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Abstract

A method to determine the response of a solid, elastic, isotropic cylinder with internal losses and arbitrary length to
radius ratio to excitations acting on its surface is presented. The method is based on the use of complete sets of functions
and the response to arbitrary excitations can be analysed. It is illustrated for axisymmetric excitations that are anti-
symmetric with respect to the plane midway between the ends of the cylinder. Excitations that are symmetric have been
considered earlier. [D.D. Ebenezer et al., Forced vibrations of solid elastic cylinders, Journal of Sound and Vibration 282
(2005) 991-1007]. All components of displacement and stress are expressed as a sum of two infinite series that contain
terms that are complete in the axial and radial direction, respectively. Therefore, arbitrary boundary conditions can be
satisfied. In lossless cylinders, for each chosen set, there are difficulties at those frequencies at which certain functions
become zero. Some other complete set of functions can be used at these frequencies. However, this difficulty does not arise
for cylinders with losses. Two different sets are used to compute the resonance frequencies of lossless cylinders. The
responses of cylinders with internal losses to uniform and concentrated excitations on the flat and curved surfaces are also
presented to illustrate the approach. They are in good agreement with results obtained using ATILA—a finite element
software package.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Complete sets of functions have been recently [1-3] used to analyse forced vibrations of solid elastic and
piezoelectric cylinders. This is possible because arbitrary functions can be expressed as weighted sums of the
functions. In general, more than one complete set can be used to obtain the same result. A well-known
example is the expansion using Fourier cosine and Fourier sine series after assuming that the function is
symmetric and anti-symmetric, respectively. In this paper, two different complete sets of functions are used to
analyse solid elastic cylinders and the same results are obtained. The forced vibrations of cylinders with
internal losses represented by complex material properties are also analysed using complete sets.
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A review of the literature on finite elastic cylinders was presented by Ebenezer et al. [2]. Earlier, Soldatos [4]
presented a comprehensive review of the literature on finite and infinite cylinders. There is considerable
interest in the analysis of cylinders because they are used in a variety of engineering applications including
electroacoustic transducers [5,6]. The classical Langevin transducer consists of one or more piezoelectric
cylinders sandwiched between two elastic cylinders. Tula [7] and Shuyu [8] have analysed this type of
transducer using approximate models of cylinders. 1-3 piezocomposite transducers [9] consist of piezoelectric
rods embedded in a lossy elastic matrix and are widely used as underwater broadband transmitters and
receivers. They can be analysed using models of a solid piezoelectric cylinder and a hollow elastic cylinder.

In transducer applications, the excitation on the cylinders is seldom purely symmetric or purely anti-symmetric
with respect to the plane midway between the ends of the cylinder. Therefore, it is necessary to develop methods
that can be used to determine the response to general excitations, i.e., the sum of symmetric and anti-symmetric
components. A method to determine the response to excitations that are symmetric has been presented in Ref. [2].
In this paper, a method is presented to determine the response to anti-symmetric excitations.

The work presented here is a continuation of the work reported in Refs. [1-3] and is based on the method
used by Hutchinson [10] to analyse the free vibration of cylinders. Weighted sums of only certain exact
solutions to the equations of motion are used to determine the response to axisymmetric excitations. One
infinite set of solutions is chosen such that each field variable is expressed in terms of Bessel functions that
form a complete set in the radial direction. Another infinite set of solutions is chosen such that each field
variable is expressed in terms of trigonometric functions that form a complete set in the axial direction. Each
term in both the series is an exact solution to the exact equations of motion. A double sum is necessary when
the excitation is non-axisymmetric. In principle, any complete set of functions can be used. This is illustrated
here by using two different complete sets of functions in the axial direction.

Structures have internal losses and heat is generated when they vibrate. Losses are modelled here using
complex material properties and the analysis is therefore valid only for steady-state vibrations. Holland [11]
derived the conditions satisfied by the imaginary parts of the 10 coefficients that are required to completely
describe piezoelectric ceramics. The conditions were derived by constraining the structure to dissipate energy
and not create it when it vibrates. Similar conditions for isotropic elastic materials are derived here by using
the conditions derived by Holland.

Numerical results are presented for free as well as forced vibrations and are in excellent agreement with
those obtained using ATILA [12]—a commercial finite element package. The difference between the resonance
frequencies computed using the present method and ATILA is in the sixth significant digit in most cases. The
displacements of cylinders with loss excited by distributed forces are also in very good agreement with finite
element results.

2. Theory

Consider a solid, elastic, isotropic cylinder of finite length L and radius a with internal losses as shown
in Fig. 1. Non-uniform, axisymmetric, stresses or displacements are specified on the surfaces of the cylinder.
The response of the cylinder is of interest.

The excitation and, therefore, the response of the cylinder are axisymmetric. The dynamic equilibrium
equations are expressed in cylindrical coordinates (r, 0, z) as [13,14]

1 ..
aT“+—Tm+aT“ = —pw*U (1a)
or r Oz
and
oT,, oT,. 1
+ + _(Trr - T09) = _pr W> (lb)
or oz r

where U and W are the axial and radial displacements, respectively, T,,, Ty, T.., and T,. are components of
stress, p is the density, and w is the angular frequency. The components of strain are
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Fig. 1. A solid cylinder of length L and radius a. The axial and radial components of displacement are U and W, respectively.

