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Abstract

This is a continuation of previous work to investigate the use of pairs of pre-bent columns, bonded with a viscoelastic

filler, as vibration isolators. In this paper, four of these devices support the corners of a square, rigid plate. When the

system is in equilibrium, small harmonic vibrations are applied vertically to the base of the isolators, and the steady-state

response of the system is determined. First, the system is analyzed for the fully symmetric case, i.e., the center of mass of

the plate coincides with the geometric center. Then, the system is analyzed for various cases in which the center of mass has

some eccentricity. The eccentric weight introduces rotational motions of the plate. The governing equations are formulated

and then numerically solved in Mathematica using a shooting method. The displacement transmissibility is plotted over a

range of excitation frequencies, and the mode shapes are shown for the first few resonant frequencies. Free vibration of the

system is also considered. For this three-dimensional system, the pre-bent columns can be effective at isolating vibrations

for a wide range of excitation frequencies.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Plaut et al. [1] considered the use of buckled columns and pre-bent columns as vibration isolators in a two-
dimensional (2D) system subjected to simple-harmonic base excitation. The system consisted of a rigid bar
supported at either end by buckled or pre-bent columns. For the case in which the bar was supported by
buckled columns, the bar was allowed to have an asymmetric shape and then exhibited rotational as well as
translational motion. The analysis considered the effect of this asymmetry on the efficiency of the vibration
isolators. For the case in which a symmetric bar was supported by pairs of pre-bent columns, the paper
examined the effects of various filler stiffnesses, axial loads, and initial curvatures on the displacement
transmissibility. Ref. [1] contains a review of the literature pertaining to the use of buckled and pre-bent
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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columns as vibration isolators. Such devices may be able to support heavy loads statically without large
vertical deflections, and then be effective in absorbing dynamic base excitations.

The present analysis extends previous work by considering pre-bent columns as vibration isolators in a
system that incorporates three-dimensional (3D) motions of a horizontal rigid plate. The plate is allowed to
move in the vertical direction and rotate about two horizontal axes. Under simple-harmonic base excitation,
the steady-state response of the system is analyzed. The efficiency of the isolators is considered for various
cases, including the fully symmetric case. Free vibrations of the system also are investigated.

2. Formulation

2.1. Variables and parameters

The system shown in Fig. 1 consists of a square, rigid plate supported at each corner by a pair of pre-bent
columns. The plate is nonuniform such that the center of mass of its weight occurs at some distance from the
geometric center of the plate. Despite this nonuniformity, the bottom of the plate is assumed to be flat. The
location of the plate’s center of mass is indicated by the dimensions A1, A2, B1, and B2, and the center of mass
occurs at a vertical distance H from the bottom of the plate. The plate has mass moments of inertia Ix and Iy

about lines through the center of mass and parallel to the X̄ and Ȳ axes, respectively. This system could
represent, for example, a table with equipment mounted on it. (Tang et al. [2] used a similar model to
investigate the 3D motions of a hydraulic platform subjected to an impulsive load.)

The X̄ , Ȳ , Z̄ coordinate system is fixed in space with its origin at the base of isolator 1 and has unit vectors î,
ĵ, and k̂. Angles y, c, and f are used to define rotations about the X̄ , �Ȳ , and Z̄ axes, respectively, and are
initially zero. When the system is in equilibrium, the bottom of the plate is assumed to be perfectly horizontal,
i.e., all four isolators have the same initial height H0. This is achieved by adjusting the width of each column in
isolator j by a factor aj. Under dynamic excitation, the center of mass of the plate moves from its equilibrium
position with displacements X(T), Y(T), and Z(T), where T denotes time, and the plate rotates with angles y(T)
and c(T) about the X̄ and �Ȳ axes, respectively. Rotation f(T) about the Z̄-axis is restrained. It is assumed
that the system is braced laterally so as to prohibit sway and prevent collapse. A simple-harmonic vertical
displacement U(T) is imposed at the base of each isolator and is defined as U(T) ¼ U0 sinOT, where U0 is the
amplitude of the motion and O is the excitation frequency.

