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Abstract

A new explicit predictor–multicorrector high-order accurate method is suggested for linear elastodynamics. The method

is derived from the implicit high-order accurate method based on the time-continuous Galerkin method proposed earlier in

our papers. The basic unknowns for the method are displacements and velocities; accelerations are not calculated. The

explicit method uses a predictor–multicorrector technique with one or two passes in order to reach the fourth order of

accuracy and has controllable numerical dissipation for the suppression of spurious high-frequency oscillations. In

contrast to recently suggested explicit high-order accurate methods based on the time-discontinuous Galerkin method, the

new method is more accurate (has a higher order of accuracy) and has better algorithmic properties (e.g., a higher-stability

limit) at the same computational efforts. Presented numerical examples show the performance of the new method. The

method appears to be competitive for medium- and long-term analysis when accuracy of numerical solutions arises an issue

due to error accumulation.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Most finite-element procedures for elastodynamics problems are based upon semi-discrete methods
(see Refs. [1–3] and others) and have the second order of accuracy. Zienkiewich and coworkers
(see Refs. [3–5]) have developed and analyzed a set of algorithms, called the unified set of a single-step
method, based on the application of the weighted residual method to the equation of motion. Many of the
classical finite-difference schemes are particular cases of the unified set. High accuracy in time can be obtained
by using higher-order interpolation polynomials. Recently, new high-order accurate methods with a step-by-
step time integration scheme have been developed for elastodynamics (see Refs. [6–11] and others). Most of
them are based on semi-discrete equations with the polynomial time approximations of unknown functions.
The polynomial coefficients are derived with the use of different approaches such as the time-continuous
Galerkin (TCG) and time-discontinuous Galerkin (TDG) methods, weighted residual methods, collocation
methods and others.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The aforementioned methods for elastodynamics use implicit or explicit time integration schemes. Implicit
methods include the solution of a system of algebraic equations, are usually unconditionally stable and allow
large time increments. Explicit methods are implemented with a diagonal mass matrix and do not require the
solution of a system of algebraic equations, but are only conditionally stable (i.e., time increments have to be
smaller than the stability limit). Wave propagation problems usually require small time increments, therefore
explicit methods are often used for these kinds of problems. The second-order central difference method is still
the most popular explicit method. In our study, we will develop a new fourth-order accurate explicit method
for linear elastodynamics. This method will be derived from the high-order accurate implicit TCG method
suggested recently in our papers [12,13] (the new implicit method is much faster than known implicit methods
for linear elastodynamics at the same accuracy). The explicit method is based on a predictor–multicorrector
technique with one or two passes and has controllable numerical dissipation for the suppression of spurious
oscillations. It is interesting to note that the new explicit method has numerical dissipation even when derived
from a non-dissipative implicit TCG method. The basic unknowns for the method are displacements and
velocities; accelerations are not calculated. In contrast to the known explicit high-order accurate methods for
elastodynamics that are based on the TDG method (see Refs. [6,11]), the new method is more accurate (has a
higher order of accuracy) and has better algorithmic properties (e.g., a higher-stability limit) at the same
computational efforts.

The paper is organized as follows. First, we will describe the new implicit high-order accurate method
proposed in Refs. [12,13], which is based on the TCG method. Then we will derive from this method a new
explicit 4th-order accurate method. Next, accuracy analysis of the new method will be presented showing
advantages of the new method in comparison with the known explicit high-order accurate methods for
elastodynamics based on the TDG method (see Refs. [6,11]). Finally, numerical examples showing the
performance of the new method will be considered.
2. Weak and discrete formulations of elastodynamics based on the continuous Galerkin time-stepping method

For the derivation of weak and discrete formulations of elastodynamics, the so-called two-field formulation
is used. For this aim the finite-element equations can be rewritten as follows:

M _Vþ CVþ KU ¼ R; V ¼ _U, (1)

where M, C, K are the mass, damping and stiffness matrices, respectively, UðtÞ is the vector of the nodal
displacement, VðtÞ is the vector of the nodal velocity, and RðtÞ is the vector of the nodal load. Eqs. (1) are a
system of ordinary differential equations. For the continuous Galerkin time-stepping method, we introduce a
partition of the whole time interval ½0;T � in a not necessarily uniform fashion by 0 ¼ t0ot1o � � �
otno � � �otN and define the time intervals Jn ¼ ½tn�1; tn�, n ¼ 1; . . . ;N, where tN ¼ T . A weak formulation of
elastodynamics for any time interval Jn can be derived from Eqs. (1) as follows:Z

Jn

ðv̄T þ a _̄v
T
Þ½M _Vþ CVþ KU� R�l1ðtÞdt ¼ 0, (2)

