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Abstract

This paper presents a consistent and concise analysis of the free and forced vibration of a mass supported by a parallel
combination of a spring and an elastically supported damper (a Zener model). The results are presented in a compact form
and the physical behaviour of the system is emphasised. This system is very similar to the conventional single-degree-of
freedom system (sdof)—(Voigt model), but the dynamics can be quite different depending on the system parameters. The
usefulness of the additional spring in series with the damper is investigated, and optimum damping values for the system
subject to different types of excitation are determined and compared.

There are three roots to the characteristic equation for the Zener model; two are complex conjugates and the third is
purely real. It is shown that it is not possible to achieve critical damping of the complex roots unless the additional stiffness
is at least eight times that of the main spring. For a harmonically excited system, there are some possible advantages in
using the additional spring when the transmitted force to the base is of interest, but when the displacement response of the
system is of interest then the benefits are marginal. It is shown that the additional spring affords no advantages when the
system is excited by white noise.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The classic mass—spring—damper single degree-of-freedom (sdof) system is the bedrock of vibration
analysis and has been studied at length over many decades. Any elementary textbook on vibration analysis
describes the free and forced vibration of a sdof system in detail. In the context of vibration isolation,
where the parallel combination of the spring and damper are representative of the isolation system, the
damper performs a useful function at the resonance frequency of the system, but is detrimental at high
frequencies. It has therefore been suggested that elastically connecting the spring may offer some potential
benefits [1]. A thorough investigation of the modified sdof has been conducted and is described
comprehensively in Ref. [2].
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Combinations of springs and dampers are of interest to the materials community as they are used to
represent the behaviour of viscoelastic materials [3]. The parallel combination of a spring and a mass is
generally called the Voigt model, the series combination of a spring and a damper is called the Maxwell model
and the parallel combination of a spring and an elastically supported damper is called the Zener model. These
terms are used in this paper for such systems supporting a mass.

Free vibration of the Zener model was studied by Yamakawa [4]. Muller [5] also studied this model, some 44
years later, in terms of parameters more concerned with material properties such as “‘relaxation time”. He also
showed that the characteristic equation of the system comprises three roots, one of which is purely real and the
other two being complex conjugates. His analysis demonstrated that the complex roots become real under
certain situations. However, his approach was such that his explanation of this phenomenon was
mathematical rather than physical. Muravyov and Hutton [6] have studied a system similar to the Zener
model, where a mass is suspended by a parallel combination of a viscoelastic spring and a viscous dashpot.
They showed that over- or under-damped oscillations occur depending on the parameters of the viscoelastic
spring.

Because the Zener model is of interest in vibration isolation and in material characterisation it is perhaps
surprising that the literature offers little other work on this subject other than the aforementioned references.
It is worth noting that there is not a consistent reference trail from the later to the earlier papers. The present
paper hopes to contribute by analysing the free and forced vibration of the Zener model in a consistent
manner and presenting the results in a compact form with particular emphasis on the physical behaviour of
the system.

Optimum damping values for various stated criteria for each of the situations (free vibration,
harmonic excitation and white noise excitation) are derived for each case, and are compared. For
forced vibration, the amplitude response of the mass is considered, as is the force transmitted to the
rigid base.

2. Free vibration
The sdof system shown in Fig. 1 consists of a mass, m, supported by a parallel combination of a spring, k,
and an elastically attached viscous damper, ¢, where the connecting spring has stiffness Nk (N >0). The spring

in series with the dashpot is referred to as the secondary spring as opposed to the primary spring which is the
one in parallel with the damper. This system is commonly referred to as the Zener model, and its equation of
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Fig. 1. A point mass supported on a parallel combination of a spring and an elastically attached viscous damper (Zener model).
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motion of free vibration is given by [1,2]

(mc)b'c'—k mx + c N+
Nk

Eq. (1) can be written in terms of the non-dimensional damping coefficient ¢ = ¢/2+/mk and the undamped
natural frequency of the system when N =0, wg = \/k/m, as

