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Abstract

Stochastic response of bridges seismically isolated by lead-rubber bearings (LRB) is investigated. The earthquake

excitation is modeled as a non-stationary random process (i.e. uniformly modulated broad-band excitation). The stochastic

response of isolated bridge is obtained using the time-dependent equivalent linearization technique as the force-

deformation behavior of the LRB is highly nonlinear. The non-stationary response of isolated bridge is compared with the

corresponding stationary response in order to study the effects of non-stationary characteristics of the earthquake input

motion. For a given isolated bridge system and excitation, it was observed that there exists an optimum value of the yield

strength of LRB for which the root mean square (rms) absolute acceleration of bridge deck attains the minimum value. The

optimum yield strength of LRB is investigated under important parametric variations such as isolation period and

damping ratio of the LRB and the frequency content and intensity of earthquake excitation. It is shown that the above

parameters have significant effects on the optimum yield strength of LRB. Finally, closed-form expressions for the

optimum yield strength of LRB and corresponding response of the isolated bridge system are proposed. These expressions

were derived based on the model of bridge with rigid deck and pier condition subjected to stationary white-noise excitation.

It was observed that there is a very good comparison between the proposed closed-form expressions and actual optimum

parameters and response of the isolated bridge system. These expressions can be used for initial optimal design of seismic

isolation system for the bridges.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Seismic isolation has emerged as one of the most promising technique for retrofitting strategies to improve
the seismic performance of existing bridges. It is also an attractive approach for new construction when
conventional design is not suitable or economical. In the seismic isolation approach, the superstructure mass is
uncoupled from seismic ground motions. It uses special types of bearings known as seismic isolation bearings
which are placed below the superstructure and on top of the substructure (piers and/or abutments). Under
normal conditions, these bearings behave like conventional bearings. However, in the event of a strong
earthquake, they add flexibility to the bridge by elongating its period and dissipate the input energy. This
permits the superstructure to oscillate at a lower frequency than that of the piers. It could also give rise to large
relative displacements across the isolator interface, which can be controlled by incorporating damping
elements in the bearing or by adding supplemental dampers. Seismic isolation provides two significant design
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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features for a bridge namely (i) it can reduce the seismic forces substantially and (ii) it can control the
distribution of these reduced lateral forces among the substructures and foundations to further enhance the
overall economy and effectiveness of new and retrofit designs. The details of earlier research and recent
investigations on seismic isolation of bridges can be found in review Ref. [1]. The design guidelines and
specifications for bridges with seismic isolators to take advantage of the reduced earthquake forces and
provide the most economical bridge design with same level of seismic safety are also available in the AASHTO
code [2].

There have been several studies in the past for investigating the effectiveness of isolation devices for aseismic
design of bridges [3–14]. Ghobarah and Ali [3] and Turkington et al. [4] showed that the lead-rubber bearings
(LRB) are quite effective in reducing the seismic response of bridges. Hwang and Sheng [5] evaluated specified
effective stiffness and equivalent damping ratio for an equivalent elastic system of isolated bridges and
proposed empirical formulae for the calculations of the equivalent period shift and equivalent damping ratio.
Jangid [6] studied the bi-directional response of bridges isolated by LRB and showed that the bi-directional
interaction of bearing restoring forces had considerable effects on the seismic response of bridges.
Constantinou et al. [7] and Tsopelas et al. [8] conducted experimental studies on bridges isolated by sliding
bearings with displacement control devices to real earthquake ground motion applied independently in
longitudinal and transverse direction. Kartoum et al. [9] and Wang et al. [10] studied the effectiveness of
friction pendulum system for seismic isolation of bridges. Li [11] and Pagnini and Solari [12] presented the
response of bridges isolated by the LRB to stationary earthquake ground motion using equivalent
linearization technique. Recently, Ates et al. [13,14] investigated the stochastic response of seismically isolated
highway bridges with friction pendulum systems to spatially varying earthquake ground motion. The review of
above studies indicates that there had not been much attempt to investigate the response of isolated bridges to
non-stationary earthquake excitations.

Here in, the stochastic response of multi-span continuous deck bridge isolated by the LRB to non-
stationary earthquake ground motion is presented. The specific objectives of the study are to: (i) present
mathematical formulations for evaluation of response of isolated bridge subjected non-stationary earthquake
ground motion, (ii) study the effects of yield strength of LRB on the stochastic response of isolated
bridge system, (iii) investigate the existence of optimum yield strength of the LRB for a given structural system
and excitation, (iv) study the effects of important system parameters on the variation of optimum yield
strength of the LRB. The parameters included are isolation period and damping ratio of the LRB and the
frequency and intensity of earthquake excitation, and (v) to present approximate closed-form expressions for
the optimum yield strength of LRB and corresponding response of the isolated bridge system for design
purposes.

