. (9)

fI ðxÞ ¼ c1;I þ c2;I ðx� xiÞ þ c3;I ðx� xiÞ
2
þ c4;I ðx� xiÞ

3. (19)

Using the displacement continuity condition, the Ith polynomial piece fI(x) should satisfy the conditions

fI ðxiÞ ¼ fi; fI ðxiþ1Þ ¼ fiþ1; i; I ¼ 1; . . . ; N, (20)

where fi and fI+1 are the measured modal displacements at node i and i+1, respectively. Because fI(x) is a
polynomial of order 4, two additional conditions are needed to determine all the coefficients. A commonly
used condition is one proposed by De Boor [23]

f0I ðxiÞ ¼ si; f0I ðxiþ1Þ ¼ siþ1; i; I ¼ 1; . . . ;N, (21)

in which si, si+1 are free parameters that have to be determined. The resulting f(x) can be shown to agree with
transverse modal displacements fi at the nodes. Also, f(x) is continuous and has a continuous first derivative.
Furthermore, the relation

yi ¼ �f
0
I ðxiÞ; yiþ1 ¼ �f

0
I ðxiþ1Þ; i; I ¼ 1; . . . ;N, (22)

exists between f0I ðxÞ and the modal rotations at each node. Once the free parameters are determined, the form
of the element mode shape functions fI ðxÞ and its first derivative f0I ðxÞ can be uniquely determined, and
modal rotations at nodes can be calculated.

One possible choice of si is to use the slope of at xi of the third-order polynomial that agrees with f(x) at
xi�1, xi and xi+1. This choice leads to the representation of si as [23]

si ¼
ðxiþ1 � xiÞg½xi�1;xi� þ ðxi � xi�1Þg½xi; xiþ1�

xiþ1 � xi�1
, (23)

where g½xi;xiþ1� is the second divided difference of a function g that agrees with nodal modal displacements
f1; . . . ;fi;fiþ1; . . . ;fNþ1 at the sequence ðx1 . . . xi;xiþ1; . . . ;xNþ1Þ which is given by

g½xi; xiþ1� ¼
gðxiÞ � gðxiþ1Þ

xi � xiþ1
. (24)

The form of si given in Eq. (23) is theoretically similar to the one used in the piecewise cubic Bessel
interpolation of functions. It should be noted that the conditions leading to Eq. (23) is an approximation, and
thus the modal rotation calculated using Eq. (23) generally would not be exact.
L2=0.8636 mL1=0.8636 m

76.2 mm

6.35 

mm

Beam Cross

SectionContinuous Beam Model 
y

z

Y

X

Fig. 4. Schematic of continuous beam model.
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Fig. 5. Mode shapes of first six modes: (a) first mode f ¼ 19.629Hz, (b) second mode f ¼ 30.665Hz, (c) third mode f ¼ 78.512Hz,

(d) fourth mode f ¼ 99.366Hz, (e) fifth mode f ¼ 176.63Hz, (f) sixth mode f ¼ 207.29Hz.

Fig. 6. Effect of sparse measurement on modal curvature calculation using numerical differentiation: (a) first mode, (b) second

mode, (c) third mode and (d) fourth mode. All measurement sites; 35 measurement sites; 17 measurement sites;

7 measurement sites.

H. Guan, V.M. Karbhari / Journal of Sound and Vibration 309 (2008) 465–494472
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Another possible choice of si is based on the condition that is f(x) should be twice continuously
differentiable. This gives the conditions that, for i, I ¼ 2,y,N

f00I�1ðxiÞ ¼ f00I ðxiÞ. (25)

Or, after substituting in Eq. (19)

2c3;I�1 þ 6c4;I�1ðxi � xi�1Þ ¼ 2c3;I . (26)

It can be shown [23] that the coefficients c3,I�1, c3,I and c4,I�1 in Eq. (26) can be expressed as

c3;I�1 ¼ ðg½xi�1;xi� � si�1Þ=ðxi � xi�1Þ � c4;I�1ðxi � xi�1Þ,

c3;I ¼ ðg½xi;xiþ1� � siÞ=ðxiþ1 � xiÞ � c4;I ðxiþ1 � xiÞ,

c4;I�1 ¼ ðsi�1 þ si � 2g½xi�1;xi�Þ=ðxi � xi�1Þ
2. ð27Þ

Substituting in Eq. (20), (21), (27) and after some manipulation, Eq. (26) leads to the linear system

si�1ðxiþ1 � xiÞ þ si � 2ðxiþ1 � xi�1Þ þ siþ1ðxi � xi�1Þ ¼ 3ððxiþ1 � xiÞg½xi�1;xi� þ ðxi � xi�1Þg½xi; xiþ1�Þ, (28)

for i ¼ 2; . . . ;N.
Fig. 7. Effect of different numerical differentiation procedure on modal curvature calculation: (a) 35 measurement sites, second mode,