2 1
( ¢ >>e'+5e+2gw0<N+
a)()N

Note that ¢ = ¢/2+/mk is a convenient non-dimensional damping parameter and not the damping ratio of
the system. As such, the usual symbol for damping ratio, {, has been deliberately avoided. Eq. (2) is a third-
order differential equation with solutions of the form

x(t) = A" + Be™' + Ce™, (3)

where A, B, C are constants that depend on the initial conditions and sy, s», 53 are the solutions of the system’s

characteristic equation
2¢ N+1
<—5> S+ 57+ 2¢cwy ( +
(U()N

Alternatively, a non-dimensional form of the solution can be assumed

1>x+kx=0. (1)

)x+%x=0 2)

%+%=0 )

x(t) = A" + B + CeT, %)
where §; = s;/wo and T = wpt is non-dimensional time. The characteristic equation can then be written as
. N\ . R N
§ o+ (E>s2 + (N + Di+ (Z) =0. (6)

The three roots of this equation are either all real, or include a complex conjugate pair that characterises
under-damped motion [5]. The roots of this equation are given in Appendix A. To determine when critical
damping occurs, the imaginary parts of the roots of Eq. (6) are set to zero and solved for ¢. The algebraic steps
for this procedure can also be found in Appendix A. For a given stiffness ratio N, the values of ¢ for which this

can occur are found to be
Y2 N 2N -8 NN -8 -
T8 (N + 1) (N+1)y

There are no real solutions to Eq. (7) when N <8 which means that critical damping cannot be achieved if
the secondary spring is too soft. This is illustrated by the root locus in Fig. 2(a) in which the roots have been
calculated for 0.001 <¢<20 in increments of 0.05. When ¢ = 0 (no damping) the complex roots are purely
imaginary with §,3 = %/, and the system becomes a mass supported on the primary spring alone. As the
damper coefficient is increased the complex conjugate pair of roots move in the direction of the arrows and
become under-damped. The damped natural frequency is given by the imaginary part of the roots. Further
increases in damping coefficient results in a reduction in the real part of the roots and hence the damping in the
system. In the limit as ¢— oo the damper acts as a rigid link and the system collapses to a mass supported on
the primary and secondary springs in parallel, i.e. an undamped system. The natural frequency is /N + 1
times that of the original undamped system, when ¢ = 0. When ¢ <1 the real root §; is very large and negative,
and as ¢ increases the real root moves towards the origin.

When N>8 there are two values of ¢ that satisfy Eq. (7). These solutions are distinct critical damping
coefficients for the complex roots of the system, Cjower a0d Gypper SAY. When N> 8, then ¢jower = 1, the system is
critically damped for approximately the same value of damping coefficient as the corresponding Voigt model.
The upper value gypper ~ /N /4 corresponds to a larger value of damping coefficient that also yields critical
damping. Taking N = 15 as an example, Fig. 2(b) illustrates the root locus when N>8. Again, the complex
conjugate pair of roots is purely imaginary when ¢ =0, and initially become increasingly damped as ¢
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Fig. 2. Examples of the solutions to the characteristic equation of the Zener model as ¢ is increased from 0.001 to 20 in increments of
0.005: (a) root loci for N = 4. (b) Root loci for N = 15.

increases. When ¢ = ¢jower the root pair become real, one becoming increasingly negative and one moving
towards the origin. The root that is real when ¢ <1, (§)), is initially large and negative, and moves towards the
origin as ¢ increases. When ¢ = Gypper this root and the root moving towards the left on the real axis, (5),
become complex; they become less damped as ¢ increases further until there is effectively zero damping in the
system as in the previous case.