2. Modeling of isolated bridge system

Fig. 1(a) shows the general elevation of a bridge consisting multi-span continuous deck supported by the
isolation system. The substructure of bridge consists of rigid abutments and reinforced concrete piers. For the
present study, the LRB consisting of alternating layers of steel shims and rubber with central lead plug are
considered as isolation device. The LRB is very stiff in vertical direction and flexible in horizontal direction
(due to presence of steel shims and rubber). The horizontal flexibility and damping characteristics of the LRB
provides desired isolation effects in the system [15,16]. The horizontal flexibility transmits relatively limited
earthquake forces from substructures to the superstructure. On the other hand, the damping of bearings
dissipates the seismic energy thereby reducing the design displacement of the bridge. In addition, the inelastic
deformation of lead plug also provides the hysteretic damping in the system. The following assumptions are
made for the earthquake analysis of isolated bridge under consideration:
1.
 The deck of bridge is straight and is supported at discrete locations along its longitudinal axis by cross
diaphragms and the angle of skew is zero. The bridge deck is idealized as a rigid body.
2.
 Bridge piers are assumed to remain in the elastic state during the earthquake excitation. This is a reasonable
assumption as the isolation attempts to reduce the earthquake response in such a way that the structure
remains within the elastic range.
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Fig. 1. General elevation and mathematical modeling of the bridge and isolation devices.
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3.
 The piers are modeled as lumped mass system divided into number of small discrete segments. Each
adjacent segment is connected by a node and at each node single degree-of-freedom is considered. The
masses of each segment are assumed to be distributed between the two adjacent nodes in the form of point
masses.
4.
 Bridge piers are assumed to be rigidly fixed at the foundation level.

5.
 The LRB is considered to be isotropic implying the same dynamic properties in two orthogonal directions.

In addition, the bearings provided at the piers and abutments have the same dynamic characteristics.

6.
 The force-deformation behavior of the LRB is considered as bi-linear (refer Fig. 1(b)) based on the

nonlinear hysteretic model.

The above assumptions will lead to the mathematical model of the isolated bridge system as shown in Fig. 1(c)
which was studied earlier in Refs. [3,9,11,17]. The governing equations of motion of the isolated bridge model
are expressed by

md €ud þ F a þ Fp ¼ �md €ug, (1)

½mp�f €upg þ ½cp�f _upg þ ½kp�fupg � fcgFp ¼ �½mp�f1g €ug, (2)

where md is the mass of the bridge deck; [mp], [cp] and [kp] represents the mass, stiffness and damping matrix of
size n� n, respectively, of the pier under top free condition; n is the number of nodes considered in the pier; Fa

and Fp represent the restoring forces of the LRB at abutment and pier level, respectively; ud is the displacement
of the deck relative to ground; {up} ¼ {u1, u2, y, un}

T is the vector of the displacement of various nodes of the
pier; ui is the horizontal displacement of the ith node of the pier; {c} ¼ {1, 0, y, 0}T is a vector of size n� 1;
{1} ¼ {1, 1, y, 1}T is the influence coefficient vector of size n� 1; and €ug represents the earthquake ground
acceleration.

The damping matrix of the pier is not explicitly known and it is constructed from assumed modal damping
(xp) in each mode of vibration using its mode-shapes and frequencies. For the present study, the number of
nodes considered in the pier is five (i.e. n ¼ 5). The damping in the pier is taken as 2 percent of the critical in all
modes of vibration. The pier of the bridge model is considered to be of uniform cross-section throughout the
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height. The fundamental time period of the pier, Tp with top free condition is expressed as

Tp ¼
2p

ð1:875Þ2

ffiffiffiffiffiffiffiffiffiffi
m̄ph4

EI

s
, (3)

where m̄p is the mass per unit length of the pier; h is the height of the pier; and EI is the flexural rigidity of the
pier. Note that Eq. (3) is based on the fundamental time period of a uniform cantilever beam under transverse
vibrations.

The ratio of pier mass to the deck mass is expressed by m defined as

m ¼
m̄ph

md

. (4)

3. Mathematical model of LRB

For the present study, the bi-linear force-deformation behavior of the LRB is expressed by the Wen’s
equation [18]. The restoring force of the LRB is expressed by

