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Abstract

Based on a novel extended version of the Lagrange equations for systems containing non-material volumes, the

nonlinear equations of motion for cantilever pipe systems conveying fluid are deduced. An alternative to existing methods

utilizing Newtonian balance equations or Hamilton’s principle is thus provided. The application of the extended Lagrange

equations in combination with a Ritz method directly results in a set of nonlinear ordinary differential equations of

motion, as opposed to the methods of derivation previously published, which result in partial differential equations. The

pipe is modeled as a Euler elastica, where large deflections are considered without order-of-magnitude assumptions. For

the equations of motion, a dimensional reduction with arbitrary order of approximation is introduced afterwards and

compared with existing lower-order formulations from the literature. The effects of nonlinearities in the equations of

motion are studied numerically. The numerical solutions of the extended Lagrange equations of the cantilever pipe system

are compared with a second approach based on discrete masses and modeled in the framework of the multibody software

HOTINT/MBS. Instability phenomena for an increasing number of discrete masses are presented and convergence

towards the solution for pipes conveying fluid is shown.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of fluid conveying pipes has been the subject of a large number of scientific investigations
over the last 60 years. Starting with the linear equations of motion for pipes supported at both ends by
Feodos’ev and Housner in the 1950s, several refined models have been presented leading to a full nonlinear
model of a cantilever conveying fluid by Semler et al. [2]. For a comprehensive overview, see Paı̈doussis [1,3]
and for own contributions [4–6]. The stability analysis performed by varying parameters of the resulting
equations of motion has been subject of intensive research, and a recent survey on bifurcations in nonlinear
models for pipes supported at both ends can be found in Ref. [7], and for cantilevered pipes in Ref. [8]. In most
cases, the derivation of the equations of motion is either based on a Newtonian approach, see e.g. [9–11] or an
energy-based approach applying an extended version of Hamilton’s principle, first introduced by Benjamin
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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[12], see e.g. [1,2]. Both approaches result in a partial differential equation (PDE) for the equation of motion of
the pipe system. The derivations often include order-of-magnitude considerations for the longitudinal and
transverse deflection of the pipe resulting in an equation of motion valid for sufficiently small deflections of the
pipe. The common way for solving the equation of motion is a Galerkin approximation requiring an
integration of the nonlinear PDE over the pipe domain.

The work presented here provides an alternative approach for deriving the equations of motion for pipe
systems. The example of a cantilevered pipe conveying fluid is considered, and a generalized form of the
Lagrange equations for systems containing non-material volumes, as presented by Irschik and Holl in
Ref. [13], in combination with a Ritz method, is applied. This brings up the possibility of an easy
implementation in existing multibody codes. In order to derive equations of motion eligible for modeling large
deformations of the pipe, no order-of-magnitude considerations will be applied first. A novel feature of the
presented modeling is the possibility of selecting arbitrary order of approximation of the final equations of
motion afterwards, contrary to existing formulations, in which the order of the final equations is a priori
defined and corresponding order-of-magnitude considerations are applied throughout the derivation. In the
present paper, the resulting equations are solved using the implicit Runge–Kutta solver HOTINT [14],
applying high-order Gauss–Legendre integration. The results are compared with existing works and the
influence of high-order terms in the equations of motion on the dynamics and stability of the system is
discussed. In a second step, the solution of the equations of motion derived from the extended Lagrange
equations is compared with the solution obtained from the multibody code HOTINT/MBS.1 This multibody
code is used to compute the solution for a cantilevered pipe modeled by deformable bodies with additional
sliding masses. The effects of increasing numbers of masses sliding through the pipe are studied.

2. Modeling of the cantilever pipe system

The pipe shown in Fig. 1 is modeled as a Euler elastica, i.e. nonlinear Bernoulli–Euler-type beam theory is
applied assuming an inextensible centerline [15], with uniform cross-sectional area AP and length L, constant
mass per unit length m and constant bending stiffness EI. Its diameter is assumed to be small relative to the
length of the pipe, and, in accordance with the Bernoulli–Euler hypothesis, transverse shear deformation and
rotatory inertia are neglected. Planar motions of the pipe undergoing large deflections are investigated. In
accordance with numerous existing works, see e.g. [1,16,17], the internal flow of fluid is taken into account as a
plug flow, i.e. with a uniform velocity profile, moving at velocity U relative to the pipe, where secondary flow
effects are neglected and the fluid is considered as incompressible.

In the following derivation, the strain energy due to elastic deformation of a Euler elastica pipe is first
deduced in terms of the displacement field. Based on an exact planar nonlinear beam theory, the strain energy
for the Euler elastica pipe follows by consequent application of the inextensibility condition. The position
vector r0 of a point on the deformed pipe axis in the Lagrangian description reads

r0 ¼
X þ u

w

� �
, (1)

where X represents the spatial coordinate in the undeformed reference configuration, u ¼ uðX ; tÞ and w ¼

wðX ; tÞ are the axial and transverse displacements of the pipe axis, respectively. Introducing the abbreviations
ð Þ
0
¼ qð Þ=qX and ðdÞ ¼ qð Þ=qt, the axial strain �xxðZ ¼ 0Þ of the pipe axis is computed by

�xxðZ ¼ 0Þ ¼
1

2

qr0
qX
�
qr0
qX
�

1

2
¼

1

2
2u0 þ u0

2
þ w0

2
� �

, (2)

where Z denotes the distance from the deformed and undeformed beam axis in direction of the normal unit
vector m of the deformed axis:

m ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2�xxðZ ¼ 0Þ
p �w0

1þ u0

 !
. (3)
1Details at: /http://tmech.mechatronik.unilinz.ac.at/staff/gerstmayr/hotint.htmlS.

http://tmech.mechatronik.unilinz.ac.at/staff/gerstmayr/hotint.html
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Fig. 1. Cantilevered elastica pipe with internal flow U.
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Applying the kinematic hypothesis of the Euler elastica theory, assuming that plane cross-sections of the
pipe that are perpendicular to the undeformed pipe axis remain plane and perpendicular to the deformed pipe
axis, the position vector of a point on the pipe in the deformed state thus reads

r ¼ r0 þ Zm. (4)

The approach shown in Eq. (4) has also been proposed by Simo and Vu Quoc in Ref. [18], where flexible
beams under large overall motions were investigated. The deformation gradient tensor F, see e.g. Malvern [19],
is defined as the tensor whose rectangular Cartesian components are the partial derivatives of the position
vector r with respect to the Lagrangian coordinates X and Z in the undeformed reference configuration