Each isolator is attached to a corner of the plate with a spherical joint that transfers no moment. To account
for the resistance of the system to horizontal motions of the plate, horizontal springs are attached to the
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Fig. 1. Model of the rigid plate supported by pre-bent columns.



ARTICLE IN PRESS
A.E. Jeffers et al. / Journal of Sound and Vibration 310 (2008) 421–432 423
corners of the plate, as shown in Fig. 2. Spring n is assumed to have stiffness Kn. Because of these stiff springs,
and because only small rotations of the plate are considered, the horizontal movement at the top of each
isolator will be extremely small. Therefore it can be assumed that the two columns of each isolator move as
mirror images of each other about a vertical line through its center, and symmetry can be utilized in the
analysis of the isolator.

Fig. 3 shows isolator j in a horizontal configuration. The two columns in isolator j are clamped at both ends,
and the viscoelastic filler is bonded to the inner sides of the two columns. Because of the assumed symmetry,
both columns in isolator j behave identically and so only the upper column is described. It is treated as an
inextensible elastica. The column is uniform and has constant bending stiffness ajEIc and mass per unit length
ajm. The motion of the column is defined in terms of the arc length Sj, the angle of rotation yj(Sj, T), and the
axial and transverse coordinates Xj(Sj, T) and Yj(Sj, T), respectively. The filler has distributed stiffness and
damping, which are shown in Fig. 3 as a series of springs and dashpots along the length of the isolator.

Before any load is applied to the isolator, each column has an initial pre-bent shape defined by the angle

y0ðSjÞ ¼ d0 sin
2pSj

L

� �
(1)

which corresponds to an initial horizontal deflection Y0(Sj) in Fig. 3. It is assumed that the column and filler
are unstrained when the column is in this initial configuration. An axial load Fj(T) is transmitted from the
corner of the plate to the top of isolator j. The column has axial force Pj(Sj,T), transverse force Qj(Sj,T), and
bending moment Mj(Sj,T). The filler resists the deformation due to axial load Fj(T) and base excitation U(T)
with forces due to the filler stiffness and damping, as described in Ref. [1] and involving a stiffness coefficient
Kf and a damping coefficient Cf. It is assumed that the filler does not provide stiffness or damping in the axial
direction. A free body diagram of element dSj of the column, including inertia and damping forces, is shown
in Fig. 4.

2.2. Equations for the isolator

Small steady-state motions of the column about equilibrium are considered under the harmonic base
excitation U(T). From equilibrium, geometry, and the constitutive law for the column in isolator j, the
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Fig. 2. Rigid plate and horizontal springs.
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Fig. 3. Vibration isolator j under axial load Fj.
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governing equations are [1]

qX j

qSj

¼ cos yj ;
qY j

qSj

¼ sin yj ;
qyj

qSj

¼
Mj

ajEIc

þ
2p
L

d0 cos
2pSj

L

� �
,

qMj

qSj

¼ �Pj sin yj þQj cos yj,

qPj

qSj

¼ �ajm
q2X j

qT2
;

qQj

qSj

¼ �ajm
q2Y j

qT2
� 2Cf Y 0

qY j

qT
�

2Kf

Y 0
ðY j � Y 0Þ ðj ¼ 1; 2; 3; 4Þ. ð2Þ

For steady-state motions, the column variables can be written in the complex form of Eqs. (2) in Ref. [1],
except that here Qje is a function of Sj and j goes from 1 to 4. For equilibrium, the first, second, and fourth of
Eqs. (3) in Ref. [1] are valid for j from 1 to 4, and also

dyje

dSj

¼
Mje

ajEIc

þ
2p
L

d0 cos
2pSj

L

� �
;

dQje

dSj

¼
�2Kf

Y 0
ðY je � Y 0Þ ðj ¼ 1; 2; 3; 4Þ. (3)