F j ¼ cb _uj þ akbuj þ ð1� aÞFyZj ðfor j ¼ a and pÞ, (5)

where cb represent the viscous damping of the LRB or the damping provided by the additional viscous
dampers; kb is the initial stiffness of the LRB; uj and _uj represents the relative displacement and velocity in the
bearing, respectively (i.e. ua ¼ ud and up ¼ ud– u1); u1 is the displacement of the pier top (refer in Fig. 1(c)); a is
an index, which represents the ratio of post to pre-yielding stiffness of the LRB; Fy is the yield strength of the
bearing; and Zj is a non-dimensional hysteretic component satisfying the following nonlinear first-order
differential equation expressed as

q _Zj ¼ A _uj � g _uj

�� ��Zj Zj

�� ��Z�1 � b _uj Zj

�� ��Z ðfor j ¼ a and pÞ, (6)

where q is the yield displacement of the bearing; b, g Z and A are non-dimensional parameters of the hysteresis
loop. The parameters a, b, g, A and Z control the shape of the loop and are selected such that the predicted
response from the model closely matches with the experimental results [19]. The parameters considered for the
present study are: a ¼ 0.05, b ¼ g ¼ 0.5, A ¼ 1 and Z ¼ 1 taken from Refs. [12,19].

The LRB for isolation of the bridges are designed to provide the specified values of three parameters namely
the Tb, xb and F0 expressed as

Tb ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

mdP
akb

r
, (7)

xb ¼

P
cb

2mdob

, (8)

F0 ¼

P
F y

W d

, (9)

where Tb is the isolation time period of the bearings;
P

akb is the total post-yield stiffness of the bearings; x
b
is

the damping ratio;
P

cb is the total viscous damping of bearings or added viscous dampers; ob ¼ 2p/Tb is the
isolation frequency; F0 is the normalized yield strength of LRB;

P
Fy is the total yield strength of LRB;

Wd ¼ md g is the deck weight; and g is the acceleration due to gravity.

4. Model of earthquake excitation

Earthquake ground motions are inherently random and multidimensional. If the evolution of the frequency
content with time can be neglected, the ground motion can be characterized by a matrix of the power spectral
density function (PSDF) and an intensity envelope function. The earthquake excitation is considered as
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a uniformly modulated stationary Gaussian random process with zero-mean. The earthquake acceleration,
€ugðtÞ is expressed as

€ugðtÞ ¼ AðtÞ €uf ðtÞ, (10)

where A(t) is the deterministic modulating function; and €uf ðtÞ is the stationary random process. The
deterministic modulating function A(t) in Eq. (10) is considered from Ref. [20] expressed as

AðtÞ ¼

t=t1
� �2

ð0ptpt1Þ;

1 ðt1ptpt2Þ;

e�cðt�t2Þ ðtXt2Þ;

8><
>: (11)

where t1 and t2 denotes the time for start and end of strong motion duration, respectively; c is a constant; and
T0 ¼ t2–t1 is known as the strong motion duration of earthquake.

The evolutionary PSDF of the earthquake excitation is given as

S €ug ðoÞ ¼ AðtÞ
�� ��2S €uf

ðoÞ, (12)

where S €uf
ðoÞ is the stationary PSDF of the earthquake ground motion. In the present study, the PSDF of the

earthquake excitation, €uf ðtÞ is considered as that suggested by Clough and Penzien [21], i.e.

S €uf
ðoÞ ¼ S0

1þ 4x2gðo=ogÞ
2

½1� ðo=ogÞ
2
�2 þ 4x2gðo=ogÞ

2

 !
ðo=of Þ

4

½1� ðo=of Þ
2
�2 þ 4x2f ðo=of Þ

2

 !
, (13)

where S0 is the constant PSDF of input white-noise random process; and og, xg, of and xf are the ground filter
parameters.

The og and xg generally represent the pre-dominant frequency and damping ratio of the soil strata,
respectively. For the present study, the values of various parameters considered are: xg ¼ xf ¼ 0.6 and
of ¼ 0.1og. The parameters og and S0 are varied to study the influence of pre-dominant earthquake frequency
and intensity of excitation on the response of the isolated bridge system.

Note that the state variable method for stochastic response of any system requires that the excitation must
be either white-noise or shot-noise whereas the PSDF of €uf ðtÞ is a non-white random process. However, this
obstacle can be circumvented by introducing the shaping filters in which the random process, €uf ðtÞ can be
considered as the response of two linear filters subjected to white-noise excitation as

€uf ðtÞ þ 2xf of _uf ðtÞ þ o2
f uf ðtÞ ¼ � €ugðtÞ þ €u0ðtÞ

� �
, (14)

€ugðtÞ þ 2xgog _ugðtÞ þ o2
gugðtÞ ¼ � €u0ðtÞ, (15)

where €u0ðtÞ is the input white-noise random process with constant intensity of the PSDF as S0. Note that
Eqs. (14) and (15) provide the stationary PSDF of the response, €uf ðtÞ as that expressed by the Eq. (13).