F ¼
qr
qX

qr
qZ

� �
¼ Grad rð Þ ¼

1þ u0 �
Zw00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2�xxðZ ¼ 0Þ
p �

w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�xxðZ ¼ 0Þ

p
w0 þ

Zu00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�xxðZ ¼ 0Þ

p 1þ u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�xxðZ ¼ 0Þ

p

0
BBBB@

1
CCCCA. (5)

Green’s strain tensor follows

E ¼
1

2
ðFTF� IÞ ¼

�xx 0

0 0

� �
(6)

with I denoting the identity matrix. The axial strain of a pipe element in a distance Z from the pipe axis is

�xx ¼
1

2
1þ 2�xxðZ ¼ 0Þð Þ 1� 2Z

ð1þ u0Þw00 � w0u00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�xxðZ ¼ 0Þð Þ

3
q

2
64

3
75� 1

2
. (7)

For cantilever pipe systems, as discussed by Paı̈doussis [1], Folley and Bajaj [9] or Troger and Steindl [10],
the centerline of the pipe can be considered as inextensible. A beam with inextensible centerline is also referred
as Euler elastica [15]. An inextensible centerline corresponds to a vanishing axial strain of the pipe axis

�xxðZ ¼ 0Þ ¼ 0. (8)

Substituting Eq. (8) into Eq. (2) results in the following relationship between the spatial derivatives of the
axial displacement u and the transverse displacement w:

ð1þ u0Þ2 þ ðw0Þ2 ¼ 1. (9)

The latter relation is called ‘‘inextensibility condition’’, see e.g. [2,15,20]. Inserting Eq. (8) into Eq. (7) and
using Eq. (9) to eliminate the axial displacement u, the axial strain for a fiber in distance Z from the pipe axis
of a Euler elastica pipe reads

�xx ¼ �Z ð1þ u0Þw00 � w0u00½ � ¼ �Z w00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w02

p
þ w0

w0w00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w02
p

� �
¼ �Z

w00ffiffiffiffiffiffiffi
1�
p

w02
. (10)

In the next step, the terms necessary for setting up the Lagrange equations of motion for the cantilever
elastica pipe with an internal flow of fluid will be deduced. In existing works, e.g. [1,16], the derivation of the
strain energy is often based on an exact formulation of the curvature, but when setting up the energy
expressions, the curvature terms are transformed into Taylor series and truncated after the first element.
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The latter order-of-magnitude approximations for the strain energy will be omitted in the present work, and a
general nonlinear formulation will be presented.

The local velocity vector of the fluid is set up by means of the tangent unit vector s of the deformed pipe and
is multiplied by the scalar fluid velocity U, in accordance with the plug-flow assumption. The tangent unit
vector s along the deformed pipe axis, using the spatial derivative of r0 in combination with Eq. (9), follows

s ¼
qr0
qX

				
				�1 qr0qX

¼
1þ u0

w0

� �
, (11)

where || � || denotes the ‘2-norm of a vector with components xi defined by

�k k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

x2
i

r
. (12)

As common in elastica theory, rotatory inertia terms will not be included in the kinetic energy, and therefore
the velocity vector vp of the pipe can be set equal to the velocity of the centerline

vP ¼
qr0
qt
¼

_u

_w

� �
. (13)

The velocity vector vF of the fluid consists of two parts. One is due to the motion of the pipe vp, and the
other is due to the relative motion of the fluid. Using the tangent unit vector from Eq. (11), one obtains

vF ¼ vP þUs ¼
_uþUð1þ u0Þ

_wþUw0

 !
. (14)

The kinetic energy of the pipe Tp can be written, using vp from Eq. (13), as

TP ¼
1

2
m

Z L

0

vTp vP dX ¼
1

2
m

Z L

0

ð _u2 þ _w2ÞdX , (15)

where m is the mass of the solid pipe per unit length. The kinetic energy of the fluid TF follows with Eq. (14) to

TF ¼
1

2
M

Z L

0

vTFvF dX ¼
1

2
M

Z L

0

_uþUð1þ u0Þð Þ
2
þ ð _wþUw0Þ2

� �
dX (16)

with M denoting the mass per unit length of the fluid. The potential energy due to gravitation Vg can be
written as

V g ¼ �ð g 0 ÞTðmþMÞ

Z L

0

r0 dX ¼ �gðmþMÞ

Z L

0

ðX þ uÞdX , (17)

where g denotes the acceleration due to gravity which is acting in X direction, see Fig. 1. The potential energy
due to elastic deformation Ve of the elastica pipe can be deduced using the axial strain of Eq. (10) and follows

Ve ¼
1

2
E

Z L

0

Z
AP

�2xx dAP dX ¼
1

2
EI

Z L

0

w002

1� w02
dX (18)

with AP denoting the cross-sectional area of the pipe. The total potential energy V of the system is
computed by

V ¼ V g þ Ve. (19)

3. Lagrange equations of motion for systems containing non-material volumes

Further derivations will be based on a formulation of the Lagrange equations of motion written in a form
capable of treating systems containing non-material volumes, first proposed by Irschik and Holl [13]. A non-
material volume has a surface that moves relatively to the material particles instantaneously located at this
surface, and is also denoted as moving control volume in the terminology of fluid mechanics, or as an open
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system. In the present work, this control volume surrounds a fluid moving in a pipe system. In addition to the
classical terms of the Lagrange equations, the new formulation includes additional terms in order to treat
the fact that moving mass enters and exits the boundaries of the system. Thus, it represents an extension of the
classical theory. Since most of the existing works [1,2,7] are based on an extended Hamilton principle for open
systems, introduced by Benjamin [12], leading to PDEs of motion, the current work shows an alternative
approach for investigating the dynamics of pipe systems. Hamilton’s principle for open systems was deduced
by application of Reynolds’ transport theorem to the classical form of Hamilton’s principle for a moving
control volume where mass was assumed to be transported through its boundaries, as stated by Paı̈doussis [1].
The present extension of the classical Lagrange equations, in order to treat systems containing non-material
volumes, uses a generalization of Reynolds’ theorem concerning partial derivatives of the transported
quantities with respect to a set of generalized coordinates and generalized velocities. The proposed approach
offers a convenient tool for computational mechanics since the Lagrange equations are a common formulation
in the latter field for obtaining the equations of motion in form of ordinary differential equations [21] that can
be solved by means of standard time-integration codes [22,23].