(b) 17 measurement sites, second mode, (c) 7 measurement sites, second mode, (d) 35 measurement sites, third mode, (e) 17 measurement

sites, third mode, (f) 7 measurement sites, third mode. True curvature; central difference using Eq. (2); high

accuracy difference using Eq. (3). Note: The Y-axis in (f) is different since modal curvatures are smaller than in (d) and (e).
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Given boundary conditions s1 and sN+1, Eq. (28) represents a linear system of N�1 equations for the N�1
unknowns, s2,y, sN. It can be shown that this system has a unique solution that can be found without any
difficulty using the Gauss elimination technique [23]. In general, Eq. (28) represents a more realistic prediction
of free parameters si (and thus of modal rotations yi) as compared to Eq. (23). This is because the curvature
continuity condition in Eq. (25) holds true for any beam-type structure as long as there is no sudden change of
stiffness at the nodes. This can be proved by referring to the moment curvature relation of the beam
k ¼ f00 ¼M=EI . For a typical beam used in engineering structures, the internal moment M is generally
continuous within its boundary. If the stiffness EI has no singularity at the nodes, the curvature f00 will also
remain continuous across the nodes. As will be discussed later in this paper, the discretization of the structure
can be based on a one-to-one correspondence between the measurement sites and the nodes. Due to the use of
limited measurement points in experiments, it is assumed as unlikely that one of the nodes will coincide exactly
with a damage location that could cause a sudden change of stiffness.
Fig. 8. Effect of measurement noise on modal curvature calculation: (a) and (b) 1% noise case—35 and 17 measurement sites; (c) and

(d) 2% noise case—35 and 17 measurement sites; (e) and (f) 5% noise case—35 and 17 measurement sites. True curvature;

central difference using Eq. (2); high accuracy difference using Eq. (3).
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2.3.2. Calculation of modal rotation using noisy modal displacement measurements

When noise is present in the modal displacement measurement, the use of either Eq. (23) or Eq. (28) to
calculate modal rotations can sometimes cause unacceptable errors. This can be highlighted by considering the
true modal displacement of node i to be fi, and the noisy measured modal displacement to be fm

i ¼ fi þ �i,
where ei is the normally distributed random error. The direct application of Eq. (20) will make the mode shape
function f(x) follow the small deviations caused by random errors ei in the measurement. This is clearly not a
desired result. This problem can be solved by reformulating Eqs. (25) and (28) into a minimization problem
expressed as

min f ðxÞ ¼ p
XNþ1
i¼1

fðxiÞ � fm
i

sf

� �2

þ ð1� pÞ

Z xNþ1

x1

ðf00ðxÞÞ2 dx, (29)

in which, sm is the standard deviation of measured noisy modal displacements fm and p is a weighting
constant. The first term in Eq. (29) is the normal least-squares term and second term is a penalty term used to
express the roughness of the mode shape estimate f(x). The minimization of the function f(x) in Eq. (29) using
an appropriate value of p will establish a balance between the goal of maintaining a close fit to the measured
modal displacement data and the goals of maintaining the smoothness of the function f(x) and avoiding
‘kinks’ caused by random errors in the data.

Reinsch [24] reported that the solution of the problem formulated in Eq. (29) could take the form of a
natural cubic smoothing spline. It is pointed out that smoothing splines are piecewise polynomials that have a
form similar to Eq. (17). Both Reinsch [24] and Green and Silverman [25] presented efficient algorithms to
calculate the coefficients of these polynomials. However, the problem of finding the appropriate choice of
weighting parameter p still exists.

The mean-squared error (MSE) can be defined as

MSEðpÞ ¼
1

N þ 1

XNþ1
i¼1

ðfpðxiÞ � fiÞ
2, (30)

where fi is the true modal displacement value and fp(x) is the smoothing spline estimate of mode shape
function determined using Eq. (29) and value p. The MSE is an indicator of the goodness of the fit by the
estimation function f(x). Thus, minimizing MSE(p) gives the optimal weighting parameter p. The formulation
0.508 m

X

0.102 m

0.330 m

0.152 m
Damage Case 2Damage Case 1

Fig. 9. Damage scenarios.