5. Evaluation of stochastic response

The Eq. (6) representing the force-deformation characteristics of LRB is nonlinear equation, which cannot
be used when the response is to be evaluated using state variable approach. Thus, Eq. (6) is replaced by an
equivalent linear equation [22] as

q _Zj þ Cj _uj þ KjZj ¼ 0, (16)

where Cj and Kj are the equivalent constants which are obtained by minimizing the mean square error between
the linear and nonlinear terms. For Z ¼ 1, the equivalent constants Cj and Kj are given by

Cj ¼

ffiffiffi
2

p

r
g

E½ _uj ;Zj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ _uj ; _uj�

p þ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½Zj ;Zj�

p( )
� A, (17)
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Kj ¼

ffiffiffi
2

p

r
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ _uj ; _uj�

p
þ b

E½ _uj ;Zj �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½Zj ;Zj�

p
( )

, (18)

where E[] is the expectation operator.
Eqs. (1,2) and (5,6) along with Eqs. (14) and (15) can be re-written as a system of first-order differential

equations as

d

dt
fY g ¼ ½H�fY g þ fW g, (19)

where {Y} is the state vector, [H] is the augmented system matrix, and {W} is the excitation vector.
The corresponding [H] matrix is expressed in Appendix I for the isolated bridge model considered in the

present study. The vector {Y} and {W} are expressed as

fY g ¼ ud fupg
T _ud f _upg

T Za Zp uf _uf ug _ug

n oT

, (20)

fW g ¼ 0 f0g 0 f0g 0 0 0 0 0 � €u0

� �T
. (21)
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Fig. 2. Comparison of the stationary and non-stationary response of seismically isolated bridge (Tp ¼ 0.05 s, m ¼ 0.15, Tb ¼ 2 s, xb ¼ 0.1,

F0 ¼ 0.05, og ¼ 5p rad/s and S0 ¼ 0.05m2/s3).
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The augmented response vector {Y} is a Markov process and corresponding covariance matrix [V] satisfies [23]
the following equation:

d

dt
½V � ¼ ½H�½V �T þ ½V �½H�T þ ½P�, (22)

where [V]T is the transpose of matrix [V].
The elements of matrix [V] and [P] are given by

Vij ¼ E½Y iY j�, (23)

Pij ¼ E½W iY j�, (24)

where Yi and Wi represents the ith element of the vector {Y} and {W}, respectively. All the elements of matrix
[P] will be zero except P(2n+8, 2n+8) ¼ 2pS0.

The augmented system matrix, [H] is time dependent through the introduction of modulating function, A(t).
The non-stationary response of the system (i.e. [V] matrix) is obtained by solving the moment Eq. (22) using
step-by-step method. The fourth-order Runge–Kutta method is employed for the present study. It is to be
noted that the nonlinear phenomenon of the LRB still exists due to dependence of equivalent constant Cj and
Kj on the elements of the [V] matrix (refer Eqs. (17) and (18)). However, this is taken care by modifying the Cj

and Kj in each time step depending upon the response of the system.
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Fig. 3. Influence of the pier flexibility on the response of isolated bridge system (m ¼ 0.15, xb ¼ 0.1, F0 ¼ 0.05, A(t) ¼ 1 og ¼ 5p rad/s and
S0 ¼ 0.05m2/s3).



ARTICLE IN PRESS
R.S. Jangid / Journal of Sound and Vibration 309 (2008) 805–822812
6. Numerical study

With the assumed values of parameters, the model of seismically isolated bridge considered in the present
study requires the specifications of parameters namely (i) time period of pier (Tp), (ii) ratio of pier mass of pier
to deck (m), (iii) isolation period (Tb), (iv) bearing damping ratio (xb) and (v) normalized yield strength of
bearing (F0). The excitation requires the values of the parameters og and S0. The non-stationary response of
the system is obtained by solving Eq. (22). The response quantities of interest are the root mean square (rms)
absolute deck acceleration, rms pier base shear and rms abutment and pier bearing displacements. The
absolute acceleration of the deck and the pier base shear are directly proportional to the forces exerted in the
bridge system due to earthquake ground motion. On the other hand, the relative displacements of the bearings
are crucial from the design point of view of isolation system and expansion joints.

The response of the system is investigated for two types of modulating functions expressed by Eq. (11)
namely (i) t1 ¼ 2.5 s, t2 ¼ 7.5 s and c ¼ 0.5 s�1 and (ii) t1 ¼ 2.5 s, t2 ¼ 12.5 s and c ¼ 0.5 s�1. These modulating
functions are referred as type-I and -II, which has the strong motion duration, T0 as 5 and 10 s, respectively.
In addition, the response is also investigated for A(t) ¼ 1 for all values of time t (this corresponds to a
stationary earthquake ground motion) in order to distinguish between the stationary and non-stationary
response of the seismically isolated bridge system.