The Lagrange equations for systems containing non-material volumes, as introduced in Ref. [13], can be
written in the form

d

dt

qTw

q _qi

�
qTw

qqi

þ

Z
S

da � ðvF � vPÞ
qT 0

q _qi

�

Z
S

da �
qvF

q _qi

�
qvP

q _qi

� �
T 0 �Qi ¼ 0. (20)

Here, Tw denotes the total kinetic energy contained in the control volume, however, taking into account that
the surface of the latter moves at velocity vP that is different from the particles located on it; for details see
Irschik and Holl [13]. Owing to the present assumption of a plug flow in the pipe, we simply can set

d

dt

qTw

q _qi

¼
d

dt

q
q _qi

ðTP þ TF Þ;
q
qqi

Tw ¼
q
qqi

ðTP þ TF Þ. (21)

Two surface integrals are included in the equations of motion in order to take into account mass transport.
The surface integrals need to be evaluated at those parts of the boundary S, where mass enters or exits the
system. In the investigated pipe system the inlet and the outlet surfaces of the pipe contribute to these integrals
only. The vector da ¼ s dA in Eq. (20) denotes an oriented surface element on S, where the cross-sectional area
of the fluid in the pipe is denoted as A, as shown for the pipe outlet in Fig. 2. For the kinetic energy of the pipe
and the fluid follows

d

dt

qTP

q _qi

� �
¼ m

Z L

0

€u
q _u
q _qi

þ €w
q _w
q _qi

� �
dX , (22)

d

dt

qTF

q _qi

� �
¼M

Z L

0

ð €uþU _u0Þ
q _u
q _qi

þ ð €wþU _w0Þ
q _w
q _qi

� �
dX , (23)
Fig. 2. Pipe outlet.
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qTP

qqi

¼ 0, (24)

qTF

qqi

¼MU

Z L

0

_uþUð1þ u0Þð Þ
qu0

qqi

þ ð _wþUw0Þ
qw0

qqi

� �
dX , (25)

where qi and _qi denote a set of generalized coordinates and velocities, respectively.
The generalized forces Qi of the pipe system follow with Eq. (19) to

Qi ¼ �
qV

qqi

. (26)

The density of kinetic energy transported by a fluid particle, i.e. the kinetic energy per unit volume, denoted
by T0, is given as

T 0 ¼ 1
2
rFv

T
FvF ¼

1
2
rF _uþUð1þ u0Þð Þ

2
þ 1

2
rF ð _wþUw0Þ2 (27)

with rF representing the mass density of the fluid. The local partial derivative of T0 with respect to the
generalized velocities _qi follows

qT 0

q _qi

¼ rF _uþUð1þ u0Þð Þ
q _u
q _qi

þ rF ð _wþUw0Þ
q _w
q _qi

. (28)

Evaluating Eq. (28) for X ¼ 0 yields

qT 0

q _qi






X¼0

¼ 0, (29)

since for the cantilever pipe system

q _u
q _qi






X¼0

¼ 0 and
q _w
q _qi






X¼0

¼ 0. (30)

Hence, there is no contribution to the equations of motion, since the corresponding surface integral in
Eq. (20) is found to be Z

A0

da � ðvF � vPÞ
qT 0

q _qi






X¼0

¼ 0 (31)

with A0 denoting the cross-surface area of the fluid for X ¼ 0. Moreover, the second integral in Eq. (20)
vanishes. It includes the partial derivatives of the velocity vectors of the pipe and of the fluid, vF and vP, with
respect to the generalized velocities _qi. Since the tangent unit vector s in vF from Eq. (14) has no dependency
on _qi, it follows that

qvF

q _qi

�
qvP

q _qi

� �
¼

q
q _qi

ðUsÞ ¼ 0, (32)

everywhere within the pipe. Hence, for the investigated pipe system, there is no contribution to the equations
of motion from the second surface integral in Eq. (20) yieldingZ

A0

da �
qvF

q _qi

�
qvP

q _qi

� �
T 0 ¼

Z
AL

da �
qvF

q _qi

�
qvP

q _qi

� �
T 0 ¼ 0, (33)

where AL denotes the cross-surface area of the fluid for X ¼ L. A non-vanishing contribution, however, is
obtained from the first integral in Eq. (20), when evaluated at the outlet of the pipe, X ¼ L, where mass exits
the system:

qT 0

q _qi






X¼L

¼ rF _uL þUð1þ u0LÞ
� � q _uL

q _qi

þ rF _wL þUw0L
� � q _wL

q _qi

, (34)
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see Eq. (28). The first surface integral in Eq. (20) evaluated at the outlet of the pipe then readsZ
AL

da � ðvF � vPÞ
qT 0

q _qi

¼ ALsL �UsL

qT 0

q _qi






x¼L

¼ ALU sLk k
2qT 0

q _qi






x¼L

¼ ALU
qT 0

q _qi






x¼L

(35)

and after having substituted Eq. (34), followsZ
AL

da � ðvF � vPÞ
qT 0

q _qi

¼MU _uL

q _uL

q _qi

þ _wL

q _wL

q _qi

� �
þMU2 1þ u0L

� � q _uL

q _qi

þ w0L
q _wL

q _qi

� �
. (36)

The inextensibility condition of Eq. (9) can be transformed into

ð1þ u0Þ
qu0

qqi

þ w0
qw0

qqi

¼ 0 (37)

and when applied to Eq. (25), renders

qTF

qqi

¼MU

Z L

0

_u
qu0

qqi

þ _w
qw0

qqi

� �
dX . (38)

Integration by parts of Eq. (38) yields

qTF

qqi

¼MU

Z L

0

_u
qu0

qqi

þ _w
qw0

qqi

� �
dX

¼MU _u
qu

qqi

� �L

0

�MU

Z L

0

_u0
qu

qqi

dX þMU _w
qw

qqi

� �L

0

�MU

Z L

0

_w0
qw

qqi

dX . ð39Þ

Comparison of Eqs. (39) and (36) leads to

Z
AL

da � ðvF � vPÞ
qT 0

q _qi

�
qTF

qqi

¼MU2 ð1þ u0LÞ
q _uL

q _qi

þ w0L
q _wL

q _qi

� �
�MU

Z L

0

_u0
qu

qqi

þ _w0
qw

qqi

� �
dX . (40)

Inserting Eq. (18) into Eq. (26) yields the generalized forces due to gravity and elastic deformation of the
pipe system