The constitutive relations for an isotropic elastic cylinder are

T A+2u A A 0 S
T oo A A42u A 0 Soo
T.. ("~ |2 ) i+2n 0YS. ( ®)
T,. 0 0 0 wl LS.

where the Lame’s constants 4 and u are complex because of internal losses.
The exact axisymmetric governing equations are obtained by substituting Eqs. (2) and (3) in Eq. (1) and
expressed as

GR " 19 * 10
21)— —+—= 2 — -
4+ “)azz ta [arz . 61’} et Gw [6;’62 + 62} U 0
= . 4
(;+)a—2 (A+2)a—2+lg i+a—2+ 2| L7 0 ?
" Moz WlarTrar | THaaTPe
It is easily verified that
[U W' =[U, Wi]" +[U> Wo]' (5a)
is the sum of two exact solutions to Eq. (4) where
M, 2
PI‘)’IS rm zms
U, Peos(K,2) m=15=21 Jo(kimr) cos (kzpsz)
(=)0 +4 2 ' ; (5b)
Z Pmslpmx‘ll (krmr) Sin (kzmsz)
m=1 s=1
M. 2

U2 QJO (K2 V) mz::l s:z:l QmsJO (krmsr) COS (ksz)
waf L0 BT . » (5¢)
Z Z QmsXmsJI (krmﬂ’) sin (kzmz)

m=1 s=1
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and J, is the vth-order Bessel function of the first kind. P, Q, P, and Q,,, are weights that depend on the
excitation. Egs. (5b) and (5c) are exact solutions for arbitrary values of k,,,, m=1,2,3,..., M, and k.,
m=1,2,3,...,M..

The frequency-dependent values of k_,,,, are determined by substituting Eq. (5b) in Eq. (4) and equating the
determinant of the resulting equation to zero. The characteristic equation is quadratic in k.., and is solved

form=1,2,..., M, to obtain
koms =\ K2 — K2, s=1,2. (6)

Similarly, the frequency-dependent values of k,,,; are determined by substituting Eq. (5¢) in Eq. (4) and
equating the determinant of the resulting equation to zero. The characteristic equation is quadratic in k”m and
is solved for m=1,2..., M. to obtain

krms = \/ kfmy §= 1723 (7)

Vs and y,,,s are then obtained by substituting Egs. (Sb) and (5c¢), respectively, in Eq. (4) and rearranging. They
are expressed as

kr kzn 2
lpml - _k—m] lme = k : (Sa,b)
and
k. Ko
Kml - _k r”] } m2 = lclm ) (8C5d)
rm m
respectively.

Other quantities of interest are now easily determined by using Egs. (2), (3), and (5). The components of
stress are expressed as

T,= — P[K])u sin (Klz)]

M. 2
2 2
+ § § Pms{ [(/1 + 2/1)1//,,”krm - }vkzms] JO(krmr) - :tlpms'll(krmr)} sin (k mvz)

m=1 s=1
M. 2
+Y°) Qms{ [+ 200 mskms — 2] ToUermsr) — /me]l (k,msr)} sin (kzm2), ©)
m=1 s=1
T.. = — P[(A+2u)K, sin(K,z)]
M, 2
N P o(krmr) (=G 4 200k zims + 2 gk | sin (Kzng2)
m=1 s=1
+ Z Z Qs 0rmst) [ =G 2000z + Afpushcrms) sin (kzmZ) (10)

and
Trz = - Q[.MKZJI(KZV)]

M, 2
+u Z Z P 1(Kymt) [_krm + l//mskzms] c0s (kzmysz)
m=1 s=I
M. 2
+u Z Z Qmle(krmsr) [_krms + Xmskzm] cos (kzuz). (11)

m=1 s=1
The expressions for displacement and stress are used to satisfy arbitrary boundary conditions on the

surfaces by choosing the values of k,,,a and k., L/2 such that all field variables are expressed in terms of
complete sets in the axial and radial directions. In this paper, k,,,a are chosen [2,10] to be the roots of
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Ji(k,.,a) = 0 and are approximately equal to 0, 3.83, 7.02, 10.17,... for m =0,1,2,3,..., respectively. In the
leading term in Eq. (5b) that corresponds to m =0, k,,a and radial displacement are zero but axial
displacement is non-zero and a function of Kjz. It is noted that for M, = oo, J,(k,,r) form a point-wise
complete set of functions when v = 0 and a norm-wise complete set of functions when v = 1. (Sets of functions
that are not all zero at the same point and form a norm-wise complete sets of functions are known as point-
wise complete sets.) Each term in the sets is orthogonal to the other terms, i.e., [15]

a2

a 5vm5mnEa m = O,
/ J (ki) (kppr)r dr = 2 v=0 or 1, (12)
0

5mn%J5(k,.ma), m=12,..

where the Kroneker delta, d,,,, is one when m = n and zero otherwise.
In this paper, the cylinder is analysed using two different sets of functions that are complete in the axial
direction. In the first set, k.,, are chosen such that

kL2 = Qm— /2, m=1,23,... M., (13)

where M. is co. The series begins with the m = 1 term, the cos(.) terms form a complete set, and Q in Eq. (5¢)
is set to zero as the term is not necessary. In the second set, k.,, are chosen such that

k.nL/2 =mn, m=0,1,2,3,...,M.. (14)

Here, the series begins with the m = 0 term. In the first term, W is zero but U is a function of K;z and the term
containing Q in Eq. (5¢) is the first term in the series. In both sets, for M. = oo, sin (k.;;z) and cos (k.,z) are
complete sets of functions that are orthogonal, i.e.,

+L)2
/ sin (k,z) sin (k;,z)dz = 6 L/2 (15a)
—L)2
and
+L/2 0, m#n,
/ cos (k-mz)cos (kyz)dz = { L/2, m=n#0, (15b)
-L/2 L, m=n=0.

In Eq. (5), the axial displacement is symmetric and the radial displacement is anti-symmetric about the plane
midway between the ends of the cylinder. Axial and radial displacements that are anti-symmetric and
symmetric, respectively, are considered in Ref. [2]. In the general case, U and W are expressed as the sum of the
symmetric and anti-symmetric terms.