The subscript ‘‘e’’ designates equilibrium quantities and the subscript ‘‘d’’ indicates dynamic quantities.
The linear equations for the dynamic variables are given by the first four of Eqs. (4) in Ref. [1] for j from 1

to 4, along with

dPjd

dSj

¼ ajmO2X jd ;
dQjd

dSj

¼ ajmO2 � iOð2Cf Y 0Þ �
2Kf

Y 0

� �
Y jd ðj ¼ 1; 2; 3; 4Þ. (4)
2.3. Equations for the rigid plate

The position vectors from the origin of the fixed X̄ ; Ȳ ; Z̄ coordinate system to the corners O, P, Q, and R

of the plate during dynamic excitation can be written as

r̄OðTÞ ¼ X OðTÞî þ Y OðTÞĵ þ ZOðTÞk̂; r̄PðTÞ ¼ X PðTÞî þ Y PðTÞĵ þ ZPðTÞk̂,

r̄QðTÞ ¼ X QðTÞî þ Y QðTÞĵ þ ZQðTÞk̂; r̄RðTÞ ¼ X RðTÞî þ Y RðTÞĵ þ ZRðTÞk̂, ð5Þ

where the components of vectors r̄OðTÞ, r̄PðTÞ, r̄QðTÞ, and r̄RðTÞ are written in terms of the displacements
X(T), Y(T), and Z(T) and rotations y(T) and c(T) as

X OðTÞ ¼ X ðTÞ þ A1 � A1 coscðTÞ þH sincðTÞ,

X PðTÞ ¼ X ðTÞ þ A1 þ A2 coscðTÞ þH sincðTÞ,
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X QðTÞ ¼ X ðTÞ þ A1 � A1 cos cðTÞ þH sin cðTÞ,

X RðTÞ ¼ X ðTÞ þ A1 þ A2 cos cðTÞ þH sin cðTÞ,

Y OðTÞ ¼ Y ðTÞ þ B1 þ A1 sin cðTÞ sin yðTÞ � B1 cos yðTÞ þH cos cðTÞ sin yðTÞ,

Y PðTÞ ¼ Y ðTÞ þ B1 � A2 sin cðTÞ sin yðTÞ � B1 cos yðTÞ þH cos cðTÞ sin yðTÞ,

Y QðTÞ ¼ Y ðTÞ þ B1 þ A1 sin cðTÞ sin yðTÞ þ B2 cos yðTÞ þH cos cðTÞ sin yðTÞ,

Y RðTÞ ¼ Y ðTÞ þ B1 � A2 sin cðTÞ sin yðTÞ þ B2 cos yðTÞ þH cos cðTÞ sin yðTÞ,

ZOðTÞ ¼ ZðTÞ þH0 þH � A1 sin cðTÞ cos yðTÞ � B1 sin yðTÞ �H cos cðTÞ cos yðTÞ,

ZPðTÞ ¼ ZðTÞ þH0 þH þ A2 sin cðTÞ cos yðTÞ � B1 sin yðTÞ �H cos cðTÞ cos yðTÞ,

ZQðTÞ ¼ ZðTÞ þH0 þH � A1 sin cðTÞ cos yðTÞ þ B2 sin yðTÞ �H cos cðTÞ cos yðTÞ,

ZRðTÞ ¼ ZðTÞ þH0 þH þ A2 sin cðTÞ cos yðTÞ þ B2 sin yðTÞ �H cos cðTÞ cos yðTÞ. ð6Þ

From Eqs. (6), the angles y(T) and c(T) are related to the displacements at the corners of the plate by

sin yðTÞ ¼
ZRðTÞ � ZPðTÞ

B1 þ B2
¼

ZQðTÞ � ZOðTÞ

B1 þ B2
,

sin cðTÞ ¼
ZRðTÞ � ZQðTÞ

A1 þ A2
¼

ZPðTÞ � ZOðTÞ

A1 þ A2
,

cos yðTÞ ¼
Y RðTÞ � Y PðTÞ

B1 þ B2
¼

Y QðTÞ � Y OðTÞ

B1 þ B2
,

cos cðTÞ ¼
X RðTÞ � X QðTÞ

A1 þ A2
¼

X PðTÞ � X OðTÞ

A1 þ A2
. ð7Þ

The equations of motion for the plate are [3]