Qi ¼ �
qV

qqi

¼ gðmþMÞ

Z L

0

qu

qqi

dX � EI

Z L

0

w00

1� w02
qw00

qqi

þ
w0w002

1� w02
� �2 qw0

qqi

 !
dX . (41)

After two consecutive integrations by parts of the second integral in Eq. (41), taking the boundary
conditions of the pipe system into account, one obtains

Qi ¼ gðmþMÞ

Z L

0

qu

qqi

dX � EI

Z L

0

q2

qX 2

w00

1� w02
�

q
qX

w0w002

1� w02
� �2

 !
qw

qqi

dX

¼ gðmþMÞ

Z L

0

qu

qqi

dX � EI

Z L

0

wðIV Þ

1� w02
þ

w003 þ 4w0w00w000

1� w02
� �2 þ

4w02w003

1� w02
� �3

 !
qw

qqi

dX . ð42Þ

Moreover, introducing the so-called Helmholtz auxiliary equations [24],

qu

qqi

¼
q _u
q _qi

;
qw

qqi

¼
q _w
q _qi

(43)



ARTICLE IN PRESS
M. Stangl et al. / Journal of Sound and Vibration 310 (2008) 493–511500
and inserting Eqs. (22), (23), (40) and (42) into Eq. (20) yields the nonlinear equations of motion for a
cantilever elastica pipe with internal flow

ðmþMÞ

Z L

0

€u
qu

qqi

þ €w
qw

qqi

� �
dX þ 2MU

Z L

0

_u0
qu

qqi

þ _w0
qw

qqi

� �
dX

þMU2 ð1þ u0LÞ
quL

qqi

þ w0L
qwL

qqi

� �
� gðmþMÞ

Z L

0

qu

qqi

dX

þ EI

Z L

0

wðIV Þ

1� w02
þ

w003 þ 4w0w00w000

1� w02
� �2 þ

4w02w003

1� w02
� �3

 !
qw

qqi

dX ¼ 0. ð44Þ

By means of the following dimensionless parameters:

x ¼
X

L
; u ¼

u

L
; Z ¼

w

L
; t ¼ t

1

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

mþM

r
; Û ¼ UL

ffiffiffiffiffiffi
M

EI

r
; g ¼ gL3 mþM

EI
; b ¼

M

mþM
, (45)

the nonlinear equations of motion from Eq. (44) can be written in dimensionless form asZ 1

0

€u
qu
qqi

þ €Z
qZ
qqi

� �
dxþ 2

ffiffiffi
b

p
Û

Z 1

0

_u0
qu
qqi

þ _Z0
qZ
qqi

� �
dx

þ

Z 1

0

ZðIVÞ

1� Z02
þ

Z003 þ 4Z0Z00Z000

1� Z02
� �2 þ 4Z02Z003

1� Z02
� �3

 !
qZ
qqi

dx

þ Û
2
ð1þ u0LÞ

quL

qqi

þ Z0L
qZL

qqi

� �
� g

Z 1

0

qu
qqi

dx ¼ 0. ð46Þ

The weak form of the resulting equations of motion in Eq. (46) is perfectly suited to discretize in space by
means of standard Ritz or similar methods. It will be shown in the following sections, that the inextensibility
condition, Eq. (9), can be used to eliminate the axial displacement n from the equations of motion, resulting in
similar equations as known from the literature. However, one of the advantages of the present form is a fully
weak-form representation whereas existing equations, e.g. by Troger and Steindl [10, p. 372, Eqs. (L.22) and
(L.25)], are given in an integro-differential form when incorporating the inextensibility condition.
4. Dimensional reduction

In this section, a dimensional reduction is proposed for the investigated elastica pipe system, stated in
Eq. (46). The reduction process is based on the inextensibility condition from Eq. (9) and provides the
possibility to deduce a minimum set of generalized coordinates describing the motion of this system. Eq. (9) is
utilized for setting up a relation between u and w. Using the dimensionless parameters from Eq. (45) it follows
that

u ¼
Z x

0

�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z02

q� �
dz. (47)

The spatial integral in Eq. (47) is now solved by application of the Gauss–Legendre formula of order n

given by Z b

a

f ðxÞdx ¼

Z 1

�1

f
b� a

2
x̄þ

bþ a

2

� �
b� a

2
dx̄

� �
¼

b� a

2

Xn

k¼1

w x̄k

� �
g x̄k

� �
þ Rn x̄

� �
, (48)

see [25, p. 219] with x̄ ¼ ð2x� b� aÞ=ðb� aÞ and x̄k denoting the kth zero of the Legendre polynomial Pnðx̄Þ of
the first kind. The weighting function wðx̄kÞ, the transformed integrand gðx̄kÞ and the residuum Rnðx̄Þ in
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Eq. (48) can be computed as

wðx̄kÞ ¼
2

1� x̄
2

k

� �
P0nðx̄kÞ

 �2 ; gðx̄Þ ¼ f

b� a

2
x̄k þ

bþ a

2

� �
; Rnðx̄Þ ¼

22nþ1ðn!Þ4

ð2nþ 1Þ ð2nÞ!½ �
3

gð2nÞðx̄Þ. (49)

A dimensional reduction utilizing the inextensibility condition, but restricted to low-order expressions of a
Taylor-series expansion has been performed by Semler et al. [2]. Several other forms of dimensional reductions
can be found in the literature, e.g. the center manifold reduction [26,27], where the dimension of a system of
ordinary differential equations is reduced in the neighborhood of an equilibrium point. A second possible
reduction method is the Lyapunov–Schmidt reduction (see e.g. [1, Appendix F]), that replaces the original set
of PDEs with a reduced set of equations, which contains all essential information for a stability analysis.

5. Comparison to existing formulations

In this section, the equations of motion, deduced in Section 3, will be compared with formulations from the
literature. First, the nonlinear equations of motion from Eq. (44) will be compared with the nonlinear
equations presented by Folley and Bajaj [9] and Troger and Steindl [10]. In the derivations of these works, no
approximations or order-of-magnitude considerations were preformed and a geometrical exact formulation
for the curvature was applied. The comparison will be performed on a term-by-term basis. Second, the
equations of motion deduced in the present work will be compared with the equations of motion for cantilever
pipe systems, presented by Semler and Paı̈doussis [1,2]. The derivation of the latter equations includes order-
of-magnitude considerations of the cantilever pipe system. Numerical solutions for varying system parameters
will be shown.