It is seen from the above that all field variables are expressed in terms of over-complete sets of
functions. (An over-complete set of functions is the sum a point-wise or norm-wise complete set of functions
and other functions.) On the flat, electroded surfaces, U, and T.. are expressed in terms of Jo(k,,.r),
m=20,1,2,..., and Wand T,, are expressed in terms of Jy(k,,,7), m = 1,2,.... On the curved surfaces, U and
T,. are expressed in terms of cos(K.,z); and W and T,, are expressed in terms of sin(K_,z). It therefore
follows that arbitrary, piecewise continuous, and localised boundary conditions and continuity conditions can
be satisfied.

However, for lossless cylinders, when w = k;,,¢; and k.,c;, n =1,2,3,..., s =1, 2, it is seen from Egs. (6)
and (7) that the values of k_,,; and k,,,,, respectively, are zero, and the form of the solution in Eq. (5) is not valid
at these frequencies. Therefore, the term

2
Z Pns-]()(kmr) Ccos (kznsz)
s=1

{ Ul } K
=3 2
Wl Z Pnslpns‘]l (krnr) sin (kznsz)

s=1
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Ui | _ [ Pu cos(Ki2) 0 y
Wl _{O }+ PnZJl(Klr) ( a)
Ul PnlJO(Kzr) 0

{ Wi } B {0 } * {Pn2 sin(Kzz)} (16b)

22: QnsJO(krm‘r) Cos (kznz)
{ U } )=

in Eq. (5b) is replaced by
at w = k,,c; and by

at w = k,,c,. Similarly,

2
Z O,u5xnsI 1(krnst) sin (k,2)
s=1

UZ _ in cos (KIZ) 0 '
{ WZ} - {0 } i { Qn2J1<K1r)} (172)

Us | [ QuJo(Kar) 0
{ W } B {0 } + { 0, sin(Kzz)} (17b)

at w = k.,¢;. U, in the term that is replaced, contains an r-dependent term that is necessary to make the set of
functions complete in the radial direction. However, in the replacement Eqs. (16a) and (17a), U is not a
function of r. Therefore, the expression for U is not in terms of a complete set of functions. Similarly, W in the
term to be replaced is not a function of z. In contrast, in Egs. (16b) and (17b), U and W are functions of r and
z, respectively. However, for example, 7.. obtained from Egs. (16b) and (17b) is zero, and the expression for
T.. is, therefore, not in terms of a complete set of functions. Moreover, numerical difficulties are likely to arise
in the neighbourhoods of these frequencies. These can be handled by using approximate expressions for
functions in the neighbourhoods. In a much simpler alternative method, computations are done using two
different complete sets of functions. The frequencies at which difficulties occur are listed for each set and
results obtained using the other set are used at these frequencies.

Another type of difficulty can occur on the boundary at other frequencies. For any chosen set of functions,
there are frequencies at which cos (k.,sL/2) is zero. It is seen from equation (5b) that the corresponding axial
displacement is zero on the flat surface. Similarly, at the frequencies at which J;(k,,.;a) is zero, it is seen from
Eq. (5¢) that the corresponding radial displacement is zero on the curved surface. Therefore, the response to
arbitrary excitations cannot be determined at such frequencies using the chosen set of functions. Again, the
response is best computed using an alternative complete set of functions.

These difficulties will occur only for lossless cylinders with real Lame’s constants. In cylinders with internal
loss, Lame’s constants are complex and these difficulties do not occur because there is no real frequency at
which, for example, w = k,,c; or cos (k.,sL/2) = 0.

in Eq. (5¢) is replaced by

at w = k.,c; and by

3. Special cases

Several special cases are presented to illustrate the procedure to analyse the free and forced vibrations of
cylinders. The same set of functions that is complete in the radial direction is used in all cases. However, two
different sets are used in the axial direction. The set of functions (set I) that is complete in the axial direction
and obtained using Eq. (13) is used in cases 1A, 1B, 1C, 1D and 1E. In cases 2A and 2B, the set of functions
(set II) defined in Eq. (14) is used. Zero displacement boundary conditions are used in cases 1A and 2A and the
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same results are obtained even though different sets are used. Similarly, the same results are obtained in cases

1B and 2B where zero stress boundary conditions are used. In some cases, displacement is specified on the

surface and, in other cases, stress is specified. Mixed boundary conditions where stress is specified over part of

one surface and displacement is specified over the remaining part of the surface are not considered here.
Let the axial and radial displacements on the flat surfaces be denoted by U and W, respectively, i.e.,

U=U and W=W on 0<r<a, z==L/2. (18a,b)

The boundary condition on U in Eq. (18a) is satisfied by using the orthogonal property of Jo(k,ua).
Substituting Eq. (18a) in Eq. (5a), multiplying both sides by r Jo(k,,a) and integrating over r, yields

a2 K\ L aJ (K Cl) k—mL aJ (krmsa) -
P[zcos (é)} Q[ S ]+ZZQW < ) lkrms :/0 Urdr, n=0 (19a)

m=1 s=1

and

Z P, cos <

L) RO(krn) + QRO(K2)

+ Z Z Qnm Cos ( - )RO(krms) = / UJO(krnV)V dr, n= 19 25 o (19b)
m=1 s=1 0
by using [15]
/ rJo(Xr)Jo(k,mr) dr = Ro(X), (20a)
0
where
0, X = krm: m#n,
a? )
—J km , X = krm =h,
Ry(x) = 4 270k m=n (20b)
Xa

ﬂjo(krna)‘ll(Xa)a X7ékma n= 1727 39 e

rn

The boundary condition on W in Eq. (18b) is satisfied by substituting it in Eq. (5a), and using the
orthogonal property of J;(k,,r). Multiplying both sides of Eq. (5a) by rJy(k,,r) and integrating over r yields