Table 1

Natural frequency comparison between undamaged state and Damage Cases 1 and 2 (Unit: Hz)

Mode Undamaged Damage Case 1 Damage Case 2

1 19.629 19.575 18.124

2 30.665 30.647 29.290

3 78.512 78.340 77.705

4 99.366 99.088 98.247

5 176.63 176.56 166.80

6 207.29 207.17 200.16
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Fig. 10. Modal displacement comparison ((a) first mode and (b) second mode) and modal displacement difference ((c) first mode and (d)

second mode) between undamaged state and Damage Case 1: undamaged mode shape; Damage Case 1 mode shape;

mode shape difference.

Fig. 11. Modal displacement comparison ((a) first mode and (b) second mode) and modal displacement difference ((c) first mode

and (d) second mode) between undamaged state and Damage Case 2: undamaged mode shape; Damage Case 2 mode

shape; mode shape difference.
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of MSE in Eq. (30) relies on the unknown modal displacements fi. This problem can be avoided by using the
cross validation score as an estimate of MSE [25]

CVðpÞ ¼
1

N þ 1

XNþ1
i¼1

ðfm
i � fð�iÞ

p ðxiÞÞ
2, (31)

in which, fð�iÞ
p ðxÞ is the smoothing spline estimate of the mode shape function using the value p with the ith

observation fi left out. The minimization of CV(p) instead of MSE(p) gives an estimation of the optimal
weighting parameter p.
3. Numerical simulation

3.1. Description of the numerical model

The purpose of the numerical simulation provided herein is to validate the proposed method and assess its
comparative advantage with respect to the previously discussed numerical differentiation techniques in the
Fig. 12. EMSDI and EMSDI difference—undamaged state vs. Damage Case 1, 35 measurement sites: (a) first mode EMSDI, (b) second

mode EMSDI, (c) third mode EMSDI, (d) first mode EMSDI difference, (e) second mode EMSDI difference, (f) third mode EMSDI

difference. Undamaged EMSDI; Damage Case 1 EMSDI; EMSDI difference.
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context of damage detection. The test structure selected here is a theoretical model of a two-span continuous
beam. The material and sectional properties of the model are identical to a beam specimen tested previously,
as detailed in later sections. The aluminum beam specimen has a section of 76.2mm (3 in) in width and
6.35mm (1/4 in) in height. The theoretical model was built using the general-purpose finite element analysis
software package ANSYS [26]. The continuous beam has two spans of equal length of 0.8636m (34 in), as
shown in Fig. 4. The support conditions were modeled as being pinned at the left-end support and having a
slider at the middle- and right-end supports. The beam was modeled using a total of 544 3D linear elastic beam
elements of 3.175mm in length. The important element properties are: (1) cross-sectional area
A ¼ 4.84� 10�4m2; (2) moment of inertia in y direction Iyy ¼ 1.63� 10�9m4; (3) moment of inertia in z

direction Izz ¼ 2.34� 10�7m4; (4) Young’s modulus E ¼ 6.964� 1010 Pa; (5) Poisson’s ratio n ¼ 0.35; and (6)
test specimen mass density of r ¼ 2700 kg/m3.

The first six modes of the beam model were extracted using the subspace algorithm in ANSYS. Results of
natural frequencies, transverse modal displacements in the Y direction and modal rotations around the Z-axis
Fig. 13. Modal curvature and modal curvature difference—undamaged state vs. Damage Case 1, 35 measurement sites: (a) first mode

curvature, (b) second mode curvature, (c) third mode curvature, (d) first mode curvature difference, (e) second mode curvature difference,

(f) third mode curvature difference. Undamaged modal curvature; Damage Case 1 modal curvature; modal

curvature difference.
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at each node were obtained for each mode. The extracted mode shapes of the first 6 modes are plotted in
Fig. 5.