5.1. Comparison to Folley and Bajaj’s equations, Ref. [9]

The equations of motion presented by Folley and Bajaj [9] are based on a Newtonian approach for an
infinitesimal tube element. A three-dimensional model of a cantilevered tube is considered. Since the pipe
system investigated in this paper is restricted to plane motions, the y direction in the model of Bajaj [9, p. 16],
is set to y ¼ 0, resulting in the fact that the unit vector t2 ¼ 0 in Ref. [9, Eq. (2.5)] and hence also the twist of
the tube t ¼ 0. The basic assumptions for the tube are coinciding with the assumptions in this work, with the
exception, that we do not consider dissipative terms in the derivation of the equations of motion and therefore
the damping coefficient w of [9] needs to be set to w ¼ 0 in order to compare the resulting equations. The
assumptions made for the fluid are coinciding with the assumptions made here. In the first step of the
derivation, the moment balance is written to obtain the axial load acting on the tube segment. In a second step,
the force balance for a small tube segment is written to obtain the equations of motion. The final equation of
motion is represented in Ref. [9, Eq. (2.25)] for the transverse displacement u and the axial displacement
w, which corresponds to u and w in the present paper. Incorporating all assumptions as stated above
[9 (2.25)] follows

ðmþMÞ €uþ 2MU _u0 þMU2u00 þ EI u IVð Þ ¼ u00 u0 _u00 þ w0 _w00ð Þ þ ðN � P� EIk2Þu0
� �0

(50)

with the axial load

N � Pþ
1

2
EI k2 ¼ N � Pþ

1

2
EIk2

� �
X¼L

þ ðmþMÞg

Z L

X

w0 dx� ðmþMÞ

Z L

X

ðu0 €uþ w0 €wÞdx. (51)

Direct transformation of the equations of motion presented above in Eq. (44) into the form of Folley and
Bajaj shown in Eqs. (50) and (51) is possible, but tedious, as pointed out by Paı̈doussis in Ref. [1, p. 503].
However, terms characterizing the dynamics of the system in the equations of motion can be compared. The
first expression in Eq. (44) denotes the elements of the mass matrix of the system presented here. These terms,
as stated in Ref. [9, p. 22], can be identified in Eq. (50) when inserting the axial load from Eq. (51). The second
expression in Eq. (44) includes the mixed derivatives of the axial and transverse deflections corresponding to
the coriolis forces in the pipe system and can also be identified in Eq. (50). The third term in Eq. (44) denotes
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the centrifugal force expressions including the square of fluid velocity U and can be transformed into the form
of Eq. (50) using the inextensibility condition from Eq. (9), as shown in Ref. [1, p. 285]. The fourth term in
Eq. (44) includes the gravitational forces acting in the X direction of the inertial frame. The corresponding
terms in the equations of Folley and Bajaj are included in the net axial load, Eq. (51). Again, application of the
inextensibility condition, Eq. (9), to the gravitational term in Eq. (44) yields the form of the corresponding
expression in Eq. (51). The last expression in the equations of motion includes the expressions for the potential
energy due to elastic deformation of the pipe. In order to compare the resulting terms to the work of Folley
and Bajaj [9], several steps utilizing Frenet’s formulas for a local material coordinate system, as introduced in
Ref. [9, p. 16] are required. The transformation of the expressions due to elastic deformation presented here to
the expressions of Folley and Bajaj, based on the curvature k of the pipe, is given in Appendix A. Summarizing
the term-by-term comparison, it follows that, for coinciding material parameters of the investigated system, all
expressions in the equations of motion presented here can be identified in the equations of Folley and Bajaj,
Eqs. (50) and (51).

Folley and Bajaj showed in their work [9] the behavior of the linearized cantilevered pipe system [9, p. 36,
Eq. 3.12] by means of an eigenvalue analysis [9, p. 36, Fig. 4]. In order to compare the results of a linear
analysis for varying system parameters, the inextensibility condition, Eq. (9), is inserted into the equations of
motion, Eq. (44), and linearized about the static equilibrium position w ¼ 0, and an eigenvalue analysis is
performed afterwards. The linearized equation of motion can be written in the following way (see also
[1, Chapter 1]):

M €qþ C _qþ K _q ¼ Q (52)

with M denoting mass matrix, C and K are the damping and the stiffness matrix, respectively. The generalized
forces are combined in the vector Q. In the next step, the system is transformed to its first-order form

B _zþ E _z ¼ U (53)

with the following elements:

B ¼
0 M

M C

� �
; E ¼

�M 0

0 K

� �
; U ¼

0

Q

" #
z ¼

_q

q

" #
. (54)

Solutions of the form z ¼ A elt lead to the following eigenvalue problem:

ðlI� YÞA ¼ 0, (55)

where A denotes the eigenvectors and l the corresponding eigenvalues of the system. Using the matrices B and
E, the matrix Y follows

Y ¼ �B�1E. (56)

The Argand diagram for the eigenvalues of the linearized equations of motion, for a mass ratio b ¼ 0.6 and
varying fluid velocity U, is shown in Fig. 3. Comparing the results to Folley and Bajaj [9, p. 40], the solution of
the linearized form of the equations of motion of the present paper shows coinciding behavior in the
framework of a linear stability theory. In full agreement with the solutions presented by Folley and Bajaj
[9, p. 40, Fig. 4], the system loses stability in its second mode at a critical flow velocity of Û ¼ 9.8.

After comparing the linearized equations of motion, a numerical nonlinear analysis of the equation of
motion, Eq. (44), is compared with the results of Folley and Bajaj [9]. As pointed out by Folley and Bajaj in
Ref. [9, p. 52], the dynamical pipe behavior depends on two parameters, the fluid velocity U and the mass ratio
b. In Fig. 4, the graph of a numerical study for the critical flow velocity, being the flow velocity U where the
system first enters an unstable state, vs. the mass ratio b is shown. In comparison to the results presented in
Ref. [9, p. 51, Fig. 5], all characterizing parts of the graph can also be found in the results shown in Fig. 4. For
a mass ratio b in the vicinity of 0.3, the graph shows multiple possible values of the critical flow velocity.
A similar effect can be found for b near 0.7 also.