ZPnswm sin ( ) Ry (k)
n=12,.... 20
M. 2 a
+ZZQ’”SX”“ sin (ksz/Z)Rl(krmS) = / WJl(krnr)r dr)
m=1s=1 0
Eq. (21) is obtained by using [15]
/ rJ1(Xr)J(kr)dr = Ri(X), (22a)
0
where
0, X = krm: m#n,
o)
—J%(kma), X=k,, m=n,
R(X)=<( 2 (22b)
k,a

ﬁJO(kma)Jl(Xa) X?'ékma n= 1:2: 3, e

rn
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Let the axial and radial displacements on the curved surface be denoted by U and W, respectively, i.c.,
U=U and W=W on r=a,l|zI<L/2. (23a,b)

The boundary condition on U in Eq. (23a) is satisfied by substituting it in Eq. (52) and using the orthogonal
property of cos (k.,,z) in Eq. (15b). Multiplying both sides of Eq. (5a) by cos (k.,z) and integrating over z yields

2

M, L2
plsin (5)] + quoeorn + 03 po [P (M) [ - [ gas w0 Qs

m=1 s=1 L/2

and

M, 2 2 Lj2
PS(K\)+ > > P o(km@)Se(kzms) + Y Quo(kins@)Selkezn) = / , U cos(kyz)dz, n=1,2,... (24b)
—L

m=1 s=1 s=1
by using
+L/2
/ cos (Xz) cos (k.,z)dz = S (X), (25a)
—L)2
where
Os X = kzma m#”y
L/2, X=k, m=n,
S(X) = . . (25b)
k-, k.,L/2 XL/2) - X k., L/2 XL/2
5 nsin (kz,L/2) cos (XL/2) cos (k-,L/2) sin (XL/2) Xehe, ne=12.3....

(02,2 |

zn

The boundary condition on W in Eq. (23b) is satisfied by substituting it in Eq. (5a) and using the orthogonal
property of sin (k.,,z) in Eq. (15a). Multiplying both sides of Eq. (5a) by sin (k,,z)and integrating over z yields

L2
W sin (k.,z)dz, n=1,2,.... (26)
2

L 2
5 Z OystinsI 1 (kms@) =
s=1

Next, consider the case where stresses are specified on the boundary. Let the normal and shear stress on the
flat surfaces be denoted by 7., and 7., respectively, and the normal and shear stress on the curved surface be

denoted by ?,,r and ?,z, respectively, i.e.,
T..=T.. and T, =T, on 0<r<a,z==L/2 (27a,b)

and

T, = A,.,. and T, = A,.Z on r=a,lz|<L/2. (27¢,d)

The boundary condition on 7. in Eq. (27a) is satisfied by using the orthogonal property of Jy(k,,@) in
Eq. (12). Substituting Eq. (27a) in Eq. (10), multiplying both sides by rJy(k,,@) and integrating over r, yields

— P [(/l + 2,u)K12a2 sin (%)]

M. 2 a
+ Z Z Qms sin (k:mL/z) [_() + 2:“)kzm + ;“Xmskrms] é-’l(krmsa) = \/0 ]_;zr dr, n=0 (28&)

m=1 s=1
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and

2 . kznsL p
Z Pns S B [_(/L + 2:“)kzns + j-lpnskrn] RO(krn)
s=1

M. 2

+ Z Z Qm.\‘ sin (ksz/2) [_(/1 + 2,“)kzm + /IXmskrmx} RO(krms) = /0 ]_;zjo(kmr)r d}", n= 1, 2, e (28b)

m=1 s=I

by using Eq. (18).

The boundary condition on 7,. in Eq. (27b) is satisfied by substituting it in Eq. (11), and using the
orthogonal property of J;(k,,r)in Eq. (12). Multiplying both sides of Eq. (11) by rJ,(k,,r) and integrating over
r yields

2 2
:u%‘lg(krna) Z Pus [wnsk:ns - km] COos (kznsL/z)
oo n=1,2,.... (29)
+u Z Z Qms [+}fm;kzm - krms} Rl(krms) = foa 7_;er](krnr) dr)

m=1 s=1
The boundary condition on 7, in Eq. (27¢c) is satisfied by substituting it in Eq. (9) and using the orthogonal
property of sin (k.;,z). Multiplying both sides of Eq. (9) by sin (k.,z)and integrating over z yields

M, 2
— PKl;LSs(Kl) + Z Z Pms [(i + zﬂ)lpmskrm - j~kzms] JO(krma)Ss(k:ms)

m=1 s=1

2
Z ) , 2
+ Qm{ [(/L + 2/1)Xn3-krm - /Lkzn} JO(krnsa) - ;Xnle(krnsa)}L/z
s=1

L/2
= / T, sin(k.;,z)dz, n=1,2,... (30)
-L)2
by using
+L/2
/ sin (Xz) sin (k,z) dz = Sy(X), (31a)
-L)2
where
0 X =k.,, m#n,
L/2 X =k,,, m=n,
Sy(X) = ) X sin (k.,L/2) cos (XL/2) — k- cos (k-,L/2) sin (XL/2) Yok s (31b)
n» n= 9y Ty e
(kgn - Xz)

The boundary condition on T,. in Eq. (27d) is satisfied by substituting it in Eq. (11) and using the
orthogonal property of cos (k.,z) in Eq. (15b). Multiplying both sides of Eq. (11) by cos (k.,z) and integrating
over z yields

L2

2
BL/2 " Qs [tnsken — kems) T 1 (kinsa) = / i T;. cos(koz)dz, n=1,2,.... (32)
s=1

-L/

For each particular case, the relevant equations are combined, truncated, and expressed in matrix form. When
set I is used, Q is set to zero and the final equation has the form

[FI{X} = {G}, (33a)

where

{(X}" = [P, P11, P12, Po1, Py .o, Pt Prty2, Q11 Q1as @ots @+ Oarts Qo) (33b)
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[F] is a square matrix of size [2(M,+ M.)+ 1, 2(M,+ M)+ 1], and M, and M. are now finite. The
elements of the column matrix {G} are zero when the specified displacement or stress is zero on the boundary.
When set II is used, Q is non-zero and the final equation has the form shown in Eq. (33) but

{X}" =[P, Q. P11, Pi2. Pa1. Paa, - .. Pot,1s Pot,2, @11, @102 0312 O+ Qg Qg ) (33¢)
and [F] is a square matrix of size [2(M, + M.)+ 2, 2(M,+ M) + 2].