3.2. Errors associated with numerical differentiation procedures

While values for modal displacement and modal rotations are available at every node in theoretical or
numerical simulations, this is typically not the case in experiments. In experiments not only is the number of
instrumented points generally limited, but it is also very difficult to accurately measure modal rotations using
current available sensor technology. Under these conditions, both modal curvature and the EMSDI in Eq.
(15) must be estimated using sparse measurement of modal displacements only. In order to simulate the
situation where only sparse measurements are available, the full FEM modal displacement is sampled at three
sets of intervals. The first set is composed of 35 sample points, with the distance between each pair of adjacent
sample points roughly equals to 0.0508m corresponding to the case where only 18 measurement sites are
available on one span of the continuous beam. The second and third sets are composed of 17 and 7 sample
points, respectively, with the distance between sample points being 0.108 and 0.289m, respectively.

Fig. 6 presents the modal curvature calculated using the numerical differentiation procedure in Eq. (2). Only
results from first four modes are presented. Results from other modes show similar trends and are thus
omitted. The locations of sample points, or measurements sites, are represented by the small circles, triangles
and stars in the figure. It is evident that with the decrease in the number of measurement sites, the curvature
calculated using Eq. (2) deviates farther from the true curvature value as represented by the solid dark lines.
The true curvature value is approximated by curvature calculated using all 545 measurement sites, which can
be shown to be very close to the true curvature value calculated by differentiating analytical mode shape
Fig. 14. EMSDI and modal curvature comparison—undamaged state vs. Damage Case 1, 17 measurement sites, first mode:

(a) EMSDI, (b) EMSDI difference, (c) modal curvature, (d) modal curvature difference. Undamaged value; Damage Case

1; difference.
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functions. The error introduced by numerical differentiation also increases with higher modes. This can be
explained by noting the second term in Eq. (4). The value M4 is associated with the amplitude of the fourth
derivative of the mode shape and tends to grow larger in higher modes.

Fig. 7 shows the comparison of results between two different numerical differentiation procedures: (1)
central difference (CD) equation of Eq. (2) and (2) Eq. (3), which will be referred to as the high accuracy
difference (HAD) equation. For clarity, only the calculated modal curvature from modes 2 and 3 are plotted.
Results from other modes show similar trends and are thus omitted. In general, results from HAD are closer
to the true curvature values. For relatively dense measurement sites, i.e., 35 sites and 17 sites, the difference
between CD and HAD is insignificant. However, in the situation where 7 measurement sites are available
HAD performs significantly better than CD, although both procedures produce estimates of modal curvature
that are far from ideal under this situation.

In order to assess the effect of measurement noise on the performance of numerical differentiation
procedures, simulated noise was added to FEM generated mode shapes. Three different levels of uniformly
distributed random noise were added, with their maximum magnitude equal to 1%, 2% and 5% of the
maximum magnitude of the respective mode shapes. Numerical differentiation procedures involving both CD
and HAD, were applied to the noise-augmented mode shapes. The results are shown in Fig. 8 using the modal
curvatures of the first mode as an example. It can be seen that, for both numerical differentiation procedures,
the magnitude of propagated noise in the modal curvature results is large compared to the true, noise-free
modal curvature. In the case of 35 measurement sites, it is likely that the propagated noise in the modal
curvature will mask any change caused by a moderate level of damage, even when the noise level is only 1%.
Perhaps more significantly, the level of propagated noise in the modal curvature results increases with the
Fig. 15. EMSDI and modal curvature comparison—undamaged state vs. Damage Case 1, 17 measurement sites, third mode:

(a) EMSDI, (b) EMSDI difference, (c) modal curvature, (d) modal curvature difference. Undamaged value; Damage Case

1; difference.
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number of measurement sites. This result has the important implication that numerical differentiation
procedures are not able to take advantage of the increased spatial resolution in mode shape offered by
advanced sensor technologies in cases when noise is present.

3.3. Damage identification using Element Modal Strain Damage Index with sparse modal displacement

measurement

In order to demonstrate capability of the proposed EMSDI method to identify damage, simulated damage
was introduced in the finite element model. Two damage scenarios were simulated: (1) a 6% reduction in
bending stiffness on a 0.102m (4 in) section of the left span of the beam and (2) a 49% reduction in bending
stiffness on a 0.152m (6 in) section of the right span of the beam. These two damage scenarios were chosen to
represent small and medium levels of damage, respectively. The two damage scenarios are illustrated in Fig. 9.
The natural frequencies of the first 6 modes for both damage cases are listed in Table 1. Modal displacements
are again obtained through modal analysis and are resampled to simulate the condition of sparse
measurement. Fig. 10 plots the modal displacement comparison of the first two modes between the
undamaged state and Damage Case 1 for the case of 35 measurement sites. The modal displacement of
Damage Case 1 is overlaid on the undamaged modal displacement in figures (a) and (b). Figures (c) and (d)
depict the modal displacement differences calculated by subtracting modal displacements of the damaged state
from those of the undamaged states. It can be seen that modal displacements from the two states were barely
discernible for Damage Case 1, which represents a damage pertaining to a 6% stiffness reduction over a
section of approximately 10% of the beam span length. The difference between modal displacements does not
Fig. 16. EMSDI and modal curvature comparison—undamaged state vs. Damage Case 1, 7 measurement sites, first mode: (a) EMSDI,