The equations of motion deduced in Troger and Steindl [10, Appendix L] are mainly based on the work by
Lundgren et al. [11], extending the latter work by including damping and gravitational effects, as well as a
rotationally symmetric elastic support of the tube. The derivation of the equations of motion is basically
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conforming to the work of Folley and Bajaj [9], with two differences. First, it is assumed that no axial torque is
acting on the tube and therefore the twist t is set to zero when deriving the final equations of motion. Second,
the integration of the net axial load [10, Eq. (L.22)] is split into two parts to be able to include an elastic
intermediate or end support acting on the tube. Owing to the fact that Eq. (44) are based on planar motions
with no intermediate or end supports, the equations of Troger and Steindl [10] and Folley and Bajaj [9] reduce
to the same set of equations shown in Eqs. (50) and (51).

5.2. Comparison to Semler and Paı̈doussis’ equations, Refs. [1,2]

In the following, the PDEs of Semler and Paı̈doussis [1,2] will be compared with lower-order versions of the
equations deduced in the present work. In order to obtain the solutions for small pipe deflections out of the
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nonlinear equation of motion, Eq. (46), the square root in Eq. (47) is transformed into a binomial series
resulting in

u ¼ �xþ
Z x

0

X1
n¼1

ð�1Þn�1
1

2
n� 1

0
@

1
AZ02n�2

dz. (57)

The bracketed expression in Eq. (57) denotes the binomial coefficient defined by

n

k

� �
¼

n!

k! n� kð Þ!
. (58)

The binomial series, evaluated for a limited set of coefficients, n ¼ 3, yields

u ¼ �xþ
Z x

0

X3
n¼1

ð�1Þn�1
1

2
n� 1

0
@

1
A Z02n�2

dz ¼ �
Z x

0

1

2
Z02 þ

1

8
Z04

� �
dz. (59)

The next approximation in the reference equations [1,2] is made in the formulation for the strain energy
expression of the pipe. The potential energy is obtained applying a truncated Taylor series of the curvature
expression for an inextensible beam axis of a Bernoulli–Euler beam. In order to obtain this expression from
the potential energy due to elastic deformation, stated in Eq. (18), the following approximation has to be
performed:

Vd ¼
1

2
EI

Z L

0

w002

1� w02
dX �

1

2
EI

Z L

0

w00
2
1þ w0

2
� �

dX . (60)

The corresponding generalized forces Qi, including gravitational effects, follow

Qi ¼ �
qV

qqi

¼ gðmþMÞ

Z L

0

qu

qqi

dX � EI

Z L

0

w00 1þ w0
2

� � qw00

qqi

þ w0w00
2 qw0

qqi

� �
dX . (61)

Partial integration of Eq. (61) yields

Qi ¼ gðmþMÞ

Z L

0

qu

qqi

dX � EI

Z L

0

wðIV Þ 1þ w0
2

� �
þ 4w0w00w000 þ w00

3
� � qw

qqi

dX . (62)

Introducing the dimensionless parameters from Eq. (45) gives

Qi ¼ g
Z 1

0

qu
qqi

dx�
Z 1

0

ZðIV Þ 1þ Z02
� �

þ 4Z0Z00Z000 þ Z003
� � qZ

qqi

dx. (63)

In order to find the corresponding form of equations of motion as given in the reference equations [1,2], the
nonlinear equations of motion in dimensionless form written in Eq. (46) need to be evaluated for the truncated
dimensionless displacement u in Eq. (59). The corresponding derivative of u in the equations of motion from
Eq. (46) follows

€u ¼ �
Z x

0

_Z02 1þ
3

2
Z02

� �
þ €Z0 Z0 þ

1

2
Z03

� �� �
dz � �

Z x

0

_Z02 þ €Z0Z0
� �

dz, (64)

_u0 ¼ �
Z x

0

_Z0Z00 1þ
3

2
Z02

� �
þ _Z00Z0 1þ

1

2
Z02

� �� �
dz � �

Z x

0

_Z0Z00 þ _Z00Z0ð Þdz, (65)

qu
qqi

¼ �

Z x

0

Z0 1þ
1

2
Z02

� �
qZ0

qqi

dz ¼ �Z0 1þ
1

2
Z02

� �
qZ
qqi

þ

Z x

0

Z00 1þ
3

2
Z02

� �
qZ0

qqi

dz. (66)

In Eqs. (64) and (65), further order-of-magnitude considerations are to be performed, limiting the
dimensionless transverse displacement Z to terms smaller than order 4. Now equations of the same order as the
reference equation [1, Eq. (5.39)], can be written substituting Eqs. (64)–(66) into the nonlinear equations of
motion, Eq. (46).
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The resulting equations of motion agree with the equations presented by Semler and Paı̈doussis [1,2]. In
order to write the equations in the same form as presented here, a Galerkin method has to be applied to the
PDE of motion [1, Eq. 5.39]. The effects of the order-of-magnitude truncations, necessary to obtain the
equations of Semler and Paı̈doussis, on large pipe deformations will be discussed in the numerical examples
presented in Section 7.

The latter derivations complete this section devoted to the comparison of the present equations to
previously published equations of motion in the literature. In the following section, a discrete mass
formulation, allowing a continuous movement of one or more discrete masses with large deformations of the
pipe, will be introduced.

6. Comparison with discrete mass formulation

The solution of the coupled pipe and fluid problem with a higher-order Euler elastica is not yet available in
the literature. Therefore, the solution of the presented formulation is compared with an existing software
program that can compute the dynamic behavior of large deformation beam elements and rigid bodies.
A good approximation of the idealized pipe flow is gained through an approximation with many discrete
masses that are distributed along the beam axis. The masses move with the velocity of the fluid and have the
same mass per length as the fluid.

The multibody software HOTINT/MBS is used to model the nonlinear deformation of the cantilever beam
by means of the so-called absolute nodal coordinate formulation [21]. A planar third-order beam element
similar to the one derived by Gerstmayr and Shabana [28] is utilized, see Fig. 5. The position r of the beam is
approximated by the deformation field vs. the axial coordinate X by means of

r ¼
a0 þ a1X þ a2X

2 þ a3X
3

b0 þ b1X þ b2X
2 þ b3X

3

" #
. (67)

The parameters ai are unknown coefficients which are usually transformed into nodal coordinates [28].
The equations of motion are gained from D’Alembert’s principle written for the volume V of the beam
element [28], Z