In a sdof system, where the mass is supported on a parallel combination of a spring and damper
(Voigt model), the governing equation of motion has two roots. These roots are complex when the
damping ratio is less than one and are real when the damping ratio is greater than one. The damping ratio of
the system is defined by —Re{$;2}/|512] [7]. In a system where the dashpot is elastically supported, the
damping of the system cannot be uniquely defined because when ¢ <¢joyer and ¢ypper < there are always two
complex roots and one real root. However, the damping ratios corresponding to the complex roots
can be defined in a similar way to the Voigt model [8]. For each value of ¢, the damping ratio for these roots is
given by

{=cos 0= w. (®)
151,21

This is illustrated in Fig. 2(b). It can be seen that there are two roots that have the same angle 6. Thus, the
same damping ratio ( is obtained for two different values of ¢, and for each N there are two values of damping
ratio for each oscillatory root. This is shown in the contour plot of Fig. 3(a) for 0< N <30 and 0<¢<3. Also
plotted in Fig. 3(a) are the lines given by Eq. (7a,b). The region enclosed by the two curves represents
combined values of N and ¢ that result in over-damped motion.

The damped natural frequency normalised by w, is plotted in Fig. 3(b). When N<8, the damped
natural frequency either increases or decreases first then increases as ¢ increases. However, when N =8, the
damped natural frequency first decreases as ¢ increases, and then it increases again. This can also be seen in
Fig. 3(b).

Of practical interest is the maximum damping that can be achieved for a given N when N <8. The
form of Eq. (6) is the same as that in Ref. [9], which describes integrated force feedback control of
a truss structure. In Ref. [9], an expression is given for the maximum possible damping ratio of the
system. This can be adapted to the Zener model, which results in a maximum possible damping coefficient for
N <8, of

/ 1-1
e = L ©
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Fig. 3. Dynamic characteristics of free vibration of the Zener model: (a) Contour plot showing the damping ratio of roots §; ,. The dashed
line shows the maximum damping ratio for N<8. (b) Contour plot showing the damped natural frequency normalised by wy.

The corresponding value of ¢ is determined by setting

Reffin) VN +1-1

1512l 2

(10)

and solving for ¢, which results in
N

=——— >, N<S8. 11
2N + 1) (

S

This is also plotted in Fig. 3(a) as a dashed line. The minimum real part of the underdamped root for the
case when N <8 is given by

. N
Re(®)| . = 7 (12)
and this occurs when
N
C=—. 13
ST N+2 (13)

In Fig. 4, part of the root locus of §, when N = 4 is plotted. Also plotted is the root locus of a second order
system with an undamped natural frequency normalised by wq of (1 ++/N + 1)/2. The tangent to the root
locus of §; drawn from the origin intersects with the root locus of the second-order system and the line N/4.
Thus, the maximum damping ratio can be interpreted as the damping ratio for an equivalent second order
system, which has an undamped natural frequency of w,/wy = (1 ++/N + 1)/2 and a root to its normalised
characteristic equation that has a real part equal to —N/4.

To illustrate the effect of the purely real root on the free vibration of the Zener model, two simulations are
presented in Figs. 5(a) and (b). The first is the normalised impulse response of the system, x(¢)/(f /mw, ), where
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Fig. 4. Graph showing part the root locus of §, when N = 4. The solid line is the root locus and the dashed line is the root locus of a
second order system with an undamped natural frequency normalised by wq of (1 + /N + 1)/2.
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Fig. 5. Free vibration of the Zener model for two different initial conditions. N = 2 and ¢ = 0.1: (a) Impulse response of the Zener system.
Solid line, ¢ = 0.1; dashed line, ¢ = 1.92; dotted line, exp(—{wy?). (b) Response of the Zener model to an initial displacement /4. Solid line,
¢ = 0.1; dashed line, ¢ = 1.92; dotted line, exp(—{wy?).

f' is a unit impulse and w, is the damped natural frequency, and the second is the normalised response to a
displacement input x(¢)/h, where # is the initial displacement. Both responses are plotted as a function of non-
dimensional time /T where Ty = 2n/wy is the undamped natural period of the system when N = 0. To
determine the constants in Eq. (5), the following equations have to be solved for the impulse response and the
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displacement input response, respectively:

A 1 1 177'To A 1 1 1 1
Bl =15 % % 1| and |B|= |5 & 3 0]. (14a,b)
C § 8 5] o c 5 &5 85| |o

The values of §; are determined numerically by solving Eq. (6) for N =2 and ¢ = 0.1 and 1.92 (which
correspond to a value of { = 0.1).