Z
Jn

ðūT þ a _̄u
T
Þð _U� VÞl2ðtÞdt ¼ 0, (3)

where ūðtÞ and v̄ðtÞ are the test vector functions depending on time t; a is the scalar coefficient and has the
dimension of time (e.g., s); l1ðtÞ and l2ðtÞ are the weighting scalar functions depending on time t only. At time
tn�1 nodal displacements and velocities Uðtn�1Þ and Vðtn�1Þ are known from the solution for the previous
time interval Jn�1, or from the initial conditions, and ūðtn�1Þ ¼ v̄ðtn�1Þ ¼ 0. For any time interval, Jn a local
time t� ¼ t� tn�1 can be introduced. Time t� varies from 0 to Dt (Dt ¼ tn � tn�1). For convenience, for all
derivations for time intervals Jn, the local time t� will be used. However, in order to simplify notations, the
local time will be designated as t. The advantages of using additional scalar functions l1ðtÞ and l2ðtÞ were
considered in our paper [13]. At special polynomial approximations of these functions, they do not affect
the order of accuracy of the numerical algorithm but allow control of additional algorithmic characteristics;
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e.g., the spectral radii [13]. For simplicity the case with l1ðtÞ ¼ l2ðtÞ ¼ 1 is considered. The numerical
algorithm with polynomial functions l1ðtÞ and l2ðtÞ can be derived without any difficulties.

To get a discrete formulation from Eqs. (2) and (3) the following time polynomial approximations of the
order n for any time interval Jn will be used for UðtÞ, VðtÞ, ūðtÞ and v̄ðtÞ:

UðtÞ ¼ U0 þU1tþU2t2 þ � � � þUntn, (4)

VðtÞ ¼ V0 þ V1tþ V2t2 þ � � � þ Vntn, (5)

ūðtÞ ¼ ū0 þ ū1tþ ū2t
2 þ � � � þ ūntn, (6)

v̄ðtÞ ¼ v̄0 þ v̄1tþ v̄2t
2 þ � � � þ v̄ntn, (7)

where U0 and V0 are the known initial displacement and velocity, U1; . . . ;Un and V1; . . . ;Vn are unknown
vectors to be determined, ū0 ¼ v̄0 ¼ 0, and ū1; . . . ; ūn and v̄1; . . . ; v̄n are test vectors. When Eqs. (4)–(7) are
inserted into Eqs. (2) and (3), the final discrete system of algebraic equations for unknowns U1; . . . ;Un and
V1; . . . ;Vn is derived as follows:

ðMV1 þ CV0 þ KU0Þ
Dt

1þ k
þ a

� �
þ ð2MV2 þ CV1 þ KU1Þ

Dt

2þ k
þ

ak

k þ 1

� �
Dt

þ � � � þ ðnMVn þ CVn�1 þ KUn�1Þ
Dt

nþ k
þ

ak

nþ k � 1

� �
Dtn�1

þ ðCVn þ KUnÞ
Dt

nþ k þ 1
þ

ak

nþ k

� �
Dtn ¼ Rk; k ¼ 1; 2; . . . ; n ð8Þ

ðU1 � V0Þ
Dt

1þ k
þ a

� �
þ ð2U2 � V1Þ

Dt

2þ k
þ

ak

k þ 1

� �
Dtþ � � � þ ðnUn � Vn�1Þ

Dt

nþ k
þ

ak

nþ k � 1

� �
Dtn�1

� Vn

Dt

nþ k þ 1
þ

ak

nþ k

� �
Dtn ¼ 0; k ¼ 1; 2; . . . ; n, ð9Þ

where

Rk ¼
1

Dtk

Z Dt

0

RðtÞðtk þ aktk�1
Þdt. (10)

This procedure can be considered as the application of the continuous Galerkin method to the system (1).
Eqs. (8) and (9) represent a system of 2n algebraic equations with 2n unknown vectors U1; . . . ;Un and
V1; . . . ;Vn. It is necessary to note that the system of n equations (9) can be analytically solved separately from
the system (8); i.e., unknown vectors V1; . . . ;Vn can be expressed in terms of unknown vectors U1; . . . ;Un.
Then the final system of Eqs. (8) and (9) can be reduced to a system of only n equations with unknown vectors
U1; . . . ;Un. Let us consider the derivation of the final system of equations for n ¼ 2 in detail, see also our
paper [12]. For higher values of n the derivation is similar to this case.