M
d2X ðTÞ

dT2
þ ðK3 þ K4Þ½X ðTÞ þ A2 cos cðTÞ � A2 þH sin cðTÞ�

þ ðK7 þ K8Þ½X ðTÞ þ A1 � A1 cos cðTÞ þH sin cðTÞ� ¼ 0, ð8Þ

M
d2Y ðTÞ

dT2
þ ðK1 þ K2Þ½Y ðTÞ þ B1 � B1 cos yðTÞ þH sin yðTÞ�

þ ðK5 þ K6Þ½Y ðTÞ þ B2 cos yðTÞ � B2 þH sin yðTÞ� ¼ 0, ð9Þ

M
d2ZðTÞ

dT2
¼ F 1ðTÞ þ F2ðTÞ þ F3ðTÞ þ F4ðTÞ �W , (10)

Ix

d2yðTÞ
dT2

þ ðK1 þ K2Þ½Y ðTÞ þ B1 � B1 cos yðTÞ þH sin yðTÞ�½H cos yðTÞ þ B1 sin yðTÞ�

þ ðK5 þ K6Þ½Y ðTÞ þ B2 cos yðTÞ � B2 þH sin yðTÞ�½H cos yðTÞ � B2 sin yðTÞ�

¼ �½F 1ðTÞ þ F2ðTÞ�B1 þ ½F 3ðTÞ þ F4ðTÞ�B2, ð11Þ

Iy

d2cðTÞ
dT2

þ ðK3 þ K4Þ½X ðTÞ þ A2 cos cðTÞ � A2 þH sin cðTÞ�½H cos cðTÞ � A2 sin cðTÞ�

þ ðK7 þ K8Þ½X ðTÞ þ A1 � A1 cos cðTÞ þH sin cðTÞ�½H cos cðTÞ þ A1 sin cðTÞ�

¼ �½F 1ðTÞ þ F3ðTÞ�A1 þ ½F2ðTÞ þ F4ðTÞ�A2, ð12Þ

where M is the mass of the plate. From geometry,

X ðTÞ ¼ X OðTÞ � A1 þ
A1

A1 þ A2
½X PðTÞ � X OðTÞ� �

H

A1 þ A2
½ZPðTÞ � ZOðTÞ�, (13)
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Y ðTÞ ¼ Y OðTÞ � B1 þ
B1

B1 þ B2
½Y QðTÞ � Y OðTÞ� �

H

B1 þ B2
½ZQðTÞ � ZOðTÞ�, (14)

ZðTÞ ¼ ZOðTÞ �HO �H þ
A1

A1 þ A2
½ZPðTÞ � ZOðTÞ� þ

B1

B1 þ B2
½ZQðTÞ � ZOðTÞ�

þH
½X PðTÞ � X OðTÞ�½Y QðTÞ � Y OðTÞ�

ðA1 þ A2ÞðB1 þ B2Þ
. ð15Þ

For steady-state motions, the coordinates of the corners O, P, Q, and R can be written as

X OðTÞ ¼ X Od e
iOT ; X PðTÞ ¼ A1 þ A2 þ X Pd e

iOT ; X QðTÞ ¼ X Qd e
iOT ,

X RðTÞ ¼ A1 þ A2 þ X Rd e
iOT ; Y OðTÞ ¼ Y Od e

iOT ; Y PðTÞ ¼ Y Pd e
iOT ,

Y QðTÞ ¼ B1 þ B2 þ Y Qd e
iOT ; Y RðTÞ ¼ B1 þ B2 þ Y Rd e

iOT ; ZOðTÞ ¼ H0 þ X 1dðLÞ e
iOT ,

ZPðTÞ ¼ H0 þ X 2dðLÞ e
iOT ; ZQðTÞ ¼ H0 þ X 3dðLÞ e

iOT ; ZRðTÞ ¼ H0 þ X 4dðLÞ e
iOT ð16Þ

and the axial force for isolator j is written in terms of the column force as

F jðTÞ ¼ 2Pje þ 2Pjd e
iOT ðj ¼ 1; 2; 3; 4Þ. (17)

Using Eqs. (7) and (13)–(17) in Eqs. (8)–(12), the equations of motion for the plate are written in terms of
the column variables and the displacements at the corners of the plate instead of in terms of the displacements
and rotations at the center of mass of the plate.