The main difference between the Zener and the Voigt models is the additional purely real root. This root is
large and negative (—9.8) when ¢ = 0.1 and small and negative (—0.18) when ¢ = 1.92. The effects of this root
on the free response can be observed in Figs. 5(a) and (b). It can be seen that the real root has a negligible
effect when ¢ = 0.1 as both the impulse response and the displacement input response are similar to that of the
Voigt model and are thus dominated by the complex roots. However, when ¢ = 1.92 the effect of the purely
real root on the response is very much dependent on the initial conditions. For the impulse response, the
complex roots dominate the response, but for the displacement input it is clear that the purely real root
dominates the response.

As noted by Muller [5], because there is always one purely real root, the characteristic Eq. (6) can be written as

(5 + 50)(§ + a5+ b) = 0, (15)

where so, @ and b can be determined by comparing Egs. (6) and (15). In general, Eq. (15) has a complicated
form from which little new knowledge can be gained. However, there are two situations when the
characteristic equation can be factorised easily, which is when

¢ < N. In which case Eq. (6) becomes

G+c+NE+c— J)(s—lrév) 0. (16a)

¢> N. In which case Eq. (6) becomes
N? N? N
+ +—— jVN+1||§+—————]=0. 16b
(5 a0 (5 s =) (i) (160
The magnitudes of the real parts of the roots of the characteristic equation, which govern the decay of

free vibration, are calculated numerically for N = 4 and plotted in Fig. 6 (all are negative) as a function of ¢.
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Fig. 6. Graphs to show the behaviour of the real parts of the roots for the Zener model as ¢ increases: (a) Magnitudes of the real part of
the roots when N = 4 as ¢ increases (they are all negative). The dotted lines show the asymptotic behaviour. The roots are equal (°) when
¢=N/(6y/N/2—1). (b) The ratio of Re{s,}/s; plotted as a function of ¢ for different values of N. Re{$,}/5; =~ N/2 when ¢> 1.
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The real parts of the roots of Eq. (16a) and (16b) are also plotted. It can be seen that they are the asymptotes
for the real parts of the roots when ¢ <1 and ¢> N. It can also be seen that the purely real root is much larger
than the real part of the complex roots when ¢ < 1, but when ¢> 1 the real part of the complex roots is greater
than the purely real root. When the real part of the complex roots is equal to the purely real root, then

S (17)

C6yN2—1
The ratio of the real parts of the roots is plotted as a function of ¢ in Fig. 6(b) for different values of N. It
can be seen in Figs. 6(a) and (b) that when ¢> 1 then Re{$,}/§; &~ N /2. Note that this is only a function of N.
Generally, the root with the smallest real part dominates the decay of free vibration, thus Eqs. (16a) and

(16b) can be used to obtain analytical expressions for the free response of the Zener model in certain
situations.

3. Forced vibration

This section is concerned with the forced response of the Zener model. Two situations are considered; the
first is harmonic excitation and is described in Section 3.1, and the second is for white noise excitation and is
discussed in Section 3.2.

3.1. Harmonic excitation

The dynamic response of the Zener model to forced harmonic excitation has been reported comprehensively
in the literature, for example [1,2]. Therefore, only the key results are presented here, but in a way that is
consistent with the results for free vibration discussed in Section 2. Two responses are considered; the non-
dimensional displacement response of the system or the dynamic magnification factor given by
D(GQ) = X/(F,/k), where Q = w/wy, and the ratio of the transmitted force F, to the excitation force F,, or
the transmissibility given by T(jQ) = F,/F .. These can be derived from Eq. (2) in a straightforward manner by
assuming a harmonic excitation force F.e/’. The dynamic magnification factor is given by