(b) EMSDI difference, (c) modal curvature, (d) modal curvature difference. Undamaged value; Damage Case 1;

difference.
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Fig. 17. EMSDI and EMSDI difference—undamaged state vs. Damage Case 2, 35 measurement sites: (a) first mode EMSDI, (b) second

mode EMSDI, (c) third mode EMSDI, (d) first mode EMSDI difference, (e) second mode EMSDI difference, (f) third mode EMSDI

difference. Undamaged EMSDI; Damage Case 2 EMSDI; EMSDI difference.
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provide a good indication for damage location either, with results from the two modes indicating maximum
differences at different locations. Fig. 11 plots the results of Damage Case 2. In this case, due to the larger
magnitude of damage the change in mode shape is more discernible. Results from sparse measurements of 17
and 7 measurement sites also show similar trends.

The EMSDI can then be calculated using Eq. (15) using all three sets of sparse measurements. The
measurement sites are taken as the nodes and the beam sections between adjacent sites are treated as single
elements in the calculation of EMSDI. Modal rotations are first determined by solving Eq. (28). The modal
displacements and modal rotations at each node can then be substituted into Eq. (15) to calculate EMSDI for
each element. The results are presented in Figs. 12–16. Fig. 12 presents the EMSDI difference of each element
between the undamaged state and Damage Case 1 for the case of 35 measurement sites. For all three modes
selected, EMSDI difference plots show a clear peak at the location of the damage, which is between 0.5 and
0.6m from the left support. As a comparison, the modal curvature difference calculated using numerical
differentiation is plotted in Fig. 13. The results show that modal curvature is also able to correctly locate the
damage for the case of 35 measurement sites. Results for the case of 17 measurement sites are plotted in
Figs. 14 and 15. Only results for the first mode and the third Mode are plotted, since the results from other
modes are similar. Again, the EMSDI is seen to correctly indicate the damage location for both modes. For
the purposes of comparison, modal curvature difference is also plotted in Figs. 14 and 15. It appears that for
the first mode, modal curvature calculated using the numerical difference procedure is also able to correctly
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Fig. 18. Modal curvature and modal curvature difference—undamaged state vs. Damage Case 2, 35 measurement sites: (a) first mode

curvature, (b) second mode curvature, (c) third mode curvature, (d) first mode curvature difference, (e) second mode curvature difference,

(f) third mode curvature difference. Undamaged modal curvature; Damage Case 2 modal curvature; modal

curvature difference.
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indicate the damage location. But in the case of the third mode, the results of modal curvature difference
appear to be ambiguous and hard to interpret. This trend compares well with the conclusion drawn from Eq.
(4) and Fig. 7 in that the error introduced by numerical differentiation increases in the higher modes. A similar
comparison is given in Fig. 16 for the case of 7 measurement sites. For this case, neither method is able to give
a clear indication of the location of the damage.

Results from Damage Case 2 are presented in Figs. 17–20. Figs. 17 and 18 show a comparison between the
EMSDI method and modal curvature in the case of 35 measurement sites. Similar to Damage Case 1, both
methods are seen to be able to locate the damage region correctly. However, in the case of the second mode,
the use of the EMSDI difference presents a more distinctive peak at the location of damage, which is
about 0.33–0.38m from the right support. Results from the case of 17 measurement sites are plotted in Fig. 19.
Again similar to Damage Case 1, both methods are able to identify the damaged region correctly. Fig. 20
presents the results obtained from the consideration of only 7 measurement sites. For this case, the EMSDI
method clearly outperforms the modal curvature method and shows a clear peak at the correct location in the
difference plot.