3.1. Case 14

Set I is used here. The displacements on the boundaries are zero, i.e.,
U=0 and W =0 on 0<r<az==L/2 (34a,b)
and
U=0 and W =0 on r=a,l|zI<L/2. (34c,d)

Egs. (19)—(26) are assembled to form [F] after setting Q = 0. All the elements of {G} are zero. For lossless
cylinders, the resonance frequencies are determined by finding the frequencies at which solutions to the
homogeneous matrix equation exist.

3.2. Case IB

Set I is used here. The stresses on all the surfaces are zero, i.c.,
T..=0 and T,.=0 on 0<r<a,z==L/2 (35a,b)
and
?,., =0 and ?}; =0 on r=alz|<L/2. (35¢,d)

Eqgs. (28)—(32) are assembled to form [F]. All the elements of {G} are zero. For lossless cylinders, the
resonance frequencies are determined by finding the frequencies at which solutions to the homogeneous matrix
equation exist.

3.3. Case I1C

Set I is used to determine the response to forced vibration. The stress on the surfaces, except 7. inside a
circle of radius a/N, is zero everywhere, i.e.,

_ +1 on 0<r<a/N, z==%L/)2

T..= P (363)
0 on a/N<r<a, z==£L/2
T.=0, T.=0 (36b, 36¢)
and
T, =o. (36d)
Eqgs. (28)—(32) are assembled to form [F]. It therefore follows that the non-zero elements of {G} are
a aZ

G = T.rdr=—;, 37a
1 \/0 I ar 2N2 ( )

Gt = / Todotonrrdr = |1 (5| n=1.2... m, (37b)
0 Nkm
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3.4. Case 1D

Set I is used here. The stress on the surfaces, except 7. outside a circle of radius a/N, is zero everywhere i.e.,
the boundary conditions are

_ 0 on 0<r<a/N, z==£L/2

T.-= (38)
+1 on a/N<r<a, z==L)2
and Egs. (36b)—(36d).
Egs. (28)—(32) are assembled to form [F]. It therefore follows that the non-zero elements of {G} are
a 2 N2 —1
Gl =/ Tzzrdr = M’ (393)
0 2N
G —/uT Jolowryrdr = — g (k% 12 m (39b)
n+1 = ) zzJ 0\Frn = Nkm 1 N ) =1,2,...,M,.

3.5. Case IE

Set I is used. The stresses on the surfaces, except T, inside a band, are zero everywhere i.c., the boundary
conditions are

T..=0 on 0<r<a, z==L/2. (40a)

Eqgs. (34b) and (34c), and

(40b)

_ I'z on r=a, |zI<L/2N,
"Z3Y0 on r=a L/2N<|zI<L/2,

where I' is a constant.
The only non-zero elements of {G} are

LIN ~ 2 . (kL L kopL
Gorins1 = /L/N T, cos (k.,z)dz = k—gnsm ( 2‘;\7) N cos ( 2"N ), n=12,...,M.,. 41)

3.6. Case 24

In this case, set II is used. All the displacements are zero on the boundary. The same boundary conditions
are considered in case 1A where set I is used. Here, Eq. (33c) is used whereas Eq. (33Db) is used in case 1A.
All the elements of {G} are zero.

3.7. Case 2B

In this case, set II is used. All the stresses are zero on the boundary. The same boundary conditions are
considered in Case 1B where set I is used. Both P and Q are zero here because of the boundary conditions.

4. Numerical results and discussion
Numerical results are presented for a solid elastic cylinder with density 7800 kg/m>. Free vibration results

are presented for a cylinder with Young’s modulus, ¥ = 200 GPa and Poisson’s ratio, ¢ = 0.3, i.c., the Lame’s
constants are A1~ 115.38 GPa and pu~76.923 GPa, respectively. Forced vibration results are presented for a
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cylinder with length and diameter 10 mm each and internal losses: Y = 200(1+0.01) GPa and ¢ = 0.3. These
complex material properties satisfy the conditions derived in the appendix. Solid lines and dots are used to
show forced responses obtained using the present approach and ATILA, respectively. In the present approach
M, = M. =20 is used to obtain the forced responses shown in most of the figures. In ATILA, 8 noded,

Table 1

Resonance frequencies of a cylinder of length and diameter 10 mm each computed using various methods for case 1A. All displacements

are zero on the boundaries.

Mode no. Resonance frequency (kHz)

ATILA [12] I=J =40

Present method

M, =M.=1 M, =M.=5 M,=M.=10 M, =10, M. =20
1 361.408 361.020 361.399 361.406 361.407
2 579.222 575.371 579.219 579.221 579.221
3 682.230 682.226 682.229 682.229
4 819.557 819.526 819.552 819.554
5 876.031 875.975 876.022 876.026
Table 2

Resonance frequencies of a cylinder of length 20 mm and diameter 10 mm computed using various methods for case 1A. All displacements

are zero on the boundaries.