1 +j(2/N)Q

D(jQ) = . (18)
1 — Q% +j2/N)cQN +1—Q%
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Fig. 7. Forced harmonic vibration response of the Zener model (dynamic magnification factor and transmissibility) for N = 4 as ¢ varies
from 0.1 to 4 in steps of 0.5: (a) Magnitude of the dynamic magnification factor for the Zener model. (b) Magnitude of the transmissibility
for the Zener model.
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The modulus is plotted in Fig. 7(a) for values of ¢ from 0.1 to 4 in steps of 0.5. It can be seen that the
resonance peak reduces initially as ¢ increases, and then it increases again, but with the peak occurring at a
higher frequency. In the limit when ¢—0, Q— 1, and when ¢— oo, Q — /N + 1. The modulus passes through
the point | X /(F./k)| = 2/N [1], for all values of ¢, which is marked by ° in Fig. 7(a). This occurs when the
non-dimensional frequency Q = /(N + 2)/2. The peak in the dynamic magnification factor is a minimum at
this frequency, when the non-dimensional damping coefficient is [1]

N
T ANt

The damping value given by Eq. (19) is referred to as optimum damping in the literature as it yields the
smallest displacement response at resonance. From the above discussion, it can be seen that the magnitude of
the peak in the dynamic magnification factor is a function of N and ¢. To compare the forced response of the
Zener model with the free vibration characteristics depicted in Fig. 3, the reciprocal of the peak value is plotted
as a contour graph as a function of NV and ¢ in Fig. 8(a); Eq. (19) is also plotted for comparison. The peak in
the dynamic magnification factor can only be less than unity when N> 2. It can be seen that for N>2 and for ¢
less than about 0.3, the reciprocal of the peak value & 2¢. Thus, the relationship between the damping of the
complex roots and the non-dimensional damping coefficient is { ~ ¢.

Inspection of Fig. 8(a) also shows that there is a wide range of values of ¢ for a given N greater than
about 2 that results in the system having a maximum dynamic magnification factor of one. This does not occur
at a resonance frequency, however, but at zero frequency as can be seen in Fig. 7(a). This can also be seen in
Fig. 8(b), which shows the contour plot of the normalised frequency at which the maximum value of the
dynamic magnification factor. When N> 1 the frequency at which the peak occurs decreases as ¢ increases (as
it would in the Voigt model), until ¢ = 1/+4/2 when Q = 0. For low values of N the situation is quite different.
For ¢ greater than about 1/+/2, as N increases the frequency at which the peak occurs also increases. The peak
value, however, decreases as can be seen in Fig. 8(a), and when it decreases below unity, the maximum value
occurs when Q = 0. The line marked ““all contours” gives the values of N and ¢ when the peak value just dips
below unity.

Further insight can be gained by examining the transfer function of the system rather than the frequency
response function. This is given by

(19)
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Fig. 8. Forced harmonic vibration response of the Zener model (dynamic magnification factor): (a) Contour plot showing the reciprocal of
the maximum value of the dynamic magnification factor. The dashed line ¢ = N//2(N + 2) results in a minimum peak. (b) Contour plot
showing the frequency normalised by w, at which the maximum of the dynamic magnification factor.
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When ¢ < N, the denominator factorises as in Eq. (16a), and Eq. (18) reduces to

1
D@) ~ — — =, 21
O~ GG+ D
which means that for the frequency response function, the effect of the real root is effectively cancelled by the
zero, which is given by —N/(2¢) (found be setting the numerator to zero and solving for §). Thus, the
oscillatory roots dominate the response for all frequencies.
If ¢> N, Eq. (20) can be written as

DG) ~ - 5+ (N]\/lgc) ~ (22)
( tav T YN )( 4(N+1)g_“N+l)(S+2(N+1)g>

It can be seen that in this case the numerator does not cancel with the purely real root as it does when ¢ < N
as discussed above. Thus, if the damping is high the purely real root cannot be neglected as it plays a role in
the frequency response of the system. However, at high frequencies |D(jQ)| ~ 1/ Q% as can be seen by
inspecting Eq. (22) and Fig. 7(a).

Examination of Fig. 8(a) shows that there seems to be a marginal advantage in using an elastically
supported damper because for small values of N the normalised peak response can be limited to unity for a
smaller damping coefficient compared to the Voigt model.