In Fig. 2, time variation of the rms deck acceleration, pier base shear and bearing displacements is shown
for different types of modulating functions with og ¼ 5p rad/s and S0 ¼ 0.05m2/s3. The response is shown for
the system parameters: Tp ¼ 0.05 s, m ¼ 0.15, Tb ¼ 2 s, xb ¼ 0.1 and F0 ¼ 0.05 which corresponds to the model
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of the bridge considered in Ref. [10]. It is observed from the figure that the stationary response is achieved in a
very short time (i.e. about 2.5 s). In addition, the peak rms response under non-stationary ground motion is
the same as that of the stationary response. This happens mainly due to large damping in the isolated bridge
system. Thus, the stochastic earthquake response of the isolated bridges can be obtained by considering the
stationary model of earthquake ground motion with appropriate frequency variation of PSDF and intensity.
In view of this fact, all the subsequent numerical results of the isolated bridge system are presented for
stationary condition, i.e. A(t) ¼ 1 only.

Fig. 3 shows effect of variation of flexibility of the bridge pier on the stationary rms response of the bridge
The pier time period is varied from 0 to 0.2 s considering three values of isolation period (i.e. Tb ¼ 1.5, 2 and
2.5 s) with m ¼ 0.15, xb ¼ 0.1, F0 ¼ 0.05, og ¼ 5p rad/s and S0 ¼ 0.05m2/s3. The response for Tp ¼ 0
represents the corresponding response of the isolated bridge system with rigid pier condition (i.e. idealized as a
single-degree-of-freedom system). The figure indicates that the rms response of the isolated bridge system
remains almost constant with the increase of the time period or flexibility of the pier. This implies that the
flexibility of the pier does not have significant influence on the response of isolated bridge. This is expected due
to the fact that in the isolated bridge system, the flexibility is mainly concentrated in the isolation system and
the piers behave as a rigid body. Further, as expected the rms deck acceleration and pier base shear decreases
with the increase in the period of isolation. On the other hand, the bearing displacements increase with the
increase in isolation period. Thus, the earthquake forces transmitted to the bridge system can be reduced at the
expense of increasing relative displacement of the bearings. However, the relative displacement of the LRB has
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a practical limitation. Therefore, in designing the isolation system a compromise shall be made between
transmitted earthquake forces and relative bearing displacements.

Fig. 4 shows the effects of yield strength of LRB on the rms deck acceleration and bearing displacement for
different values of isolation periods and bearing damping ratios. It is observed that with the increase in the
yield strength of LRB, the rms deck acceleration reduces first and attains a minimum value and then it
increases with the increase of yield strength. This indicates that there exists optimum yield strength of the LRB
system for which the deck acceleration attains the minimum value. The comparison of the optimum yield
strength for different isolation periods indicates that the optimum yield strength of LRB decreases with the
increase of isolation period. Further, the optimum yield strength of LRB also decreases with the increase of
the viscous damping of bearing. This is due to the fact that the optimum total damping (due to viscous and
hysteretic due to lead core) for a given system is constant. Therefore, for a system with higher viscous
damping, there will be less requirement of damping due to lead-plug; as a result, the optimum yield strength is
reduced. In Fig. 5, the response of bridge is plotted against the damping ratio of LRB. The effects of the
damping ratio on the bridge response are similar to that observed for yield strength. Thus, there exists a
combination of the yield strength and viscous damping for which the deck acceleration of a given bridge
system and excitation attains the minimum value.

In order to study the reasons for optimum hysteretic and viscous damping of the LRB, the PSDF of the
deck acceleration and bearing displacement is plotted in Fig. 6 for different combinations of yield strength and
damping ratio of the bearing. It is seen from the figure that at resonance both deck acceleration and bearing
displacement are suppressed. However, the PSDF of the absolute deck acceleration increases with the increase
of the yield strength or viscous damping of the LRB for higher frequencies (i.e. o4

ffiffiffi
2
p

ob). Thus, the existence
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Table 1

Optimum yield strength of the LRB and response for different system parameters (Tp ¼ 0.05 s, m ¼ 0.15 and og ¼ 3p rad/s)

Tb (s) S0 (m
2/s3) xb ¼ 0 xb ¼ 0.05 xb ¼ 0.1

F
opt
0

s €ua (g) sud
(mm) F

opt
0

s €ua (g) sud
(mm) F

opt
0

s €ua (g) sud
(mm)