Overall it is concluded that the EMSDI method generally shows better performance in comparison to the
modal curvature method using numerical differentiation procedures. The advantage of the EMSDI method is
highlighted when the mode number increases and the number of measurement sites decreases.
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Fig. 19. EMSDI and modal curvature comparison—undamaged state vs. Damage Case 2, 17 measurement sites, first mode:

(a) EMSDI, (b) EMSDI difference, (c) modal curvature, (d) modal curvature difference. Undamaged value; Damage Case

1; difference.
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3.4. Damage identification using Element Modal Strain Damage Index using noisy modal displacement

measurements

To compare the performance of the proposed EMSDI method with the commonly used modal curvature
method under conditions where measurement noise is present, three different realistic levels of noise were
added to both the damaged and undamaged simulated modal displacements as discussed in Section 3.2. The
difference between the undamaged mode shape and that of Damage Case 1 was too small compared with
simulated noise, thus only Damage Case 2 will be considered in the following study. Modal curvature
differences for the first mode between the undamaged state and Damage Case 1 for both noisy and noise-free
measurements are plotted in Fig. 21. In each figure, curvature difference calculated using noise-free
measurements are represented by the solid lines marked with stars. Curvature difference calculated using noisy
measurements are represented by dashed lines marked with triangles. It can be seen that for the case of
35 measurement sites, the unevenness caused by the propagated noise due to use of a numerical differentiation
procedure is comparable in size to the change caused by damage even for the lowest noise level. For
higher noise levels, numerical errors in curvature completely mask the change caused by damage. For the case
of 17 measurement sites, due to the larger spacing between sites, the peak caused by damage is still quite
discernible for lower noise levels. However, for the highest noise level, the numerical errors also start
to dominate.

The corresponding EMSDI difference results of the first mode are plotted in Fig. 22. EMSDI for both
undamaged and damaged states were calculated using Eq. (28), i.e., no measure was specially taken to deal
with the problem of measurement noise. For this case, EMSDI showed slightly better performance compared
with the modal curvature method under the same situations. The damage location was correctly indicated
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Fig. 20. EMSDI and modal curvature comparison—undamaged state vs. Damage Case 2, 7 measurement sites, first mode: (a) EMSDI,

(b) EMSDI difference, (c) modal curvature, (d) modal curvature difference. Undamaged value; Damage Case 1;

difference.
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in the case of two lower noise levels for both the 35 and 17 measurement sites cases but not for the highest
noise level.

The EMSDI difference computed using Eq. (29) is presented in Fig. 23, from which it can clearly be seen
that the inclusion of the penalty term in Eq. (29) drastically improve the performance of EMSDI method
under noisy conditions. The damage location was correctly indicated for all noise levels and for both 35 and 17
measurement sites. For higher noise levels, the base of the peak indicating the damage region is seen to widen.
This is expected since higher noise content in the measurement will no doubt affect the preciseness by which
the damage region can be located. Nevertheless, the number and the center location of the damage region are
both identified correctly. The results for 7 measurement sites are plotted in Fig. 24. Again, the improved
EMSDI method using Eq. (29) is able to correctly locate the damage region for all three noise levels although
the result for the highest noise level seems somewhat ambiguous.

3.5. Consideration of computational complexity

As the proposed EMSDI method involves more computation steps than the traditional central difference
method, it is of interest to compare the computation time that will be required to obtain results for both
methods under similar conditions and determine the speed penalties, if any, that results from this increased
computational complexity. Both the traditional central difference method and the improved EMSDI method
are implemented in MATLAB programs that automatically record the computation time needed to obtain
results—for the central difference method, the central difference estimation of modal curvature; and for
EMSDI method, the EMSDI index. The computational time of both programs running on a Pentium 4 PC
with a CPU clock of 1.80GHz and 512MB of RAM was recorded for the case pertaining to 35 measurement
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Fig. 21. Modal curvature difference of the first mode-noisy measurement vs. noise-free measurement: (a) and (b) 1% noise; (c) and (d) 2%

noise; (e) and (f) 5% noise. Difference using noise-free data; difference using noisy data.
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sites. The computation time for traditional central difference method was approximately 0.01 s while the
EMSDI procedure took 0.15 s to finish. It was also observed that computation time of EMSDI procedure is
roughly proportional to the number of measurement sites that are used for calculation. It can thus be noted
that even though the proposed method requires more computation time than the traditional central difference
method, the time difference is insignificant for almost all practical applications (in the range of tens to several
hundreds of measurement sites).