A parameter that characterises the performance of an isolator is its Transmissibility, which, for an isolator
described by the Zener model, is given by

Ft 1+ j2/N)N + 1)cQ

To = Fo 1-Q+j2/N)XQWN+1—-Q%)

(23)

It can be seen that Eq. (23) is identical to Eq. (18) except for the additional term (N + 1) in the numerator.
The modulus of the Transmissibility is plotted in Fig. 7(b) for values of ¢ from 0.1 to 4 in steps of 0.5. As with
the dynamic magnification factor, the resonant peak reduces initially as ¢ increases, and then it increases again
but with the peak occurring at a higher frequency. It has the same frequency limits as ¢ —0 and ¢ — oo as with
the dynamic magnification factor. The modulus passes through the point |7(jQ)| = (N +2)/N [1], for all
values of ¢, which is marked by ° in Fig. 7(b). This occurs when the non-dimensional frequency
Q= /2(N+1)/(N +2). The peak in the transmissibility is a minimum at this frequency, when the
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Fig. 9. Forced harmonic vibration of the Zener model (transmissibility): (a) Contour plot showing the reciprocal of the maximum value of
the transmissibility. The dashed line shows the value of ¢ those results in a minimum peak. (b) Contour plot showing the frequency
normalised by w, at which the peak response of the transmissibility occurs.
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non-dimensional damping coefficient is [1]

=N _ AN (24)

4N +1)

The damping value given by Eq. (24) is referred to as optimum damping in the literature as it yields the
lowest transmissibility at resonance.

The contour plots for the reciprocal of the maximum value of the transmissibility and the non-dimensional
frequency at which this occurs are plotted in Figs. 9(a) and (b), respectively. Eq. (23) is also plotted for
comparison in Fig. 9(a). These figures can be compared with the corresponding contour plots for the dynamic
magnification factor in Fig. 7. It can be seen that there are significant differences. For a wide range of system
parameters, the peak in the dynamic magnification factor was unity when the frequency was zero. This is not
so with the Transmissibility; only if N> 1 and ¢> 1 does the maximum occur at zero frequency. One notable
feature in Fig. 9, is that the natural frequency changes rapidly with ¢ in the region where the damping has been
optimised according to Eq. (24).

The transfer function of the transmissibility is given by

N
w05+ (o))

. (N, . (NY
P4+ () +W+Ds+ (-
2¢ 2¢

When ¢ < N, the denominator factorises as in Eq. (16a), and Eq. (25) reduces to

N
N+ 1)<§+ (—))
TG) ~ 2N+ 1) =S (26)
G et +e—p(5+3)

It can be seen that unless N < 1 the purely real root in the denominator does not cancel with the zero, and so
all three roots of the characteristic equation influence the frequency response function. This is different to
dynamic magnification factor discussed above. At high frequencies, the transmissibility is given by
|IT(GQ)| ~ (N + 1)/92, i.e., independent of ¢, and rolls off at 40 dB/decade. Conversely, for a system with a
rigidly connected damper the high frequency transmissibility is |7(jQ)| & ¢/Q and presents a decay slope of
20dB/decade. It can be concluded that the Zener model out-performs the conventional system at high
frequencies, i.e. when Q> 1/¢(N + 1).

3.2. White noise excitation

Many systems are excited by random rather than harmonic vibration. To make the analysis tractable, white-
noise excitation is considered. As with harmonic excitation, both the dynamic magnification factor and
transmissibility are considered for the Zener model.

The mean square displacement response is given by [10]

2 =25 / ~ |D(Q))> dQ, (27)
0

where S is the amplitude of the excitation spectral density. Substituting for D(jQ) from Eq. (18) into Eq. (27)
and evaluating the integral gives, in non-dimensional form

X2 1 4c

_— =4 —. 28
S()U)()TE/4 Q+N2 (28)
When ¢ <N
%2 1
—_— X . 29
Soa)oﬂf/4 « ( a)
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Fig. 10. Normalised mean square responses of the Zener model for white noise excitation: (a) Normalised mean square displacement
response of the mass. Solid line, the displacement response when N — co, dashed line for N = 2. (b) Transmitted force. Solid line, the
transmitted force when N— oo, dashed line for N = 2.