2.4. Boundary conditions, transmissibility, and nondimensional variables

The boundary conditions at the base of isolator j (i.e., at Sj ¼ 0) are Xje(0) ¼ 0, Yje(0) ¼ 0, yje(0) ¼ 0,
Xjd(0) ¼ U0, Yjd(0) ¼ 0, and yjd(0) ¼ 0 (j ¼ 1, 2, 3, 4). At the top of the isolator (i.e., at Sj ¼ L), the boundary
conditions for the equilibrium variables are

Y jeðLÞ ¼ 0; yjeðLÞ ¼ 0; P1e þ P2e þ P3e þ P4e ¼
W

2
; ðP1e þ P2eÞB1 � ðP3e þ P4eÞB2 ¼ 0,

ðP1e þ P3eÞA1 � ðP2e þ P4eÞA2 ¼ 0; X 1eðLÞ � X 2eðLÞ � X 3eðLÞ þ X 4eðLÞ ¼ 0 ð18Þ

and the boundary conditions for the dynamic variables are

Y jdðLÞ ¼ 0; yjd ðLÞ ¼ 0; X 1dðLÞ � X 2dðLÞ � X 3d ðLÞ þ X 4dðLÞ ¼ 0,

�
MO2

A1 þ A2
½A1X Pd þ A2X Od �HX 2dðLÞ þHX 1dðLÞ� þ ðK3 þ K4ÞX Pd þ ðK7 þ K8ÞX Od ¼ 0,

�
MO2

B1 þ B2
½B1Y Qd þ B2Y Od �HX 3d ðLÞ þHX 1dðLÞ� þ ðK1 þ K2ÞY Od þ ðK5 þ K6ÞY Qd ¼ 0,

�
MO2

A1 þ A2
½A1X 2dðLÞ þ A2X 1dðLÞ þHX Pd �HX Od �

�
MO2

B1 þ B2
½B1X 3dðLÞ � B1X 1d ðLÞ þHY Qd �HY Od � ¼ 2ðP1d þ P2d þ P3d þ P4dÞ,

�
IxO2

B1 þ B2
½X 3d ðLÞ � X 1dðLÞ� ¼ �2ðP1d þ P2dÞB1 þ 2ðP3d þ P4dÞB2,

�
IyO2

A1 þ A2
½X 2dðLÞ � X 1d ðLÞ� ¼ �2ðP1d þ P3d ÞA1 þ 2ðP2d þ P4d ÞA2. ð19Þ

Two additional conditions are required to solve for the horizontal displacements at the plate corners. These
conditions, derived from geometry, are YOd ¼ YQd and XOd ¼ XPd.

The transmissibility for the system is calculated as the ratio of the average vertical movement of the plate
to the amplitude of the base excitation. In terms of the vertical motions at the top of each isolator,
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the transmissibility is computed as

TR ¼
1

4U0

X4
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fRe ½X jd ðLÞ�g

2 þ fIm ½X jd ðLÞ�g
2

q
: (20)

Note that the transmissibility is independent of the amplitude U0, since Xjd is proportional to U0.
Calculations are performed in terms of the following nondimensional quantities:

a1 ¼
A1

A1 þ A2
; a2 ¼

A2

A1 þ A2
; b1 ¼

B1

A1 þ A2
; b2 ¼

B2

A1 þ A2
; h ¼

H

A1 þ A2
; l ¼

L

A1 þ A2
,

h0 ¼
H0

A1 þ A2
; u0 ¼

U0

A1 þ A2
; xOd ¼

X Od

A1 þ A2
; xPd ¼

X Pd

A1 þ A2
; yOd ¼

Y Od

A1 þ A2
,

yQd ¼
Y Qd

A1 þ A2
; sj ¼

Sj

A1 þ A2
; xj ¼

X j

A1 þ A2
; yj ¼

Y j

A1 þ A2
; pj ¼

PjðA1 þ A2Þ
2

EIc

,

qj ¼
QjðA1 þ A2Þ

2

EIc

; mj ¼
MjðA1 þ A2Þ

EIc

; w ¼
W ðA1 þ A2Þ

2

EIc

; m ¼
W

mgL
,

kf ¼
2Kf ðA1 þ A2Þ

3

EIc

; cf ¼
2Cf ðA1 þ A2Þ

3ffiffiffiffiffiffiffiffiffiffi
mEIc

p ; o ¼ O

ffiffiffiffiffiffiffiffi
mL4

EIc

s
; t ¼ T

ffiffiffiffiffiffiffiffi
EIc

mL4

s
,

kn ¼
KnðA1 þ A2Þ

3

EIc

ðj ¼ 1; 2; 3; 4Þ; ðn ¼ 1; 2; . . . ; 8Þ. ð21Þ

The system is first analyzed in equilibrium and then under dynamic excitation. This analysis is conducted in
Mathematica [4] using a shooting method to solve the governing equations for the plate and isolators. In the
following numerical examples:

a1 þ a2 ¼ b1 þ b2 ¼ l ¼ 1; h ¼ 0:1375; d0 ¼ 0:1; kf ¼ 0:1,

kn ¼ 0:1 ðn ¼ 1; 2; . . . ; 8Þ. ð22Þ

In addition, the nondimensional weight w is assigned a value of 320 so that the axial force pje in each column
for the fully symmetric case is just above the nondimensional critical buckling load for a column that is
clamped at both ends. When the plate’s center of mass is located eccentrically, the actual load applied to an
individual column may be higher or lower than this load. This type of isolator does not need to be loaded
above its buckling load to be effective.

3. Results

The system is analyzed for various locations of the center of mass, which are grouped in categories based on
the degree of symmetry that exists in the system. These categories are defined as follows:
Case A:
 This is the fully symmetric case, in which the center of mass is positioned at the geometric
center of the plate (i.e., a1 ¼ b1 ¼ 0.5).
Case B:
 The center of mass is positioned at points along a line which runs perpendicularly to edge OQ

of the plate and passes through the center of the plate (i.e., b1 is fixed at 0.5).

Case C:
 The center of mass is positioned at points along a line which runs diagonally from corner O to

corner R of the plate (i.e., a1 ¼ b1).

Case D:
 The center of mass is positioned such that no symmetry exists in the system.
First, a free vibration analysis of the system is carried out for each of these cases to determine the resonant
vibration modes for the plate and to estimate the frequencies at which these vibration modes occur. Then, the
forced vibration analysis is performed using the imposed base excitation U(T). In the forced vibration analysis,
the transmissibility is calculated and plotted over a range of nondimensional excitation frequencies. At some
of the resonant frequencies, the vibration mode shapes are shown for the system.
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3.1. Free vibration analysis

For the free vibration analysis, the filler damping coefficient cf and the amplitude of the base displacement
u0 are set equal to zero. The linearized, undamped, unforced equations of motion are numerically solved in
Mathematica. The shooting method is used to determine the unknown parameters, including the frequencies
for the vibration modes of the plate. The plate has essentially three degrees of freedom and is expected to have
one mode that is dominated by vertical motion and two modes that correspond to distinct rotations.

For the symmetric case (Case A), the plate exhibits a large vertical displacement at the first vibration
frequency, o ¼ 0.922. At the second vibration frequency, o ¼ 1.757, the plate has rotational vibration modes
about all lines that pass through the center of the plate, as illustrated by lines A– A0, B– B0, C– C0, and D– D0 in
Fig. 5(a). In other words, the symmetric system has an infinite number of rotational modes at this frequency.
This occurs because of the inherent symmetries that exist in the fully symmetric system. It can be shown by a
similar example with vertical springs at the corners [3] that this behavior is expected for such a system.