4. Experimental validation

4.1. Experiment setup

To evaluate the performance of the proposed EMSDI technique under actual experimental conditions, a
series of tests were performed on small-scale beam specimens in the laboratory. The aluminum beams tested
have a length of 914.4mm (36 in) and a section of 76.2mm (3 in) by 6.35mm (1/4 in). The geometry of the
cross-section was identical to the one used for the numerical analysis depicted in Fig. 4. The beams were set up
to simulate a simply–simply supported boundary condition, frequently encountered in modal testing of
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Fig. 22. EMSDI difference of the first mode—Eq. (28): (a) and (b) 1% noise; (c) and (d) 2% noise; (e) and (f) 5% noise.
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bridges. A special support fixture was used on both ends of the beam to ensure that a close approximation of
the idealized boundary condition was achieved. The span of the beam is 863.6mm (34 in).

4.2. Experimental determination of modal parameters

Fig. 25 shows the data-acquisition system consisted of a National Instruments SCXI-1000 signal-
conditioning module, a NI-DAQPad 6052E data-acquisition pad and a laptop computer that controled the
data acquisition. Nine PCB 3701G2FA3G ICP accelerometers with a measurement range of �3 to +3g and a
frequency range of 0–150Hz were mounted on the top surface of the beam, with their locations shown by
small squares in Fig. 26. All accelerometers were mounted with their positive measurement direction pointing
upwards.

A PCB 086C03 Impact Hammer was used to apply an impulsive force on the beam at a pre-determined
location. The response of the beam was measured by the accelerometers at a sampling rate of 1000Hz. The
response acceleration signal was first passed through an anti-aliasing filter to filter out high frequency noise.
Acceleration frequency-response functions (FRFs) were then calculated using the measured impact force and
the acceleration response. Multiple impact tests were carried out to obtain averaged FRFs.

A typical FRF and its corresponding coherence function are shown in Fig. 27. The coherence value was
close to 1 for most of the frequency range indicating a low noise level during the experiment. The Rational
Fractional Polynomial (RFP) method [27] was applied on FRFs in the frequency domain to obtain estimates
of modal parameters, including natural frequencies, modal damping and mode shapes.
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Fig. 23. EMSDI difference of the first mode—Eq. (29)—35 and 17 measurement sites: (a) and (b) 1% noise; (c) and (d) 2% noise; (e) and

(f) 5% noise.
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4.3. Damage cases

Damage was introduced in the beam in the form of saw cuts in the direction perpendicular to the
longitudinal axis of the beam. Three damage cases were considered during the experiment. In all three cases,
full width saw cuts of 3mm thickness were made on both sides of the beam symmetric to the longitudinal axis.
The first damage case involved saw cuts at location D1 (431.8mm from left support, as shown in Fig. 26) with
a depth of 6.35mm (1/4 in) at each side. The second damage case involved saw cuts at the previous location
but with a depth of 12.7mm (1/2 in). In the third damage case, additional saw cuts were made at location D2
(177.9mm from left support) with a depth of 12.7mm. The reduction in equivalent bending stiffness at the
damaged locations due to loss of sectional area and sectional moment of inertia can be calculated for each of
the three cases and is listed in Table 2.

4.4. Damage identification using EMSDI method

Displacement mode shapes were obtained for the undamaged structure and all three damage cases using
techniques described previously in Section 4.2. Within the measurement frequency range, two modes were
identified. The first mode is a symmetric bending mode with its frequency around 23Hz. The second mode is
an anti-symmetric bending mode with a natural frequency of approximately 75Hz. A closer examination of
the curve fitting process used in the Rational Fractional Polynomial method reveals that the mode shape of the
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Fig. 24. EMSDI difference of the first mode—Eq. (29)—7 measurement sites: (a) 1% noise; (b) 2% noise and (c) 5% noise.

Fig. 25. Data-acquisition system.
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second mode is susceptible to a distortional effect for some of the damage cases. However, the cause for this
distortion could not be identified, and it was hence decided to use only the first mode in the damage
identification process.
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Fig. 26. Accelerometer locations.

Fig. 27. Typical frequency-response function and coherence function.