When ¢> N
X2 4
Sowoﬂ/4 - N%'

Eq. (29a) is also the normalised displacement response for a sdof system with a rigidly connected
damper (N — o). Egs. (28) and (29) are plotted in Fig. 10(a) for N = 2. It can be seen that the mean square
response initially decreases as ¢ increases, but then increases again. The minimum in the response can be
determined by setting the two asymptotes given in Eqgs. (29a) and (29b) to be equal. The result is an optimum
value of ¢ = N/2 and a minimum normalised mean square response of

(29b)

%2 4
| == 30
S()G)()TC/4 min N ( )
This point is marked as ° in Fig. 10(a).
The mean square force transmitted to the base is given by
o.¢]
) .
7i=si [ irger e (31)
0
Substituting for 7(j2) from Eq. (23) into Eq. (31) and evaluating the integral gives, in non-dimensional form
=2 2
f 1 N+1
_— = — 4" . 32
WS ¢ C\TN (32)
When ¢ <N
)
S 1
A — 33
Sowom/4 ¢ (332)
When ¢> N
-2 2
f N+1
—L x4 — . 33b
Sowen/4 "\ N (33b)
If N— oo then Eq. (32) reduces to
)
1
S Ly (34)
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which is the normalised mean square force for the system with a rigidly connected damper. Eq. (34) has
asymptotes for ¢<1 of 1/¢ and for ¢>1 of ¢. Egs. (32) and (34) are plotted in Fig. 10(b) together
with the corresponding asymptotes. It can be seen that, as with the displacement response, the
mean square force initially decreases as ¢ increases, but then increases again. The minimum in
the response can be determined by setting the two asymptotes given in Egs. (33a) and (33b) to be
equal. The result is an optimum value of ¢ = N/(2(N+1)) and a minimum normalised mean square
response of

I AN+

Soon/4] N

min

(35)

If N— oo, the minimum normalised mean square response is 4 which occurs when ¢ = 1/2. The minima are
shown as ¢ in Fig. 10(b). It can be seen that the minimum mean square force for a rigidly connected damper is
smaller than that for an elastically connected damper.

4. Discussion

Table 1 summarises the optimum values of the non-dimensional damping coefficient ¢, for free and forced
vibrations of the Zener model derived in Sections 2 and 3. These are also plotted in Fig. 11 for comparison. It
can be seen that there is not a single optimum value; it depends upon the type of excitation and the response
variable of interest. For free vibration, two optima are given, one for N<8 and one for N>=8. It has been
shown that the complex roots can only be critically damped when N>8 and this can be achieved with two
values of ¢. When N <8 two of the roots of the characteristic equation are always complex, but there is a value
of ¢ that can achieve maximum damping for these roots. In general, there does not appear to be any advantage
in using an clastically connected damper for free or transient vibration, unless there is a particular response
that cannot be achieved using a parallel combination of a spring and a damper.

There are two optimum damping values for harmonic excitation, one for the displacement response of the
system and one for the force transmitted to the rigid base. Both damping values ensure the response at the
resonance frequency is minimised, and have been reported previously in the literature. There seems to be a
marginal advantage in using an elastically connected damper if the displacement response is of interest, in that
it is possible to achieve critical damping for the system with a smaller damper than in the Voigt model
provided that N is chosen carefully. The main advantage is when the transmitted force is of interest. It is
possible to have a high-frequency response that decreases with the square of frequency, but with some
damping being added to the system to reduce the response at resonance. This is not possible with a rigidly
connected damper. However, there is a trade-off between reducing the amplitude of the high-frequency
response and reducing the amplitude of the resonance peak. The additional spring in series with the
damper gives more flexibility in tuning the system for a particular requirement. It should be noted, however,
that the frequency at which the peak occurs is particularly sensitive to the damping coefficient for N greater
than about 10.