V

r €rTdrdV þ

Z
V

S : dEdV ¼

Z
V

fText drdV , (68)

where r denotes the mass density of the beam, S is the second Piola Kirchhoff stress tensor, E is the fully
nonlinear Green strain tensor and fext represents external forces, and forces resulting from Lagrange
multipliers. The discrete masses are modeled by single mass points of mass m, obeying the equations of motion
for the displacement u,

m 0

0 m

� �
€uX

€uY

" #
¼

F X

F Y

" #
, (69)

where FX and FY are forces applied to the mass. The interaction of the nonlinear beam and the mass points are
taken into account by constraint equations. A so-called sliding joint that is usually available in multibody
simulation software, allows a point of one body to move along the surface of another body, see Fig. 5.
Fig. 5. Absolute nodal coordinate formulation beam element and sliding parameter s.
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Generally, it is assumed that a fixed point xi of the flexible or rigid body i is sliding along the centerline of a
beam denoted as body j. The local (undeformed) positions of the sliding point on body i and j are given by

xi ¼
X i

1

X i
2

 !
and xj ¼

X
j
1 ¼ s

0

 !
, (70)

where s represents the sliding parameter with respect to the beam axis. Note that in the present case of discrete
mass points the vector xi

¼ [0 0]T coincides with the center of mass. The following constraint equations must
be fulfilled for the sliding joint

C ¼

riðX i
1; X i

2Þ � rjðsÞ

qrjðsÞ

qs
� k

2
64

3
75 ¼ 0. (71)

In Eq. (71), the first line is used to restrict the motion of the sliding point on body i and j to be at the same
global position. This leads to two Lagrange multipliers k ¼ ½ l1 l2 �T associated with the constraint forces
applied to both bodies. The vector of Lagrange multipliers must be perpendicular to the sliding direction,
which means, that in the friction-free case there is no force acting in the sliding direction. This is satisfied by
means of the second line in Eq. (71). The sliding parameter s, which is a non-generalized coordinate of the
sliding joint, can be systematically eliminated. The sliding parameter s can be determined by using the
equation

riðX i
1; X i

2Þ � rjðsÞ
� �T qrjðsÞ

qs
¼ 0. (72)

This equation constrains the points of the two bodies in the sliding direction and therefore results only in
one equation, which is of order 3 in s and can be solved for the sliding parameter s by means of the Newton
method.

7. Numerical results

In this section, the numerical solution of the equations of motion, Eq. (44), for the cantilever elastica pipe
shown in Fig. 1, is compared with the solution of Paı̈doussis [1, Eq. (5.28)] and to the discrete mass
formulation presented in the previous section. The material parameters are m ¼ 8 kgm�1, M ¼ 2 kgm�1,
L ¼ 1m and EI ¼ 10Nm2. Eq. (44) is solved applying a 5-mode Ritz–Ansatz for the transverse deflection w.
In a recent study [29], it could be shown that 5 modes provide converged and coinciding results with a finite
element approach. The axial displacement u is eliminated from Eq. (44) using Eq. (47) in combination with an
order 17 Gaussian integration. Paı̈doussis’ equation is solved using a 5-mode Galerkin approximation. Here,
one major difference to existing formulations appears. The application of a Ritz method to the Lagrangian
equations of motion, Eq. (44), directly results in a finite set of ordinary differential equations. Opposed to this,
the nonlinear PDE in Ref. [1] (and also the equations of Folley and Bajaj [9] and Troger and Steindl [10])
requires significantly more computational effort due to the Galerkin approximation of the nonlinear PDE of
motion. The solutions of Eq. (44) and the outcomes of Paı̈doussis’ equation are compared with a system, in
which the fluid is replaced by nm point-masses equally distributed along the beam with mass MLn�1m , see
Section 6 above. The point-masses move with constant velocity with respect to the beam axis, such that _s ¼ U .
The initial velocity of the point-masses is equal to the velocity of the fluid in tangential direction of the beam
axis at the support. During the simulation, the inflow and outflow of masses is taken into account, such that
the distance between each mass is always Ln�1m , and, as soon as the first mass moves further than Ln�1m from
the support, a new mass is introduced with initial velocity of the fluid. Fig. 6 shows the maximum amplitude of
the tip of the cantilever between 4 and 6 s vs. the velocity of the masses and the fluid, respectively. The
solutions of Eq. (44) and discrete mass formulation for varying fluid velocity U show very good agreement.
The solutions of Paı̈doussis’ equation [1, Eq. (5.28)] show good agreement for fluid velocities U smaller than
12.8m s�1. For higher fluid velocities, where the deformation of the pipe increases, a significant difference can
be observed, because the present derivation, based on geometrically exact elastica theory, provides better
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Fig. 7. Tip deflection for the case of 40 discrete masses with a velocity of 14m s�1.
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results than scaled equations, in which order-of-magnitude consideration have been performed during
derivation. Fig. 7 shows the tip deflection of the cantilever beam for the discrete mass simulation with 40
masses and a velocity of the masses of 14m s�1. The flutter instability reaches its maximum amplitude after 3 s
of the simulation. Several deformed shapes of the cantilever problem are presented in Fig. 8 according to the
tip deflection in Fig. 7.

As a further comparison of Eq. (46) and the formulation with discrete masses, Fig. 9 shows the maximum
amplitude of the tip deflection between 4 and 6 s of the system with one, four and eight masses per beam length
compared with the previously shown 40 masses. While the phenomenon of moving masses along a cantilever
beam has been already studied in the literature, see e.g. [30], the solution and stability of the repeated
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Fig. 8. Deformation shapes at different time instances during the simulation, according to the tip deflection presented in Fig. 7.
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movement of one or more masses along a beam is an open problem. Fig. 9 shows that the solution for a higher
number of masses converges to the solution of the fluid problem. However, with a small number of masses,
further instability phenomena occur in addition to the critical velocity of the fluid. In the case of one mass
repeatedly moving along the beam, several instabilities are present at comparably small ranges of velocities.
The first instability appears at about half the critical velocity of the fluid at U ¼ 6m s�1, significant unstable
regions are present around 6.7 and 8m s�1, while above 8.9m s�1 the system becomes unstable. It shall be
mentioned, that Fig. 9 in fact only shows the deflection due to the excitation by the moving masses. While the
method with discrete masses appeared to be suitable for the case of fluid problems, compare the previous
sections, it might be interesting to further investigate the instability of single moving masses for a longer
simulation time (e.g. to check the maximum amplitude after 50 s). In the case of four masses, the system
becomes unstable by flutter at 11m s�1, which is close to the third eigenfrequency of the cantilever beam
without fluid, while in the case of eight masses, the discrete mass solution almost coincides with the solution
obtained for the continuous system in Eq. (44) for 5 modes. The interpretation of the unstable domains for the
solution with a small number of masses is difficult and is left to a further investigation. In principle, they may
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be coupled either to the bending eigenfrequency or a multiple of it, or to the bending wave propagation, which
has different wave speed for different frequency of the wave content.