Mode no. Resonance frequency (kHz)

Hutchinson [16]

ATILA [12] I = J = 40

Present method

M, =M.=1 M,=M.=5 M,=M.=10 M, =10, M. =20
1 275.447 275.448 275.377 275.441 275.447 275.448
2 453.402 453.404 453.364 453.399 453.403
3 556.637 556.637 554.398 556.636 556.637 556.637
4 595.994 595.996 595.955 595.992 595.995
Table 3

Resonance frequencies of a lossless cylinder of length and diameter 10 mm each computed using various methods for case 1B. All stresses

are zero on the boundaries.

Mode no. Resonance frequency (kHz)

Gladwell and Vijay [17]

Leissa and So [18]

ATILA [12] I = J = 40

Present method

M,=M.=5 M,=M.=10 M, =M, =15
1 287.11 287.09 287.06 287.38 287.15 287.11
2 354.12 353.96 353.99 354.84 354.22 354.10
3 471.28 470.52 470.53 470.98 470.66 470.59
4 548.99 547.89 547.89 548.06 547.94 547.92
5 622.36 622.32 625.38 623.14 622.70
6 661.93 662.14 661.99 661.96
7 720.31 721.42 720.62 720.46
8 810.50 810.98 810.64 810.57
9 821.22 821.52 821.30 821.26

10 909.10 915.94 910.90 909.93

11 985.94 987.28 986.31 986.11
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axisymmetric, rectangular, quadratic elements are used to model the cylinder. / elements are used along
the length of the cylinder and J elements are used in the radial direction. Only half the cylinder is modelled
and the radial displacement and 7.. are prescribed to be zero on z =0 to simulate the full cylinder.
Forced responses are computed at frequencies that are less than or equal to 1 MHz and integer multiples
of 10kHz.

The resonance frequencies that are less than 1 MHz of a lossless cylinder of length and diameter 10 mm each
with zero displacement on the surfaces are shown in Table 1. The convergence of the resonance frequencies,
for case 1A, is illustrated by presenting results for various values of M, and M.. They are obtained by finding
the zeros in the determinant of [F] and compared with the results obtained using ATILA. The difference
between frequencies obtained using the present method and ATILA is less than 0.01% even when
M,= M_.=15 and is in the sixth significant digit when M, = M. = 20. There are discontinuities in the
determinant at approximately 294, 414, 607, 845, 874, and 881 kHz. These frequencies correspond to k.1,
cos (k;12L/2), cos (k.12L/2), cos (k.2 L/2), cos(k.12L/2), and k,»; = 0, respectively. (As noted earlier, k_,,,, and
k... are frequency dependent.)

0.2

0.1

Re(U) (pm)
(=]

-0.1

_02 L L 1 1
0 200 400 600 800 1000
Frequency (kHz)
(b)
0.1
005
g
= 0
S
[5]
®0.05
-0.1 N N 1 1
0 200 400 600 800 1000
Frequency (kHz)
(©
E
S
[0}
7

0 200 400 600 800 1000
Frequency (kHz)

Fig. 2. Axial displacement, Re(U), at r = 0, z = L/2 for case 1C. Solid line: present method, dots: ATILA. (a) N =1, M, = M, = 20; 1600
elements (b) N =2, M, = M. = 20; 1600 elements, and (c) N = 20, M, = M. = 50; 2500 elements.
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Hutchinson [16] tabulated normalised results for a cylinder with a length to diameter ratio of two.
Therefore, resonance frequencies of a cylinder of length 20 mm and diameter 10 mm are presented in Table 2
for case 1A. Even the sixth significant digit is in agreement or differs by one from the results of Hutchinson
and ATILA.

The resonance frequencies for case 1B that are less than 1 MHz, obtained by using various values of M, and
M., are shown in Table 3. Resonance frequencies obtained by Gladwell and Vijay [17], Leissa and So [18] and
ATILA [12] are also shown in Table 3. Gladwell and Vijay used only a few elements. In ATILA, 1600 square
elements are used. In most cases, the difference in the resonance frequencies obtained using the present method
and ATILA is much less than 0.8%, even when M, = M. = 5.

The axial displacement, U, at r =0, z = L/2 is shown in Figs. 2(a)—(c) for case 1C, N =1, 2, and 20,
respectively. The agreement is good. For N =1 and 2, ATILA results are obtained by using 1600 square,
equisized elements and M, = M. = 20 is used in the present method. For N = 20, 2500 elements are used in
ATILA and M, = M. = 50 is used in the present method.

The effect of M, and M. on the computed axial displacement, U, at r = 0, z = L/2, is shown in Table 4 for
Case 1C, N=1, 2, and 20 at 100, 200,...,1000kHz. For N =1, and M, = M. = 10 there is a difference, in
most cases, only in the third significant digit of the displacements computed using the present method
and ATILA. For N =2, M, = M. = 20 yields results with similar accuracy. When N increases, the load is
more concentrated and the number of terms required for obtaining a similar relative accuracy also increases.

Table 4
Axial displacement, Re(U), at r =0, z = L/2 for case 1C

N Frequency (kHz) Axial displacement, Re(U) (fm)
ATILA [12] Present method
M,=M.=5 M,=M.=10 M, = M.=20 M,=M.=50
1 100 —58.45 —58.53 —58.41 —58.44 —58.45
200 —10.36 —10.45 —10.30 —10.34 —10.35
300 56.48 58.16 56.14 56.33 56.44
400 —10.91 —12.18 —10.91 —10.89 —10.90
500 —29.10 —28.49 —29.22 -29.15 —29.11
600 59.27 55.50 58.80 59.20 59.28
700 —38.68 —38.70 —38.26 —38.55 —38.65
800 —40.12 —40.52 —39.98 —40.08 —40.11
900 5.08 7.01 5.83 5.29 5.12
1000 38.83 37.48 38.87 38.85 38.84
2 100 —3.035 —2.74 —2.80 —3.15 -3.01
200 12.53 12.86 12.74 12.41 12.55
300 12.82 13.05 13.09 12.72 12.85
400 —10.58 —11.87 —10.32 —10.66 —10.54
500 —2.58 —2.41 -2.29 —2.67 —2.55
600 15.66 14.69 15.79 15.54 15.69
700 —21.98 —21.64 —21.41 —22.00 —21.94
800 —9.13 -9.23 —8.26 —9.05 —9.06
900 —12.83 —10.6 —11.99 —12.80 —12.78
1000 —8.07 —6.22 =775 —8.17 —8.05
20 100 2.03 0.74 1.46 2.19 1.97
200 2.22 0.94 1.65 2.39 2.16
300 2.18 0.88 1.61 2.34 2.12
400 2.00 0.67 1.44 2.17 1.95
500 2.20 0.89 1.63 2.37 2.15
600 2.96 1.54 2.33 3.12 2.90
700 1.84 0.49 1.25 2.00 1.78
800 3.12 1.77 2.53 3.28 3.06
900 4.53 2.39 3.62 4.61 4.46