Table 2

Damage cases—location and magnitude

Damage Case Location Depth (mm) Equivalent reduction in EI (%)

Case 1 D1 (431.8mm from left support) 6.35 16.7

Case 2 D1 (431.8mm from left support) 12.7 33.3

Case 3 D1 and D2 (177.9mm from left support) 12.7 (both) 33.3 (both)
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Amplitudes of displacement mode shape for undamaged and damaged states are plotted in Fig. 28 as well as
the difference between the modal displacements of three damage cases and that of the undamaged state. The
X-axis indicates the distance on the beam from the left support. From Fig. 28 it can be seen that the changes in
modal displacements caused by damage were small and very difficult to discern from the original mode shape.
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Fig. 28. Modal displacement and modal displacement difference: (a) modal displacement and (b) modal displacement difference.

Undamaged; Damage Case 1; Damage Case 2; Damage Case 3.
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The maximum difference in mode shape between the undamaged state and Damage Case 3 amounts to about
1.7% of the largest modal displacement. The difference in modal displacements clearly does not give a good
indication of damage location in all three damage cases.

Modal curvature calculated using the central difference approximation for all cases is plotted in Fig. 29. It is
apparent that modal curvature is not effective in locating damage in this case due to the use of a small number
of measurement points. The random variation of measurement mode shape may also contribute to the failure
of modal curvature method in this case although the modal testing was carried out in a laboratory
environment and measurement noise was considerably better controlled than in a field application condition.

The EMSDI results using Eq. (29) are presented in Fig. 30. The beam was divided into 8 elements separated
by sensor locations. Damage locations D1 and D2 are situated at elements 5 and 2, respectively. For Damage
Case 1, EMSDI was not able to locate the damage correctly, with two false indications at elements 2 and 3. It
is noted that the effectiveness of the EMSDI method relies, in part, on accurate measurement of modal
displacement. While the proposed method is less sensitive to measurement noise than the other, more
traditional, methods, it can still be affected by this. This damage case, moreover, reflects a relatively small
magnitude of damage (the smallest of the three cases considered in the study) and it is felt that inherent
experimental inaccuracy caused the method to give false indications. For both Damage Case 2 and 3, the saw
cut at location D1 was identified correctly. Damage was also indicated on the adjacent element 4, which is
consistent with the behavior observed in numerical analysis when measurement noise was present. Damage
location D2 was again identified correctly in Damage Case 3.

In summary, during the experimental validation the EMSDI method was able to identify damage correctly
in most cases when the damage is sufficiently large. Although a false indication of damage can occur at low
levels of damage, such indications are almost non-existent with higher damage levels. It should be kept in mind
that the above results were obtained using a very limited set of measurement sites under field simulated
experimental conditions where noise influence was present. Within the experimental constraints, the EMSDI
method shows a superior performance as compared to the more commonly used modal curvature method.
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Fig. 29. Modal curvature and modal curvature difference: (a) modal curvature and (b) modal curvature difference. Undamaged;

Damage Case 1; Damage Case 2; Damage Case 3.

Fig. 30. EMSDI difference of experimental beam: black bar—Damage Case 1, gray bar—Damage Case 2, white bar—Damage Case 3.
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5. Conclusions

On the basis of a careful review of the methods adopted in the existing literature, it is concluded that there
are some major weaknesses associated with the computation of modal curvature from experimentally
measured displacement mode shapes. First of all, the errors introduced by the use of the central difference
approximation used commonly to compute modal curvature increase with the square of the spacing of
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measurement sites. When only relatively sparsely spaced measurements are available, which is often the case
during field experimentation, the errors could hinder the damage identification process. Secondly, when noise
is present in the measurement mode shape, computed modal curvatures tend to be polluted by noise
propagated through the numerical differentiation process. Thus, the damage detection methods based on
modal curvature are not able to take advantage of the increased mode shape spatial resolution offered by
advancing sensor technology when noise is present.

In order to address the aforementioned problems, a new damage identification method based on the concept
of Element Modal Strain Damage Index (EMSDI) is proposed. By employing an element shape function
technique, the EMSDI can be directly computed from measured modal displacements thereby avoiding the
problems associated with numerical differentiation procedures. The method is thus less sensitive to noise since
estimates of derivatives are obtained through the use of spline interpolation and numerical optimization
(through Eqs. (29) and (31)). The unmeasured modal rotation is computed from modal displacement using a
penalty-based method, improving performance even under noisy conditions. It is demonstrated through the
use of numerical simulation examples that the proposed method is able to correctly locate a damage region
using only noisy sparse measurement even in cases when the modal curvature method fails. It is also noted that
even though the proposed method requires more computation time than the traditional method, the time
difference is insignificant for applications where measured sites are sparse.
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