0.005 0.05 0.044 16.83 0.045 0.044 16.52 0.039 0.043 16.63

0.01 0.071 0.063 23.69 0.063 0.062 23.59 0.056 0.061 23.24

1.5 0.025 0.112 0.099 37.56 0.1 0.097 37.16 0.088 0.096 36.93

0.05 0.156 0.14 54.09 0.139 0.138 53.44 0.122 0.136 53.04

0.075 0.189 0.171 67.1 0.168 0.169 66.28 0.147 0.167 65.78

0.1 0.217 0.198 78 0.192 0.195 77.29 0.169 0.192 76.22

0.005 0.041 0.037 25.51 0.036 0.036 25.41 0.032 0.036 24.83

0.01 0.058 0.052 36.06 0.051 0.052 35.88 0.045 0.051 35.25

2.0 0.025 0.092 0.083 56.82 0.081 0.082 56.51 0.071 0.081 55.83

0.05 0.13 0.117 80.43 0.115 0.115 79.64 0.101 0.114 78.62

0.075 0.159 0.143 98.65 0.141 0.141 97.45 0.123 0.139 96.68

0.1 0.183 0.166 114.32 0.162 0.163 113.03 0.142 0.161 111.66

0.005 0.036 0.032 34.01 0.031 0.032 34.49 0.027 0.031 34.08

0.01 0.05 0.045 49.07 0.044 0.045 48.62 0.039 0.044 47.46

2.5 0.025 0.08 0.072 76.58 0.07 0.071 76.46 0.061 0.07 75.64

0.05 0.113 0.102 108.45 0.099 0.1 108.12 0.087 0.099 106.32

0.075 0.138 0.124 133.24 0.122 0.123 131.68 0.106 0.121 130.7

0.1 0.159 0.144 154.23 0.141 0.141 151.94 0.123 0.14 150.39

Table 2

Optimum yield strength of the LRB and response for different system parameters (Tp ¼ 0.05 s, m ¼ 0.15 and og ¼ 5p rad/s)

Tb (s) S0 (m
2/s3) xb ¼ 0 xb ¼ 0.05 xb ¼ 0.1

F
opt
0

s €ua (g) sud
(mm) F

opt
0

s €ua (g) sud
(mm) F

opt
0

s €ua (g) sud
(mm)

1.5 0.005 0.046 0.042 16.29 0.041 0.041 15.97 0.035 0.041 16.06

0.01 0.065 0.059 23.05 0.058 0.058 22.58 0.05 0.057 22.55

0.025 0.103 0.093 36.36 0.091 0.092 35.95 0.079 0.091 35.68

0.05 0.146 0.132 51.29 0.129 0.13 50.73 0.112 0.128 50.37

0.075 0.179 0.161 62.75 0.158 0.159 62.13 0.137 0.157 61.75

0.1 0.207 0.186 72.34 0.182 0.184 71.89 0.159 0.181 71.04

0.005 0.039 0.035 23.22 0.034 0.034 23.27 0.03 0.034 22.78

0.01 0.055 0.049 32.94 0.048 0.048 32.96 0.042 0.047 32.46

2.0 0.025 0.087 0.077 52.06 0.076 0.076 52.04 0.066 0.075 51.56

0.05 0.122 0.109 74.35 0.108 0.108 73.27 0.094 0.106 72.53

0.075 0.15 0.134 90.65 0.132 0.132 89.91 0.115 0.13 88.9

0.1 0.173 0.154 104.82 0.153 0.152 103.45 0.133 0.15 102.53

0.005 0.034 0.03 30.25 0.029 0.029 30.98 0.026 0.029 29.79

0.01 0.047 0.042 43.99 0.042 0.041 42.8 0.036 0.041 42.85

2.5 0.025 0.075 0.066 68.77 0.066 0.065 68.09 0.06 0.064 64.95

0.05 0.106 0.093 97.33 0.093 0.092 96.63 0.081 0.091 95.34

0.075 0.13 0.114 119 0.114 0.113 118.25 0.099 0.111 116.95

0.1 0.15 0.132 137.54 0.132 0.13 136.17 0.114 0.128 135.34
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of the optimum yield strength or viscous damping of LRB for minimum absolute deck acceleration is justified
and occurring due to high-frequency components of input earthquake motion.

It is observed in Fig. 4 that for a given bridge structural system and specific excitation there exist an
optimum yield strength of LRB which produces a minimum rms absolute acceleration of the deck. It will be
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interesting to study the variation of the optimum yield strength of LRB (denoted by F
opt
0 and the

corresponding rms absolute deck acceleration ðs €ua Þ and bearing displacement sud
under the important system

parameters such as Tb, xb, og and S0. Note that the criterion selected here for the optimality is the
minimization of deck absolute acceleration with unlimited bearing displacement. Table 1 shows the effects of
Tb, xb and S0 on the optimum yield strength of LRB and corresponding rms deck acceleration and base
displacement for Tp ¼ 0.05 s, m ¼ 0.15 and og ¼ 3p rad/s. It is seen from the table that the F

opt
0 decreases with

the increase in the isolation period. On the other hand, the corresponding rms base displacement at F
opt
0

increases with the increase of the isolation period. This is due to fact that increases in the isolation period
increases the flexibility in the system resulting in more displacements. Thus, it is concluded that increase in the
isolation period decreases the optimum yield strength of LRB. Further, the optimum yield strength as well as
the deck acceleration and bearing displacement increases with the increase of the intensity of earthquake
excitation. The dependence of optimum yield strength of LRB on the intensity of earthquake excitation is
essentially due to nonlinear force-deformation behavior of the LRB. Thus, the optimum yield strength of LRB
depends upon the earthquake intensity; it increases with the increase of the intensity. Similar effects of Tb, xb

and S0 on the F
opt
0 and corresponding response are depicted in Table 2 showing the results for og ¼ 5p rad/s.
7. Closed-form expressions for optimum parameters