3. A new fourth-order accurate implicit method

For the quadratic approximations of vectors UðtÞ, VðtÞ, ūðtÞ and v̄ðtÞ, Eqs. (4)–(7) can be rewritten as
follows:

UðtÞ ¼ U0 þU1tþU2t
2; VðtÞ ¼ V0 þ V1tþ V2t2,

ūðtÞ ¼ ū0 þ ū1tþ ū2t
2; v̄ðtÞ ¼ v̄0 þ v̄1tþ v̄2t

2. ð11Þ

Then from Eq. (9) (n ¼ 2, k ¼ 1; 2) we get

ðU1 � V0Þ
Dt

2
þ a

� �
þ ð2U2 � V1Þ

Dt

3
þ

a

2

� �
Dt� V2

Dt

4
þ

a

3

� �
Dt2 ¼ 0, (12)
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ðU1 � V0Þ
Dt

3
þ a

� �
þ ð2U2 � V1Þ

Dt

4
þ

2a

3

� �
Dt� V2

Dt

5
þ

a

2

� �
Dt2 ¼ 0. (13)

Solving Eqs. (12) and (13) we get

V1 ¼ 2U2 þ a1U1 � a1V0, ð14Þ

V2 ¼ a2U1 � a2V0, ð15Þ

where

a1 ¼
2ð60a2 þ 32aDtþ 6Dt2Þ

Dtð20a2 þ 12aDtþ 3Dt2Þ
; a2 ¼ �

10ð12a2 þ 6aDtþ Dt2Þ

Dt2ð20a2 þ 12aDtþ 3Dt2Þ
. (16)

At n ¼ 2 and k ¼ 1; 2, Eq. (8) reduces to the following two equations:

ðMV1 þ CV0 þ KU0Þ
Dtþ 2a

2
þ ð2MV2 þ CV1 þ KU1Þ

2Dtþ 3a

6
Dt

þ ðCV2 þ KU2Þ
3Dtþ 4a

12
Dt2 ¼ R1, ð17Þ

ðMV1 þ CV0 þ KU0Þ
2Dtþ 6a

6
þ ð2MV2 þ CV1 þ KU1Þ

3Dtþ 8a

12
Dt

þ ðCV2 þ KU2Þ
4Dtþ 10a

20
Dt2 ¼ R2. ð18Þ

With the insertion of Eqs. (14) and (15) into Eqs. (17) and (18), the following system can be obtained (a matrix
form will be used):

B
MU1

MU2

( )
þD

CU1

CU2

KU1

KU2

8>>><
>>>:

9>>>=
>>>;
¼ F

MU0

MV0

CU0

CV0

KU0

KV0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
þ

R1

R2

( )
, (19)

where

B ¼
b11I b12I

b21I b22I

" #
; D ¼

d11I d12I d13I d14I

d21I d22I d23I d24I

" #
,

F ¼
f 11I f 12I f 13I f 14I f 15I f 16I

f 21I f 22I f 23I f 24I f 25I f 26I

" #
,

R1 ¼
1

Dt

Z Dt

0

RðtÞðtþ aÞdt; R2 ¼
1

Dt2

Z Dt

0

RðtÞðt2 þ 2atÞdt. ð20Þ

Here I is the unit matrix of the order m (m is the number of nodal displacements in Eq. (1)). The coefficients
bij, dij and f ij can be expressed in terms of a and Dt, and are given in the matrix form as follows:

b11 b12

b21 b22

" #
¼

�
2ð24a2 þ 9aDtþ Dt2Þ

3ð20a2 þ 12aDtþ 3Dt2Þ
2aþ Dt

�
ð40a3 þ 36a2Dtþ 10aDt2 þ Dt3Þ

Dtð20a2 þ 12aDtþ 3Dt2Þ

2ð3aþ DtÞ

3

2
6664

3
7775, (21)
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d11 d12 d13 d14

d21 d22 d23 d24

" #
¼

aþ
Dt

2

1

3
Dtð3aþ 2DtÞ

1

6
Dtð3aþ 2DtÞ

1

12
Dt2ð4aþ 3DtÞ

aþ
Dt

3

1

6
Dtð8aþ 3DtÞ

1

12
Dtð8aþ 3DtÞ

1

10
Dt2ð5aþ 2DtÞ

2
664

3
775, (22)

f 11 f 12 f 13 f 14 f 15 f 16

f 21 f 22 f 23 f 24 f 25 f 26

" #
¼

0
2ð24a2 þ 9aDtþ Dt2Þ

3ð20a2 þ 12aDtþ 3Dt2Þ
0 0 aþ

Dt

2
0

0
40a3 þ 36a2Dtþ 10aDt2 þ Dt3

Dtð20a2 þ 12aDtþ 3Dt2Þ
0 0 aþ

Dt

3
0

2
6664

3
7775. (23)

The vectors U1 and U2 can be calculated from Eq. (19) by means of a direct solver. Then the vectors V1 and V2

can be calculated from Eqs. (14) and (15). It is necessary to note that the dimension of system (19) is twice the
dimension of the system of standard methods of the second order of accuracy.
4. A new fourth-order accurate explicit method

System (19) corresponds to a new fourth-order accurate implicit method, see Ref. [12]. In order to
develop a new fourth-order accurate explicit method, let us modify system (19). Let us multiply both sides of
Eq. (19) by B�1. Then it follows that

MU1

MU2

( )
þ B�1D

CU1

CU2

KU1

KU2

8>>><
>>>:

9>>>=
>>>;
¼ B�1F

MU0

MV0

CU0

CV0

KU0

KV0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
þ B�1

R1

R2

( )
(24)

or

MU1 þ b̄1mdm1CU1 þ b̄1mdm2CU2 þ b̄1mdm3KU1 þ b̄1mdm4KU2 ¼ R̄1 (25)

and

MU2 þ b̄2mdm1CU1 þ b̄2mdm2CU2 þ b̄2mdm3KU1 þ b̄2mdm4KU2 ¼ R̄2, (26)

with

R̄1 ¼ b̄1mf m1MU0 þ b̄1mf m2MV0 þ b̄1mf m3CU0 þ b̄1mf m4CV0

þ b̄1mf m5KU0 þ b̄1mf m6KV0 þ b̄11R1 þ b̄12R2,

R̄2 ¼ b̄2mf m1MU0 þ b̄2mf m2MV0 þ b̄2mf m3CU0 þ b̄2mf m4CV0

þ b̄2mf m5KU0 þ b̄2mf m6KV0 þ b̄21R1 þ b̄22R2. ð27Þ

In Eqs. (25)–(27) the summation over the repeated index m is performed (m ¼ 1; 2), and the coefficients b̄ij can
be found as elements of the inverse matrix formed by coefficients bij , see our paper [12]. For example, the
explicit expressions of Eqs. (25) and (26) for a particular case with a!1 are given as follows:

MU1 �
Dt2

6
CU2 �

Dt2

12
KU1 �

Dt3

12
KU2 ¼MV0 þ

Dt

2
R1 �

Dt

2
R2 (28)

and

MU2 þ
1

2
CU1 þ

Dt

2
CU2 þ

Dt

4
KU1 þ

Dt2

6
KU2 ¼ �

1

2
KU0 þ

1

2
R1, (29)
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with

R1 ¼
1

Dt

Z Dt

0

RðtÞdt; R2 ¼
1

Dt2

Z Dt

0

2tRðtÞdt. (30)

This case corresponds to a non-dissipative numerical scheme.
It is interesting to note that Eqs. (28) and (29) can be written in a matrix form with a symmetric matrix of

equations

�
12

Dt2
Mþ K

� �
ð2Cþ DtKÞ

ð2Cþ DtKÞ 4Mþ 2DtCþ
2Dt2

3
K

� �
2
66664

3
77775

U1

U2

( )
¼
�
12

Dt2
MV0 þ

Dt

2
R1 �

Dt

2
R2

� �
�2KU0 þ 2R1

8><
>:

9>=
>;, ð31Þ

i.e., a direct sparse solver for symmetric matrices can be used for the implicit method even with a non-
proportional physical damping matrix C.

Now the following explicit method with a predictor–multicorrector iterative solver can be suggested for the
solutions of Eqs. (25) and (26). We will consider separately two cases without physical damping (C ¼ 0) and
with physical damping (Ca0).

4.1. The explicit method of the fourth order of accuracy (without physical damping, C ¼ 0)

The following solution procedure for each time step tnptptnþ1 ¼ tn þ Dt is proposed:
1.
 Prescribe initial displacements and velocities:

U0 ¼ UðtnÞ; V0 ¼ VðtnÞ. (32)
2.
 Calculate the right-hand side vectors R1 and R2 at time tnþ1 according to Eq. (20), and the right-hand side
vectors R̄1 and R̄2 according to Eq. (27).
3.
 Predictor:

U0
1 ¼ V0,

U0
2 ¼M�1R̄2, (33)
4.
 Multicorrector based on Eqs. (25) and (26) (k ¼ 1; 2; . . . ; l):

Uk
1 ¼ �b̄1mdm3M

�1KUk�1
1 � b̄1mdm4M

�1KUk�1
2 þM�1R̄1, (34)

Uk
2 ¼ �b̄2mdm3M

�1KUk�1
1 � b̄2mdm4M

�1KUk�1
2 þM�1R̄2. (35)
5.
 Compute displacements and velocities at time tnþ1 ¼ tn þ Dt:

Uðtnþ1Þ ¼ U0 þUk
1DtþUk

2Dt2; Vðtnþ1Þ ¼ V0 þ ð2U
k
2 þ a1U

k
1 � a1V0ÞDtþ ða2U

k
1 � a2V0ÞDt2. (36)

Here, k is the number of the current iteration (k ¼ 1; 2; . . . ; l). The accuracy analysis (see below) shows that
only two iterations (k ¼ 1; 2) are necessary in order to reach the fourth order of accuracy (the same order of
accuracy that a direct solver yields; i.e., when Eqs. (25) and (26) are solved simultaneously). It is necessary to
note that for any iteration the corrections of vectors Uk

1 and Uk
2 can be done independently of each other;

i.e., they can be paralellized using a parallel computer.