For Cases B–D, the plate exhibits one mode that is dominated by vertical motion and two rotational modes,
each of which corresponds to a distinct frequency that depends on the specific location of the center of mass.
For Case B, the rotational modes are characterized by lines A–A0 and B–B0 in Fig. 5(b). Note that line B– B0 is
the line of symmetry for this case, and line A– A0 is perpendicular to line B–B0. For Case C, the rotational
modes are characterized by lines A–A0 and B– B0 in Fig. 5(c). This time, the line of symmetry, B– B0, runs from
corner O to corner R, and line A– A0 is again perpendicular to B– B0. For Case D, the two rotational modes
correspond to two nodal lines that are almost perpendicular to each other, and the positions of these lines are
unique for each location of the center of mass because of the lack of symmetry.

3.2. Forced vibration analysis

For the forced vibration analysis, the damping parameter cf is set equal to unity and the amplitude u0 of the
base displacement (which does not affect the transmissibility) is set equal to 0.001. For each case, the
transmissibility is calculated and plotted for a range of nondimensional excitation frequencies. The isolators
can be considered effective for ranges of frequencies in which the transmissibility is less than unity. At
frequencies where the transmissibility is greater than unity, the base motion is amplified. Peaks in the
transmissibility curves indicate resonances.

The transmissibility curve for the symmetric system (Case A) is shown in Fig. 6 for 0.1ooo100. The plate
does not exhibit rotation in this case. There are three distinct peaks in transmissibility, which occur at
frequencies o1 ¼ 0.922, o2 ¼ 44.48, and o3 ¼ 78.53. Between peaks, there are significant ranges of frequencies
where the transmissibility is well below unity. The magnitude of the transmissibility at some of the peaks is
extremely high (e.g., 2250 at o1). This occurs because the filler was assumed to be the only source of damping
in the system and the value cf ¼ 1 corresponds to very small damping.

The resonant vibration modes for Case A are shown in Fig. 7 for the first three peak frequencies. Note that
these are plots of the dynamic portion yjd of the transverse deflection of the columns. Because of symmetry, the
columns in all four isolators behave the same, and so only one column is shown. The first mode shown in
Fig. 7(a) corresponds to a large vertical displacement of the plate. At the second and third peak frequencies,
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Fig. 5. Characteristic nodal lines for free vibration of (a) Case A, (b) Case B and (c) Case C.
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Fig. 6. Transmissibility curve for symmetric case (Case A): a1 ¼ 0.50, b1 ¼ 0.50, 0.1ooo100.
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Fig. 7. Steady-state vibration mode shapes for column at peak frequencies for Case A: (a) o ¼ 0.922, (b) o ¼ 44.48, and (c) o ¼ 78.53.
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the plate does not exhibit significant vertical movement (xjd(l) ¼ 0.004 at o2, and xjd(l) ¼ 0.0002 at o3), but the
columns in the isolators demonstrate distinct vibration modes with large transverse deflections, as shown in
Figs. 7(b) and (c).

Transmissibility curves are shown in Figs. 8–10 for examples from Cases B–D, respectively. The result from
Fig. 6 is included as a dashed curve for comparison. In these examples, the position of the center of mass and
values for the mass moments of inertia are a1 ¼ 0.35, b1 ¼ 0.50, ix ¼ 22.11, and iy ¼ 27.57 for Case B,
a1 ¼ b1 ¼ 0.35 and ix ¼ iy ¼ 27.57 for Case C, and a1 ¼ 0.35, b1 ¼ 0.45, ix ¼ 22.72, and iy ¼ 27.57 for Case D.
In the three cases shown in Figs. 8–10, the transmissibility curves have the same general shape as the
transmissibility curve for the symmetric case. The most notable difference is that an additional peak appears
for Cases B and C, and two additional peaks appear for Case D. These peaks occur at frequencies slightly
higher than the first resonant frequency for all cases. Also note that the other peaks in the transmissibility for
Cases B–D occur at slightly different frequencies than for the symmetric case. Peaks corresponding to the first
and second peaks of the symmetric case occur at higher frequencies than for the symmetric case, and peaks
corresponding to the third peak of the symmetric case occur at lower frequencies than for the symmetric case.
Similar behavior was noted for all examples analyzed in Cases B–D [3].