1000 2.69 1.20 2.10 2.86 2.63
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It is seen from Egs. (33) and (37) as well as from Table 4 that the values of M, and M. required to get
reasonable accuracy depends primarily on the spatial distribution of the excitation and to a lesser extent on the
frequency of excitation.

The real and imaginary parts of the axial displacement are shown in Fig. 3 in the neighbourhood
of the first resonance frequency for case 1C. The maxima and the minima and the frequencies at which
they occur are in good agreement with ATILA. This indicates that methods [19] used to determine
real material properties can be extended to determine the complex material properties of cylinders with
internal loss.

The axial displacement, Re(U), at r =0, z = L/2 is shown in Fig. 4 and Table 5 for case 1D, N = 2. As
expected, the sum of the responses to the excitations in cases 1C and 1D, N = 2 is equal to the response to the
excitation in case 1C, N = 1, i.e., the sum of the responses to excitations inside and outside a circle of radius
a/2 is equal to the response to the excitation over a circle of radius a.

E
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O L L i 1
285 286 287 288 289 290

Frequency (kHz)

Fig. 3. Axial displacement, U, at r =0, z = L/2 for case 1C, N =1, in the neighbourhood of the first resonance. Solid line: present
method, dots: ATILA.
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Fig. 4. Axial displacement, Re(U), at r = 0, z = L/2 for case 1D, N = 2. Solid line: present method using M, = M. = 20, dots: ATILA.
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Table 5
Axial displacement, Re(U), at r =0, z = L/2 for case 1D
N Frequency (kHz) Axial displacement, U (fm)
ATILA [12] Present method
M, =M.=5 M,=M.=10 M,=M.=20 M,=M,.=50
2 100 —55.42 —55.79 —55.61 —55.29 —55.44
200 —22.89 —23.30 —23.04 —22.74 —22.91
300 43.66 45.11 43.05 43.61 43.59
400 —0.326 —0.308 —0.589 —0.229 —0.354
500 —26.52 —26.08 —26.92 —26.47 —26.56
600 43.61 40.81 43.01 43.65 43.59
700 —16.69 —17.06 —16.85 —16.55 —16.71
800 —30.99 —31.29 -31.72 —31.04 —31.05
900 17.90 17.60 17.82 18.09 17.89
1000 46.90 43.70 46.62 47.02 46.89
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Fig. 5. Radial displacement, W, at r = a, z = L/2 for case 1E. Solid line: present method, dots: ATILA (a) N=1,I"'=1, M, = M. =20
b)N=2,T=1,M,=M.=20(c) N=20, I =103, M, = M. = 50.
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The radial displacement, Re(W), at r = a, z = L/2 is shown in Fig. 5 and Table 6 for case 1E, N =1, 2,
and 20. The values of I' are not the same and are chosen for convenient presentation. In this case
also, higher values of M, and M. are needed to get good agreement with ATILA when the load is

concentrated.

Table 6

Radial displacement, Re(W), at r = a, z = L/2 for case 1E

Excitation N Frequency (kHz) Radial displacement, Re(W) (fm)
ATILA [12] Present method
M,=M.=20 M,=M.=50 M,=M.=100 M, =M. =200
N=1,T=1 100 95.40 94.20 94.92 95.16 95.28
200 139.5 137.8 138.8 139.2 139.4
300 —516.9 —506.0 —512.3 —514.6 —515.7
400 58.59 54.45 56.93 57.76 58.17
500 —163.0 —160.5 —-162.0 —162.5 —162.8
600 —14.72 14.73 —14.73 —14.73 —14.72
700 —1.368 —1.50 —1.42 —1.393 —1.380
800 —11.58 -7.77 —10.1 —10.82 —11.20
900 86.94 76.9 83.4 85.24 86.12
1000 83.25 74.8 79.9 81.56 82.41
N=2,TI=10° 100 1.341 1.56 1.403 1.378 1.359
200 4.111 4.39 4.195 4.159 4.135
300 —63.88 —61.95 —63.09 —63.47 —63.67
400 —10.58 —11.51 —10.98 —10.77 —10.68
500 27.68 26.71 27.26 27.48 27.58
600 29.35 27.18 28.48 28.93 29.14
700 —3.941 —3.843 —3.930 —3.929 —3.938
800 —22.14 —22.07 —22.15 —22.14 —22.14
900 —25.92 23.51 25.02 25.50 25.72
1000 —4.019 3.329 3.715 3.874 3.947
N=20,T=10° 100* 8.76 4.69 8.85 8.59 8.75
200 1.60 -1.72 1.63 1.51 1.66
300 —61.6 —62.7 —60.8 —61.3 —61.3
400 —17.0 -22.0 —17.6 —17.4 —17.1
500 79.2 73.2 78.0 78.5 79.0
600 111.4 98.9 108.0 109.6 110.6
700 41.5 36.4 40.9 41.1 414
800 —4.59 —9.15 —5.01 —4.90 —4.64
900 =275 —243 -262 -269 =272
1000 —138 —156 —143 —141 —139
*r=a,z=L/4.
Table 7

Resonance frequencies of a cylinder of length and diameter 10 mm each for case 2A. All displacements are zero on all the boundaries.