ARTICLE IN PRESS
A.V. Idesman et al. / Journal of Sound and Vibration 310 (2008) 217–229 223
4.2. The explicit method of the fourth order of accuracy (with physical damping, Ca0)

The following solution procedure for each time step tnptptnþ1 ¼ tn þ Dt is proposed:
1.
 Prescribe initial displacements and velocities:

U0 ¼ UðtnÞ; V0 ¼ VðtnÞ. (37)
2.
 Calculate the right-hand side vectors R1 and R2 at time tnþ1 according to Eq. (20), and the right-hand side
vectors R̄1 and R̄2 according to Eq. (27).
3.
 Predictor:

U0
1 ¼ V0; U0

2 ¼ �b̄2mdm1CU
0
1 � b̄2mdm3M

�1KU0
1 þM�1R̄2 (38)
4.
 Multicorrector based on Eqs. (25) and (26) (k ¼ 1; 2; . . . ; l):

Uk
1 ¼ � b̄1mdm1M

�1CUk�1
1 � b̄1mdm2M

�1 CUk�1
2

� b̄1mdm3M
�1KUk�1

1 � b̄1mdm4M
�1KUk�1

2 þM�1R̄1, ð39Þ

Uk
2 ¼ � b̄2mdm1M

�1CUk
1 � b̄2mdm2M

�1CUk�1
2

� b̄2mdm3M
�1KUk

1 � b̄2mdm4M
�1KUk�1

2 þM�1R̄2. ð40Þ
5.
 Additional correction for vector U2:

Ukþ1
2 ¼ � b̄2mdm1M

�1CUk
1 � b̄2mdm2M

�1CUk
2

� b̄2mdm3M
�1KUk

1 � b̄2mdm4M
�1KUk

2 þM�1R̄2. ð41Þ
6.
 Compute displacements and velocities at time tnþ1 ¼ tn þ Dt:

Uðtnþ1Þ ¼ U0 þUk
1DtþUkþ1

2 Dt2,

Vðtnþ1Þ ¼ V0 þ ð2U
kþ1
2 þ a1U

k
1 � a1V0ÞDtþ ða2U

k
1 � a2V0ÞDt2. ð42Þ

Here, k is the number of the current iteration (k ¼ 1; 2; . . . ; l). The accuracy analysis (see below)
shows that two iterations (k ¼ 1; 2) are necessary in order to reach the fourth order of accuracy (the same
order of accuracy that a direct solver yields; i.e., when Eqs. (25) and (26) are solved simultaneously).
In contrast to the case without physical damping, the additional correction of vector Uk

2 is used (see Eq. (41)),
and for any iteration the correction of vector Uk

2 depends on the correction of vector Uk
1, see Eqs. (39)

and (40). At zero-damping C ¼ 0, the scheme given by Eqs. (37)–(42) can also be used with just one
iteration (k ¼ 1) and without the additional correction for vector Uk

2 (the fourth order of accuracy is
achieved). The comparison of this scenario with the numerical scheme given by (32)–(36) is considered
below.
4.3. Accuracy analysis

It can be shown (e.g., see Refs. [1,13]) that the analysis of a numerical method for linear dynamics problems
Eqs. (1) can be replaced (with the modal decomposition method) by the analysis of the method applied to a
system with a single degree of freedom uðtÞ; i.e., the solution of the following simple equations is considered:

_vðtÞ þ 2xvðtÞ þ o2uðtÞ ¼ f ðtÞ, ð43Þ

_uðtÞ � vðtÞ ¼ 0, ð44Þ
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where o and f are the natural frequency and forcing excitation, respectively, vðtÞ is the velocity, x is the
damping ratio. For the analysis of the accuracy and stability of the numerical methods, the interval Jn from 0
to Dt is considered.

The values of un and vn at time t ¼ tn can be expressed in terms of initial values u0 and v0 in the beginning of
the interval Jn as

un

vn

( )
¼ ½A�

u0

v0

( )
þ ½L�f , (45)

where ½A� is the amplification matrix, and ½L� is the load matrix. Without loss of generality we can assume that
tn�1 ¼ 0 and tn � tn�1 ¼ Dt.

The analytical expression of matrix ½A� in Eq. (45) for direct and predictor/multi-corrector solvers can be
calculated from the application of the corresponding method to the system with a single degree of freedom,
Eqs. (43), (44), at the condition f ðtÞ ¼ 0. The analytical expressions of the expansion of the elements of the
exact matrix ½A� into the Taylor series can be found in our papers [12,13].

The accuracy of the new TCG method can be estimated by the application of this method to system (43),
(44) and by the comparison of the numerical and exact amplification matrices (see Refs. [1,13]).