Fig. 3 had indicated that the flexibility of the pier does not have noticeable effects on the response of the
isolated bridge. As a result, consider an idealized model of the isolated bridge under rigid pier condition as
shown in Fig. 7(a) for finding the approximate closed-form expressions for the optimum yield strength of LRB
and corresponding response. The idealized model is a single-degree-of-freedom system with mass as that of
bridge deck, md supported on the LRB characterized by linear stiffness constant,

P
akb, damping constant,P

cb and hysteretic damping component arising due to lead plug,
P

(1–a)Fy. To simplify further, the hysteretic
damping of lead plug is replaced by equivalent friction type damping as shown in Fig. 7(b). The limiting
friction force of the equivalent device is considered as a0

P
Fy (where a0 is the normalizing constant). Assuming

that the equivalent friction device remains in the sliding phase during the earthquake excitation, the governing
equation of motion of the model in Fig. 7(b) is expressed as

€ud þ 2xbob _ud þ o2
bud þ a0F0gsgnð _udÞ ¼ � €ug, (25)

where ud is the displacement of the bridge deck relative to the ground; and sgn denotes the signum function.
ug

md ud.

Σcb

Σαkb

Σ(1-α)Fy

..

Σcb

md ud.

Σαkb

a0ΣFy

ug
..

Fig. 7. Simple model of bridge isolated by the LRB.
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The equation of motion of an idealized bridge model expressed in Eq. (25) is nonlinear and the
corresponding equivalent linearized form is given by

€ud þ 2xeob _ud þ o2
bud ¼ � €ug, (26)

where xe is an equivalent damping ratio which is obtained by minimizing the mean square of the difference
between Eqs. (25) and (26). The equivalent damping ratio [22,24] is expressed as

xe ¼ xb þ
a0F 0gffiffiffiffiffiffi
2p
p

obs _ud

. (27)

Let the earthquake ground acceleration, €ug is characterized by constant PSDF of S0 in place of the filtered
white-noise process. This is a specific case of the model considered in the present study when of-0 and
og-N. The PSDF function of the system response to white-noise ground motion can be determined by
solving Eq. (26) using standard linear stochastic response analysis procedure. The PSDF of absolute deck
acceleration, €ua (i.e. €ua ¼ €ud þ €ug) is expressed by [23]

S €ua ðoÞ ¼ S0
1þ 4x2eðo=obÞ

2

½1� ðo=obÞ
2
�2 þ 4x2eðo=obÞ

2

 !
. (28)

The mean square absolute acceleration of the deck is given by the area under the PSDF curve given by
Eq. (28), i.e.

s2€ua
¼

Z 1
�1

S €ua ðoÞdo. (29)
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Substituting the expression for S €ua ðoÞ from Eq. (28) into the above integral equation and solving, the mean
square absolute acceleration of the deck is expressed by

s2€ua
¼ 2pS0ob

1

4xe

þ xe

	 

. (30)

The value of the optimum equivalent optimum damping ratio for minimum mean square absolute acceleration
of the deck can then be obtained by differentiating the response expression with respect to the equivalent
damping ration and equating to zero, i.e.

d

dxe

s2€ua
¼ 2pS0ob �

1

4x2e
þ 1

 !
¼ 0. (31)

Solving the above equation yields an optimum equivalent damping, xopte ¼ 0:5. Substituting this value in
Eq. (27), the optimum level of the yield strength of LRB is expressed by

F
opt
0 ¼

1

a0g

1

2
� xb

	 
 ffiffiffiffiffiffi
2p
p

obs _ud
. (32)

The corresponding expression for the mean square velocity for xopte ¼ 0:5 is expressed by

s2_ud
¼

pS0

ob

. (33)
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Substituting for the rms velocity in Eq. (32), the optimum yield strength of LRB is expressed as

F
opt
0 ¼

1

a0g

1

2
� xb

	 

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2obS0

p
. (34)

In order to find the normalizing constant, a0, the optimum yield strength of LRB compared with that obtained
numerically considering bridge model shown in Fig. 7(a). It was observed that for a0 ¼ 1

� ffiffiffi
2
p

, the results of
the two models matches perfectly.