Mode no. Resonance frequency (kHz)

ATILA [12] I =J = 40

Present method

M,=M. =1 M, =M, =5 M, = M. =10 M, =10, M. =20
1 361.408 360.622 361.384 361.404 361.405
2 579.222 575.550 579.215 579.220 579.221
3 682.230 673.890 682.215 682.228 682.229
4 819.557 819.469 819.542 819.548
5 876.031 875.915 876.009 876.017
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Table 8
Resonance frequencies of cylinders of diameter 10 mm for case 2B. All stresses are zero on all the boundaries.

Length (mm) Mode no. Resonance frequency (kHz)
Thin rod theory ATILA [12] I=J =40 Present method M, = M. =5

100 1 50.637 50.523 50.523
2 101.274 100.315 100.315
3 151.911 148.404 148.403
50 1 101.274 100.315 100.315
2 202.548 193.250 193.251
3 303.822 264.214 264.214
25 1 202.548 193.248 193.250
20 1 253.185 232.549 232.555

The resonance frequencies for case 2A that are less than 1 MHz, obtained by using various values of M, and
M., are compared in Table 7 with those obtained by using ATILA [12]. It is seen that there is good agreement.
There is also excellent agreement between the resonance frequencies in Tables 1 and 7. The results are for the
same boundary conditions but are obtained using two different complete sets of functions in the axial
direction, i.e., sets I and II, respectively. In addition to the zeros listed in Table 7, there are discontinuities in
the determinant at approximately 383, 495, 587, 701, and 768 kHz. These frequencies correspond to k.,
J1(ky12a), k11, k200, and J(k,.12a), respectively = 0. It is seen that the frequencies at which discontinuities occur
when set II is used are different from the frequencies when set I is used. This is important because some
resonance frequencies of cylinders with certain length to radius ratio will be equal to the frequencies at which
discontinuities occur. Therefore, this approach can be used to determine the resonance frequencies of lossless
cylinders with all length to radius ratios. As noted earlier, these difficulties do not occur for cylinders with loss.

Resonance frequencies computed using thin rod theory, ATILA, and the present methods are compared in
Table 8 for case 2B. The diameter of the cylinder is 10 mm in all the cases but the length is varied. Even when
the length to diameter ratio is large, thin rod theory yields accurate results only for the lower order resonance
frequencies. It is less accurate for the higher order modes of long thin rods and for shorter rods. However,
there is good agreement between ATILA and the present method for all length to diameter ratios even when
M.=M.=>5.

5. Conclusions

A method is presented to determine the response of solid cylinders with internal losses to distributed
excitations. The method is based on the use of two infinite series solutions to the governing equations. Each
term in the two series is an exact solution to the governing equations. The two series consist of terms that are
orthogonal and form complete sets of functions in the axial and radial directions, respectively.

Numerical solutions are presented to illustrate free and forced vibration responses. Two different sets that
are complete in the axial direction are used to compute the resonance frequencies of lossless cylinders. The
results are in excellent agreement with each other and the results obtained using ATILA. It is seen that only a
few terms of the infinite series are needed to compute several resonance frequencies as well as determine the
response to high-frequency loads on the flat and curved surfaces of cylinders with internal losses. Results are
presented for uniform and concentrated loads on the flat and curved surfaces.

The method can be extended to determine the responses of solid cylinders to excitations that are neither
symmetric nor anti-symmetric about the plane midway between the ends of the cylinder. This can be done by
expressing the displacements as the sum of the series used here and the sum of the series used in Ref. [2].

Appendix

The conditions that are satisfied by the imaginary parts of the complex Young’s modulus, Y, and Poisson’s
ratio o, are derived here by using the conditions derived by Holland [11] for piezoelectric material.
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The relationship between stress and strain is given by the matrix Eq. (3) where
A=0Y/[(1 4+ o)1 —20)]
and
u=Y/[2(1 + o)].
Eq. (3) can also be expressed as
[Srr> So0, Sz, i)' = [SUT e, Too, Tz, T2,

where the square matrix [S] is

rl o g 7
y v v °
1
Gy
[S1= 1 o 1

v v v °
(1+0)

o o o 2%

L Y |

The Young’s modulus and the Poisson’s ratio can be expressed in complex form as
Y = Y/ _l_qu
and

o=d +jo’,
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(A.1)

(A.2)

(A.3a)

(A.3b)

(A4)

(A.5)

respectively. The imaginary terms should dissipative energy, hence the imaginary elements of the matrix must

satisfy the following conditions [11]:

!
—s1,>0,
/!
—8533>0,
!
—S4y >0,

b}

a "
=S = ‘_512

2
1/ 1 1
118532 (51,) 7

/! /! /! /! 2
S35 (51 + 515) 22(=s13)"
where s;; are the elements of the [S] matrix.
Using conditions (A.6) and (A.7) yields

Y”">0.
Using conditions (A.8)—(A.10) yield
dY"—d"Y + Y =0
and
dY" —d"Y — Y'<0.
Using condition (A.11) yields
26'Y =" Y'Y = Y'Y —d"Y + Y")<0.

(A.6)
(A7)
(A.8)

(A.9)
(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
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Considering inequalities (A.13)—(A.15) simultaneously yields
1 / 1 /
Y054 <d'< Y'(1 +0).
Y’ Y’
Finally, it is seen that all the conditions reduce to (A.12) and (A.16). The imaginary part of Young’s
modulus is always positive but the imaginary part of Poisson’s ratio can be negative.

(A.16)
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