The stability of an algorithm can be observed from the spectral radius defined by rðAÞ ¼ maxjr1;r2j, where
r1 and r2 denote the eigenvalues of the amplification matrix ½A� (see Ref. [1]). An algorithm that satisfies the
condition rð½A�Þp1 is said to be unconditionally stable. It is known that the higher modes of semidiscrete
structural equations do not represent the behavior of the governing partial differential equations. Therefore,
algorithmic damping (dissipation) is necessary in order to remove the participation of the high-frequency
modal components. The numerical dissipation of the algorithm over the entire frequency domain can be
observed from the spectral radius. The condition rð½A�Þ ¼ 1 for some frequencies corresponds to non-
dissipative behavior, and rð½A�Þo1 for some frequencies corresponds to the introduction of the numerical
dissipation. It is desirable to design a numerical algorithm with non-dissipative properties at low frequencies
and with large numerical dissipation at high frequencies.

First, let us analyze the new explicit method for the case without physical damping. For the numerical
scheme with two iterations (see Eqs. (32)–(36)), the elements of the matrix ½A� depend on the scalar parameter
a and are given in Appendix A. The variation of parameter a does not affect the order of accuracy, but
changes the numerical dissipation (the minimum spectral radius) and the stability limit of the method. E.g., the
highest-order terms in the expansion of the elements of the matrix ½A� into the Taylor series, which differ from
those of the exact matrix ½A�, are given below for the case a ¼ 1:

A11 ¼ A22 ¼ O½Dt�6; A12 ¼ �A21=o2 ¼ � � � þ
o4Dt5

144
þO½Dt�6, (46)

i.e., the method has the fourth order of accuracy. The corresponding spectral radius, algorithmic damping
ratios and relative period errors for a ¼ 1 are shown in Figs. 1a, b and 2 (where O ¼ oDt). The stability limit
is Os ¼ 3:46 at a ¼ 1. There is no bifurcation of eigenvalues before the stability limit for OpOs. The
minimum value of the spectral radius is rmin ¼ 0:13 at Om ¼ 3:1. For a ¼ Dt=0:204 (the parameter a is
responsible for the value of numerical dissipation), the minimum value of the spectral radius rmin is close to
zero at O ¼ Om ¼ 3:051 (see Fig. 1b). O ¼ Om ¼ 3:051 is also the bifurcation point. At the variation of the
parameter a between Dt=0:204oao1, the spectral radius changes gradually between two curves shown in
Fig. 1b. At aoDt=0:204, the minimum spectral radius increases, the stability limit decreases and the spectral
radius at small frequencies decreases; i.e., this range for the parameter a should not be used in calculations. It
is necessary to note that the explicit TDG method developed in Ref. [6] and called ‘E-2C’ requires the same
computational efforts as the new explicit method with two iterations. However, the explicit TDG method has
the third order of accuracy, a stability limit of only Os ¼ 2:223, and yields greater error at small frequencies
(see Figs. 1a and 2). For comparison, the spectral radii of the two popular second-order explicit methods, the
central difference method (no numerical dissipation) and the HCE-a method (with numerical dissipation) [2],
are shown in Fig. 1a (the minimum spectral radii for the HCE-a and ‘E-2C’ methods were selected to be
rmin ¼ 0:6).
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Fig. 1. Spectral radii r of the numerical amplification matrix [A]. (a) (—) corresponds to the new explicit TCG method with two passes and

zero-damping matrix C ¼ 0 (a ¼ 1); (� � � �) corresponds to the explicit TDG method (‘E-2C’) proposed in Ref. [6]; (- - -) corresponds to

the explicit HCE-a method proposed in Ref. [2]; ð� � � � �Þ corresponds to the explicit central difference method; (b) corresponds to the new

explicit TCG method with two passes and zero-damping matrix C ¼ 0 ((—) corresponds to a ¼ 1, (� � � �) corresponds to a ¼ Dt=0:204); (c)
corresponds to the new explicit TCG method with one pass, no additional correction for vector Uk

2 and zero-damping matrix C ¼ 0

(a ¼ 1); (d) corresponds to the new explicit TCG method with two passes and non-zero physical damping x ¼ 0:2 (a ¼ 1).
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Fig. 2. Algorithmic damping ratios (a), and relative period errors (b), for the new explicit TCG method with a ¼ 1 (—) and the explicit

TDG method ((- - -), see Ref. [6]) with two passes and zero-damping matrix C ¼ 0.
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Remark. The implicit TCG method with a ¼ 1 has no numerical dissipation, however, the explicit TCG
method with a ¼ 1, derived from the implicit TCG method, has numerical dissipation, see Fig. 1a,b.

For the numerical scheme given by Eqs. (37)–(42) with one iteration and no additional correction for the
vector Uk

2, the method has also the fourth order of accuracy. For a ¼ 1 the spectral radius of the numerical
amplification matrix [A] is shown in Fig. 1c. The bifurcation point and stability limit are close to Os ¼ 2. The
minimum value of the spectral radius is rmin ¼ 1=3 at O ¼ Om ¼ 2, see Fig. 1c. The explicit TDG method
developed in Ref. [6] and called ‘E-1C’ requires the same computational efforts as the new explicit method
given by Eqs. (37)–(42) with one iteration, but has the third order of accuracy only.