Substituting for a0 ¼ 1
� ffiffiffi

2
p

in Eq. (34), the expression for the optimum yield strength of LRB can be taken
as

F
opt
0 ¼

1

g

1

2
� xb

	 

2p

ffiffiffiffiffiffiffiffiffiffiffi
obS0

p
. (35)

The corresponding expression for the mean square absolute deck acceleration and relative bearing
displacement at optimum yield strength (i.e. xopte ¼ 0:5) are expressed by

s2€ua
¼ 2pS0ob, (36)

s2ud
¼

pS0

o3
b

. (37)

In Fig. 8(a) comparison of the response of two models shown in Figs. 7(a) and (b) is made by considering
a0 ¼ 1

� ffiffiffi
2
p

for different values of Tb, og and S0. The figure clearly indicates that when the normalizing
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(Tp ¼ 0.05 s, m ¼ 0.15, and og ¼ 5p rad/s).
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constant, a0 ¼ 1
� ffiffiffi

2
p

the results of the two models matches perfectly. Thus, Eqs. (35)–(37) provide the
approximate expressions for the optimum yield level of bearing and corresponding mean square absolute deck
acceleration and relative bearing displacement, respectively. Further, Eq. (35) indicates that the optimum yield
strength of LRB increases with the increase of both isolation frequency, ob and intensity of earthquake
excitation, S0 confirming the trends of the results shown in Tables 1 and 2.

A comparison of the optimum yield strength of LRB and corresponding response obtained numerical
searching technique and proposed approximate expressions (refer Eqs. (35)–(37)) are shown in Figs. 9 and 10
for og ¼ 3p and 5p rad/s, respectively. These figures indicate that there is a good agreement between the actual
numerical results obtained in Tables 1 and 2 and that from the proposed closed-form expressions. Thus, the
proposed expressions for the optimum yield strength of LRB and corresponding response can be effectively
used for preliminary optimum design of bearings for seismic isolation of bridges.
8. Conclusions

Stochastic response of continuous span bridges isolated by the LRB under non-stationary earthquake
ground motion is investigated. Method of time dependent equivalent linearization is used to obtain the peak
stochastic response of the system. The response of the system is analyzed for the optimum yield strength of
LRB. The criterion selected for the optimality is the minimization of the rms absolute acceleration of deck.
The optimum yield strength of LRB is investigated under important parametric variations such as: the
damping ratio and period of LRB and the pre-dominant frequency and intensity of the earthquake excitation.
From the trends of the results of present study, following conclusions may be drawn:
1.
 The stochastic earthquake response of the isolated bridges can be obtained by considering the stationary
model of earthquake ground motion with appropriate frequency variation of PSDF function and intensity.
2.
 The flexibility of the pier does not have significant effects on the stochastic response of the isolated bridge.
Thus, the response of the isolated bridge can be obtained by considering both deck as well as piers as a rigid
body.
3.
 For a given isolated bridge structural system there exist an optimum yield strength of the LRB for which
the absolute acceleration of the deck attains a minimum value. However, the bearing displacement goes on
decreasing with the increase of bearing yield strength.
4.
 The optimum yield strength of LRB decreases with the increase of its viscous damping and flexibility.

5.
 The optimum yield strength of LRB is dependent upon the intensity of earthquake excitation. It increases

with the increase of the intensity of earthquake motion.

6.
 The proposed expressions for the optimum yield strength of LRB and corresponding response had good

agreement with the actual results obtained for the isolated bridge model. These expressions can be
effectively used for preliminary optimum design of bearings for seismic isolation of bridges.
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Appendix A. Details of [H] matrix

½H� ¼

0 f0gT 1 f0gT 0 0 0 0 0 0

f0g ½0� f0g ½I � f0g f0g f0g f0g f0g f0g

�2akb=md akbfcgT �2cb=md cbfcgT �
ð1� aÞFy

md

�
ð1� aÞFy

md

�o2
f AðtÞ �2xfof AðtÞ �o2

gAðtÞ �2xgogAðtÞ

akbfcg
½mp�

�
½kp� � akbfcgfcgT

½mp�

cbfcg
½mp�

�
½cp� � cbfcgfcgT

½mp�
f0g

fcgð1� aÞFy

½mp�
�f1go2

f AðtÞ �f1g2xf of AðtÞ �f1go2
gAðtÞ �f1g2xgogAðtÞ

0 f0gT �Ca=q f0gT �Ka=q 0 0 0 0 0

0 f0gT �Cp=q Ca=qfcgT 0 �Kp=q 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 �o2
f �2xf of �o2

g �2xgog

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 �o2
g �2xgog

2
6666666666666666666666664

3
7777777777777777777777775

where {0} denotes the null vector of size n� 1; [0] and [I] denotes the null and identity matrix, respectively, of size n� n; and the [mp] in the
denominator indicates the pre-multiplication to the numerator quantity by [mp]
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