As for the symmetric case, the vibration modes for Cases B–D are analyzed. The first mode for all three
cases corresponds to a large vertical displacement of the plate, similar to the first mode for the symmetric case.
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Fig. 8. Transmissibility curves, 0.1ooo100. Dark solid curve, a1 ¼ 0.35, b1 ¼ 0.50, ix ¼ 22.11, iy ¼ 27.57 (Case B) and light solid curve,

a1 ¼ 0.50, b1 ¼ 0.50 (Case A).
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Fig. 9. Transmissibility curves, 0.1ooo100. Dark solid curve, a1 ¼ 0.35, b1 ¼ 0.35, ix ¼ 27.57, iy ¼ 27.57 (Case C) and dashed curve,

a1 ¼ 0.50, b1 ¼ 0.50 (Case A).
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Because of the eccentric weight in Cases B–D, the plate also rotates slightly in this first mode. At the third peak
frequency for Cases B and C and the fourth peak frequency for Case D, the columns in all four isolators
vibrate with mode shapes similar to the second mode shape for Case A. At the fourth peak frequency for Cases
B and C and the fifth peak frequency for Case D, the columns in all four isolators vibrate with mode shapes
similar to the third mode shape for Case A [3].

Upon analysis of the vibration modes at the additional peaks in the transmissibility curves for Cases B–D, it
is determined that these peaks correspond to rotational modes for the plate. Nodal lines for examples from
Cases B–D are shown in Figs. 11–13, respectively. In these figures, the dot represents the location of the center
of mass. Note that these are not pure rotations because the plate exhibits some vertical motion in these modes.
Because of this vertical motion, the nodal line shifts slightly during rotation. The lines in Figs. 11–13 represent
the nodal lines at the time of maximum rotation.
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Fig. 10. Transmissibility curves, 0.1ooo100. Dark solid curve, a1 ¼ 0.35, b1 ¼ 0.45, ix ¼ 22.72, iy ¼ 27.57 (Case D) and dashed curve,
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Fig. 11. Nodal line at the second peak frequency, a1 ¼ 0.35, b1 ¼ 0.50 (Case B), o ¼ 1.723.
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For Case B, the nodal line shown in Fig. 11 corresponds to a rotation about a line perpendicular to the line
of symmetry. This rotation is similar to rotation about A–A0 in Fig. 5(b) that was obtained from the free
vibration analysis. For Case C, the nodal line shown in Fig. 12 corresponds to a rotation about a line
perpendicular to the line of symmetry. This rotation is similar to rotation about A–A0 in Fig. 5(c) that was
obtained from the free vibration analysis. For Case D, the two nodal lines shown in Fig. 13 are almost
perpendicular to each other. This agrees well with the results from the free vibration analysis.

4. Concluding remarks

Pairs of pre-bent columns bonded with a viscoelastic filler were analyzed as vibration isolators in a system
that incorporated 3D motions of the supported mass. The system consisted of a horizontal, rigid plate
supported at each corner by a pair of pre-bent columns. Various locations of the plate’s center of mass were
considered. Free vibrations about equilibrium were examined first, and then the steady-state response of the
system to simple-harmonic vertical base displacement was investigated.

Under free vibration, the vibration frequencies and modes of the plate were determined. Under forced
vibration, the transmissibility was computed and plotted as a function of the nondimensional excitation
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Fig. 12. Nodal line at the second peak frequency, a1 ¼ 0.35, b1 ¼ 0.35 (Case C), o ¼ 2.188.
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Fig. 13. Nodal lines at the second and third peak frequencies, a1 ¼ 0.35, b1 ¼ 0.45 (Case D). Dark solid line, o ¼ 2.179; light solid line,

o ¼ 2.516.
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frequency for various cases. For the symmetric case, three peaks occurred in the transmissibility over the range
of excitation frequencies that was considered. For cases in which the plate’s center of mass had some
eccentricity, one or two additional peaks were obtained. Analysis of the mode shapes at the additional peaks
demonstrated that these peaks corresponded to rotational modes of the plate. The peaks associated with
modes that were dominated by vertical plate motion occurred at slightly different frequencies than for the
symmetric case. Despite these changes in transmissibility caused by the eccentric center of mass of the plate,
the isolators were effective for a significant range of excitation frequencies.
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