For the explicit method given by Eqs. (37)–(42) with two iterations (Ca0), the highest-order terms in the
expansion of the elements of the matrix ½A� into the Taylor series, which differ from those of the exact
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matrix ½A�, are given below for the case a ¼ 1:

A11 ¼ A22 ¼ � � � þ
o6Dt6

96
þO½Dt�7; A12 ¼ O½Dt�5; A21 ¼ � � � þ

o6Dt5

48
þO½Dt�6, (47)

i.e., the method has the fourth order of accuracy. For a ¼ 1 and x ¼ 0:2, the spectral radius of the numerical
amplification matrix [A] is shown in Fig. 1d. The stability limit decreases with the increase in physical damping
(the parameter x). For example, at x ¼ 0:2 the stability limit is Os ¼ 1:7, see Fig. 1d.

5. Numerical examples

The new technique is implemented into the finite-element code FEAP [3]. Simple numerical tests show that
the numerical stability limit for the new explicit method is in good agreement with the theoretical results. Next,
we will consider two numerical examples in order to show the performance of the new method.

5.1. Undamped single degree of freedom

Let us consider free vibrations of a simple undamped oscillator described by Eqs. (43) and (44) with a
natural frequency equal to o ¼ 2p, zero-damping x ¼ 0, zero forcing excitation f ðtÞ ¼ 0 and the following
initial conditions: uð0Þ ¼ 1 and vð0Þ ¼ 0. The analytical solution for this problem is uaðtÞ ¼ cos ð2ptÞ and
vaðtÞ ¼ �2p sin ð2ptÞ. The problem was solved with the new explicit method with two passes given by
Eqs. (32)–(36) and with the new explicit method with one pass given by Eqs. (37)–(42) (C ¼ 0) using different
time increments Dt (the parameter a ¼ 1 was taken). The numerical error in displacements and velocities was
calculated as

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðunðTÞ � uaðTÞÞ

2
þ ðvnðTÞ � vaðTÞÞ

2

q
, (48)

where un and vn correspond to a numerical solution for displacements and velocities, and the observation time
T is chosen to be T ¼ 4. The numerical error against a time increment Dt in a double logarithmic scale is
shown in Fig. 3. As expected, both the new explicit methods have the fourth order of accuracy (the slopes of
curves in Fig. 3 provide the order of accuracy). As can be seen from Fig. 3, at the same accuracy the method
with two passes given by Eqs. (32)–(36) requires approximately half the time increments that the method with
one pass given by Eqs. (37)–(42) requires; i.e., the computational costs of both methods are approximately the
same. However, the method with two passes has a much larger stability limit Os ¼ 3:46 (Os ¼ 2 for the method
with one pass). For comparison, the problem was also solved by the central difference method. It can be seen
from Fig. 3, that the fourth-order method is much more effective if the accuracy is a critical issue (e.g., due to
the accumulation of the numerical error at long-term time integration).
Fig. 3. Numerical error log e against a time increment logDt for free vibrations of a simple undamped oscillator (T ¼ 4). (—) corresponds

to the method with two passes given by Eqs. (32)–(36), (� � � �) corresponds to the method with one pass given by Eqs. (37)–(42), and (- - -)

corresponds to the central difference method.
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Fig. 4. Impact of an elastic bar against a rigid wall.

Fig. 5. Velocity distribution along the bar at time T ¼ 0:6 computed on the uniform mesh containing 100 quadratic elements using the

standard central difference method with 150 time increments (Dt ¼ 0:004).
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5.2. Impact of an elastic bar against a rigid wall

Impact against a rigid wall of an elastic rod of the length L ¼ 1 (see Fig. 4) is considered. The right end
of the rod is fixed (uð1; tÞ ¼ vð1; tÞ ¼ 0), the velocity v ¼ 1 is instantly applied at the left end (uð0; tÞ ¼
t; vð0; tÞ ¼ 1), and the initial displacements and velocities are zero. Zero-damping is assumed (C ¼ 0). The
observation time T is chosen to be T ¼ 0:6; the Young’s modulus is E ¼ 1, and the density is r ¼ 1. The
problem was solved with 100 quadratic 3-node finite elements. The highest frequency for the mesh considered
is wmax ¼ 500. This value is important for the selection of the maximum time increment that satisfies the
stability criterion. The problem has the continuous solution for displacements uaðx; tÞ ¼ t� x for tXx and
uaðx; tÞ ¼ 0 for tpx, and the discontinuous solution for velocities and stresses vaðx; tÞ ¼ �saðx; tÞ ¼ 1 for tXx

and vaðx; tÞ ¼ saðx; tÞ ¼ 0 for tpx (at the interface x ¼ t jumps in stresses and velocities occur).
It is known that the application of the traditional semi-discrete methods to this problem leads to oscillations