Table 1
Summary of the optimum non-dimensional damping coefficients ¢, for free and forced vibration of the Zener model

Free vibration Forced vibration

N<8 N=38 Harmonic excitation White noise excitation
Dynamic Transmissibility Mean square ~ Mean square
magnification displacement  transmitted
factor response force

N N N N N
2N + 1) Nﬁ$N2+20N—SivN(N_8)3 V2N +2) itV 2 2N+ 1)

8 (N +1)° (N +1)°
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Fig. 11. Optimum values of ¢ for the Zener model for different excitation conditions.

Examination of Figs. 10(a) and (b) and Table 1 shows that there is no advantage in using an elastically
connected damper if the excitation is white noise and the mean square displacement or transmitted force
response is of interest. In fact it is detrimental in both cases. If the system is excited by both harmonic and
random vibration, then it is possible that an elastically supported damper may offer advantages, but this
would have to be considered on a case-by-case basis.

5. Conclusions

This paper has described the free and forced dynamic behaviour of a sdof system in the case where the damper
is elastically supported (Zener model). There are three roots to the characteristic equation for this system; two of
these are complex conjugates and the third root is purely real. It has been shown that it is not possible to achieve
critical damping of the complex roots unless the secondary stiffness is at least eight times that of the primary
stiffness. Expressions have been derived for the minimum damping required to critically damp the complex roots
when this is possible. Expressions have also been derived for the maximum damping of the complex roots when
critical damping is not possible. For comparison and completeness, the behaviour of the system when excited by
harmonic vibration has also been presented. It has been shown that there could be some advantages in using a
spring in series with a damper when the transmitted force to the base is of interest, but when the displacement
response of the system is of interest then the benefits of such a system are marginal. Finally, the response of the
Zener model excited by a force that is spectrally white has been considered. Optimum values of the damping
have been determined for the cases when the mean square displacement response of the mass, and the mean
square force transmitted to the rigid base are of interest. It is shown that the spring in series with the damper
affords no advantages, the best situation being when the damper is rigidly connected.
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Appendix A. Solution of the characteristic equation for the Zener model
The closed-form solution of a third-order polynomial equation, which is the form of the characteristic

equation for the Zener model given in Eq. (6), was determined in 1545 by Girolamo Cardano [11]. However, in
this paper the symbolic algebra software package, Maple [12], was used to determine the roots of Eq. (6),
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which is repeated here for convenience:

. NY. .~ (N
FH(Z)F+WN+Ds+ (=) =0. (A.1)
2¢ 2¢
The roots are given by
§] = R], (A.2a)
. 3
23 =Ry %j—- 0, (A.2b)
where
R — UBSPN? = 366°N — N* + 66v/(3 = 3)N* + (485 — 60N + (24c2 + 14cHN? + 14422N + 48¢H)'
1 6c
N? — 123(N? + 1
6c(18c2N? — 36¢2N — N* + 6;\/(3 — 3)N* + (48c* — 60L7)N? + (24¢% + 144¢H)N? + 14462N + 48¢4)'/3
_N
S
N? — 123(N* + 1)
12¢(1862N? — 362N — N* + 66v/(3 — 39N + (48¢* — 60c2)N? + (24¢2 + 144c4)N? + 144c2N +48¢4)!/?
N
6c’
0= (1862N? = 362N — N* + 6c/(3 = 3)N* + (48¢* — 60c2)N° + (24¢% + 144c)N? + 144N +48¢H)'/3

6(
N> — 1283(N* + 1)
T 6(182N? — 362N — N + 607/ (3 — 3c)N® + (48c% — 602)N° + (24¢2 + 144N 1 1442N + 4843
When there is critical damping the imaginary part of the roots given by Eq. (A.2b) is zero. Thus, by setting
0 = 0 and rearranging the resulting equation the two positive solutions for ¢ in terms of N can be determined

and are given by
V2 |N>+20N -8 /NN —=8)°
8 (N+1) (N+1)
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