8. Conclusions

A novel alternative approach for the analysis of nonlinear vibrations for pipe systems conveying fluids is
presented. The example of a cantilever pipe modeled as a Euler elastica has been investigated. The proposed
approach utilizes an extended version of the Lagrange equations for systems containing non-material volumes,
where the equations of motion directly result in a finite set of ordinary differential equations. Order-of-
magnitude assumptions are omitted in the derivation of the equations of motion, providing the possibility of
studying large deformations of the considered system. For the resulting equations of motion, a dimensional
reduction with arbitrary order of approximation was introduced. The resulting equations of motion were
compared with previously published equations by Paı̈doussis [1], Folley and Bajaj [9] and Troger and Steindl
[10]. First, the final nonlinear equations of motion were compared on a term-by-term basis. Owing to the fact,
that the equations from the literature are all written in the form of a PDE, in contrast to the ordinary
differential equations presented in this work, direct comparison is tedious. However, all characterizing terms
in the previously published equations of motion by Folley and Bajaj [9] and Troger and Steindl [10], where
exact curvature expressions without order-of-magnitude considerations have been performed, have been
identified in the equations presented in this work. This leads to the second type of comparison in terms of a
stability analysis, which has been performed for the linearized equations of motion in terms of an eigenvalue
analysis, and for the full nonlinear equations in a numerical way for varying system parameters.

For the equations presented by Paı̈doussis [1], solutions of the resulting equations of motion [1, Eq. (5.28)]
have been recomputed for varying system parameters in order to provide best comparability. As a result, it
was shown, that the order-of-magnitude considerations performed by Paı̈doussis provide sufficient accuracy
for small deflections of the pipe system. However, for larger amplitudes the full nonlinear equations of motion
need to be considered in order to reproduce the present results and the results of a finite element approach
with discrete masses and nonlinear behavior. Although the equations presented by Folley and Bajaj [9] and
Troger and Steindl [10] include no simplifications or order-of-magnitude considerations, the computation of
solutions demands a very high computational effort due to the form of a nonlinear PDE of motion for an
infinitesimal pipe element. Even for the nonlinear equations presented by Paı̈doussis [1], including order-of-
magnitude considerations, the computation time in comparison to the solution of the full nonlinear equations
presented here is at least a factor ten higher.

The solution of the pipe conveying fluid has been compared with a second approach based on discrete
masses that is available in the multibody code HOTINT/MBS. A large number of discrete masses were used to
model the motion of the fluid moving along the axis of the beam, discretized by many nonlinear finite
elements. The presented models showed very good agreement, both in the stable as well as the unstable regime.
As a further result, the solution with a small number of discrete masses is presented that might be interesting
for other transport problems or fluids containing gas bubbles, and it is planned to incorporate the Lagrange
equation-based formulation of Eq. (44) into a multibody computer code in the near future.
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Appendix A. Virtual work of a finite tube element

The moment balance for an infinitesimal small differential tube element [9, Eq. (2.15)] gives the relation

M0 þ s�Q ¼ 0, (73)
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whereM denotes the moment vector andQ the vector of the resultant forces. By taking the cross-product with
the tangent unit vector t yields

Q ¼ Nsþ s�M0, (74)

where N denotes the axial force acting on the tube element. The virtual work for a deformed pipe element can
be written as

dW ¼

Z L

0

Q0 � dr0 dX ¼ Qdr0½ �
L
0 �

Z L

0

Q � dsdX ¼ �

Z L

0

Nsð Þ � ds�
Z L

0

s�M0ð Þ � ds

¼ �

Z L

0

ðNsÞ � dsþ
Z L

0

M0 � ðs� dsÞ ¼ �
Z L

0

ðNsÞ � dsþ M � ðs� dsÞ½ �
L
0 �

Z L

0

M � ðs� dsÞ0

¼ �

Z L

0

ðNsÞ � ds�
Z L

0

M � ðs0 � dsþ s� ds0Þ. ð75Þ

The binormal vector and its variation are introduced, using the tangent unit vector s from Eq. (11) and the
normal unit vector m, Eq. (3), and follows

b ¼ s� m; db ¼ ds� mþ s� dm ¼ 0. (76)

The variation of the binormal vector vanishes for planar motions. Application of Frenet’s formulas gives
the relations between the tangent unit vector s, the normal unit vector n and their spatial derivatives along the
beam coordinate X:

s0 ¼ km; m0 ¼ �ksþ tb ¼ �ks, (77)

where k denotes the curvature of the pipe axis and t denotes its twist. The twist t vanishes for planar motions.
Using Eq. (77), the variations of the tangent unit vector and the normal unit vector can be computed by

ds ¼ s0dX ¼ kmdX ; dm ¼ m0dX ¼ �ksdX . (78)

The virtual work dW, Eq. (75), can be rewritten by taking into account Eqs. (77) and (78) as

dW ¼ �

Z L

0

ðNsÞ � ds�
Z L

0

M � ðs0 � dsþ s� ds0Þ

¼ �

Z L

0

ðNsÞ � km|fflfflfflfflffl{zfflfflfflfflffl}
t?n)t�n¼0

dX �

Z L

0

M � kðm� dsÞ þ s� dðkmÞð Þ. ð79Þ

Further manipulation of the expressions in Eq. (79) yields

s� dðkmÞ ¼ s� ðdkmþ kdmÞ ¼ dkðs� mÞ þ kðs� dmÞ

¼ dkbþ k s� ð�ksdX Þð Þ ¼ dkb,

kðm� dsÞ ¼ kðs� dmÞ ¼ k s� ð�ksdX Þð Þ ¼ 0 ð80Þ

and reduces the virtual work to

dW ¼ �

Z L

0

M � dkb. (81)

The variation of the curvature k, Eq. (81), can be rewritten as

dðt� t0Þ ¼ d t� ðknÞð Þ ¼ d kðt� nÞð Þ ¼ dkbþ k db|{z}
0

¼ dkb. (82)

Application of the assumptions by Troger and Steindl [10, Eq. (L.11)] gives

M ¼ EIðs� s0Þ (83)
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and yields the virtual work in the form that directly corresponds to Eq. (18) of the present paper

dW ¼ �EI

Z L

0

ðs� s0Þ � dðs� s0Þ (84)

indicating that the model introduced by Troger and Steindl is fully compatible to the potential energy applied
in the extended Lagrange equations of the present work.
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