in velocities and stresses due to the spurious high-frequency response (see Refs. [14,15]). The standard implicit
TDG method also yields spurious oscillations for this problem, especially on non-uniform meshes in space
(see Refs. [12,13]). Numerical methods with controllable numerical dissipation at high frequencies are
necessary in order to suppress these oscillations. High-order accurate implicit methods with these properties
that correctly solve the problem under consideration are developed in Refs. [12,13]. Here we will consider the
application of the new explicit high-order accurate method to this problem. For comparison, the solution of
the problem with the classical central difference method (150 time increments Dt ¼ 0:004) is shown in Fig. 5.
Due to the absence of numerical dissipation, the solution in Fig. 5 contains spurious oscillations that do not
disappear with the decrease in time increments (except the case when linear elements in space are used, and the
time increment equals the characteristic time step, see Ref. [1]). The solution obtained by the new explicit
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Fig. 6. Velocity distribution along the bar at time T ¼ 0:6 computed on the uniform mesh containing 100 quadratic elements using the

new explicit TCG method with 100 time increments (Dt ¼ 0:006).
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method (100 time increments Dt ¼ 0:006 and a ¼ 0:006=0:204) is much better (see Fig. 6), however, few
oscillations remain. To improve this solution we are going to develop a new solution strategy for explicit
methods (using the ideas described in our paper Ref. [12] for implicit methods).

6. Concluding remarks

A new explicit predictor–multicorrector fourth-order accurate method for linear elastodynamics is
suggested in the paper. In contrast to recently suggested explicit third-order accurate methods based on the
TCG method, the new method is more accurate (has a higher-order of accuracy) and has better algorithmic
properties (e.g., a higher-stability limit) at the same computational efforts. The method has controllable
numerical dissipation with zero spectral radius at some values of the variable O, however it cannot completely
suppress all high-frequency oscillations for wave propagation problems (similar to other known explicit
methods). In the future, we are going to develop a new solution strategy for explicit methods (using the ideas
described in our paper Ref. [12] for the solution strategy with implicit methods) in order to suppress all high-
frequency oscillations retaining high accuracy of numerical results. The extension of the new fourth-order
accurate method to nonlinear problems can be made similarly to the approach suggested in Ref. [16], and will
be considered elsewhere. As a possible application of the new technique, we will consider wave propagation
problems in composite materials with average elastic properties, see Ref. [17].
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Appendix A

Elements of the numerical amplification matrix ½A� for the new fourth-order accurate explicit method with
two iterations (see Eqs. (32)–(36)) are given below (where c ¼ Dt=a)

A11 ¼
1

20000ðc2 þ 6cþ 12Þ4
½ð207w6Dt6 þ 300w4Dt4 � 10000w2Dt2 þ 20000Þc8

þ 12ð321w6Dt6 þ 850w4Dt4 � 20000w2Dt2 þ 40000Þc7

þ 12ð2687w6Dt6 þ 11600w4Dt4 � 220000w2Dt2 þ 440000Þc6
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þ 128ð1212w6Dt6 þ 8275w4Dt4 � 135000w2Dt2 þ 270000Þc5

þ 80ð5741w6Dt6 þ 62820w4Dt4 � 918000w2Dt2 þ 1836000Þc4

þ 160ð5171w6Dt6 þ 96240w4Dt4 � 1296000w2Dt2 þ 2592000Þc3

þ 19200ð43w6Dt6 þ 1560w4Dt4 � 19800w2Dt2 þ 39600Þc2

þ 48000ð7w6Dt6 þ 708w4Dt4 � 8640w2Dt2 þ 17280Þc

þ 17280000ðw4Dt4 � 12w2Dt2 þ 24Þ� ðA:1Þ

A12 ¼ � A21=o2 ¼
1

2000ðc2 þ 6cþ 12Þ3
fw2Dt½ð27w4Dt4 þ 300w2Dt2 � 2000Þc6

þ ð258w4Dt4 þ 5600w2Dt2 � 36000Þc5 þ 4ð177w4Dt4 þ 11500w2Dt2 � 72000Þc4

� 1600ðw4Dt4 � 132w2Dt2 þ 810Þc3 � 480ð29w4Dt4 � 1190w2Dt2 þ 7200Þc2

� 2400ð13w4Dt4 � 360w2Dt2 þ 2160Þc� 24000ðw2Dt2 � 12Þ2�g ðA:2Þ

A22 ¼
1

200ðc2 þ 6cþ 12Þ2
½ð3w4Dt4 � 100w2Dt2 þ 200Þc4

þ 6ð11w4Dt4 � 200w2Dt2 þ 400Þc3 þ 60ð7w4Dt4 � 100w2Dt2 þ 200Þc2

þ 40ð29w4Dt4 � 360w2Dt2 þ 720Þcþ 1200ðw4Dt4 � 12w2Dt2 þ 24Þ�. ðA:3Þ
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