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Abstract

As the density of information stored in automated magnetic tape libraries continues to increase, greater requirements are

placed on the precision of mechanical positioning in order to successfully read and write data bits. The location of the read/

write head in the direction across the tape’s width (termed the lateral direction) is actively controlled in order to maintain

alignment between the head and data tracks, even in the presence of the tape’s lateral vibration. However, during

repositioning, vibration is undesirably transmitted from the laterally moving head structure to the axially moving tape

because of frictional contact between the two adjacent surfaces. As an analog of that interaction, a model is developed here

to describe frictional vibration transmission from a surface having prescribed lateral motion to a tensioned beam that

travels and slides over it. For a transport speed that is high when compared to the lateral vibration velocity, Coulomb

friction between the surface and the beam can be well-approximated by an equivalent form of viscous damping. The beam

is divided into contiguous regions corresponding to free spans and the beam’s portion that contacts the surface. A critical

engagement length between the beam and the surface exists for which vibration transmission at a particular natural

frequency can be substantially reduced, and for a given mode, that length depends weakly on the surface’s position along

the beam’s span. By contouring the surface to have portions of differing radii of curvature, the extent of vibration

transmission can be reduced over a broad range of frequency.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetic tape is a preferred medium for the long-term, reliable, and large-scale storage and retrieval of
information. The volumetric storage density for magnetic tape has grown by six orders of magnitude during
the past 50 years, in part because of advances in the mechanical design of the path, guides, cartridge, and servo
mechatronics [1]. For the storage density to increase further, greater precision will be needed in the positioning
of the read/write head’s structure relative to the tape, even in the presence of high frequency tape vibration [2].

As data is written to the tape, or read from it, the head assembly is actively positioned in the cross-track (or
lateral) direction over a data track that itself is only microns wide and that moves down-track (or axially) at
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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several meters per second. During repositioning, the head’s motion couples through frictional contact with the
tape and undesirably excites its vibration. As an analog of that interaction, a model is developed in what
follows to describe frictional vibration transmission from a surface having prescribed motion to a tensioned
beam that travels and slides over it.

The vibration of magnetic tape is an application related to the broader problem area encompassing the
mechanics of axially moving materials [3–5] and web transport systems [6,7]. Vibration models that are
typically applied to represent magnetic and optical tape include traveling strings, and traveling tensioned
beams and plates. For such systems, closed-form expressions for the response to arbitrary excitation and
initial conditions are obtained through modal analysis or Green’s function methods for continuous gyroscopic
systems [8]. In the case of the prototypical traveling string model, a compact expression for the general
response is also available through the Laplace transform method [9]. The discretization of such models and the
influence of nonlinearity are discussed in Refs. [4,10,11].

Edge and surface guides are conventionally used to passively control the lateral position of tape as it is
transported between a data cartridge and the drive’s machine reel. In edge guiding, either rigid or compliant
flanges contact the tape’s narrow edge, apply lateral forces, and constrain vibration. The judicious design and
placement of such guides along the path can significantly reduce the steady-state vibration amplitude [12,13],
but this approach to guiding is known to accelerate wear of the tape’s relatively fragile edge [14]. With guides
having rigid flanges, but finite clearance between the flanges and the nominal position of the tape’s edge, high-
frequency vibration can be excited through intermittent impact and contact [15]. Such motion is particularly
problematic in the motivating application because of the limited bandwidth over which the read/write head
can be repositioned [16].

Surface guiding, on the other hand, avoids direct edge contact and instead distributes the lateral guiding
forces over the substantially wider face of the tape in the form of friction. This approach is particularly
appealing because of its efficacy at high frequencies. When the tape’s axial velocity is large relative to the
velocity of its lateral motion, conventional Coulomb friction can be well-approximated by an equivalent
viscous damping model. In the related problem addressing the dynamics of a string that slides over a
cylindrical guide, the equivalent damping coefficient depends on the cylinder’s engagement length and radius
of curvature, and the string’s tension and speed [17]. Also with a view toward dissipation models in moving
media, two viscous components were examined in Ref. [18] for a traveling tensioned beam: a ‘‘stationary’’
damping force proportional to the local velocity component, and a ‘‘moving’’ force that captures both local
and convective velocity terms. Dry friction guides have been associated with the instability of moving string
models at supercritical speeds [19,20], and the instability range extends to subcritical speeds [21] with axial
acceleration.

In the present study, a model is developed for frictional vibration transmission from a laterally moving
surface to a traveling beam. The design parameters that primarily influence the extent of vibration
transmission are the transport speed, coefficient of friction between the beam and surface, the surface’s radius
of curvature, and the placement of the surface along the beam’s length. A critical engagement length between
the beam and the surface exists for which the vibration transmitted at a particular natural frequency of the
beam can be substantially reduced. By contouring the surface to have portions of differing radii of curvature,
the extent of vibration transmission can be reduced further, and over a wider range of frequency.

2. Vibration transmission model

In the path of Fig. 1, a tensioned beam travels between two stationary guides and over a portion of a
cylinder having radius R. The surface of the cylinder displaces laterally, in the direction of the beam’s width,
with position DðTÞ ¼ D0e

iOT þ c:c:, where O, D0, and T denote the excitation’s frequency, amplitude of
motion, and time, and where i ¼

ffiffiffiffiffiffiffi
�1
p

and c.c. denotes the complex conjugate of preceding terms. The beam
has bending stiffness EI, mass per unit of length r, tension P1 prescribed at position X ¼ 0, transport speed V ,
and lateral displacement U. The beam is conceptually divided into three regions: the two free spans X 2 ½0;L1Þ

and X 2 ðL2;L� (denoted as the first and third regions in Fig. 1), and the intermediate region X 2 ½L1;L2�

which contacts the surface (denoted as the second region). Tension is constant in the first and third regions,
but it increases exponentially because of distributed friction between the beam and surface [17]. With the
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Fig. 1. Schematic of the system in which vibration is transmitted from the surface having prescribed lateral motion D to the traveling

tensioned beam.
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coefficient of friction denoted m at the interface of the surface and beam, the tension profile is expressed as

P ¼

P1: 0pXoL1;

P1e
mðX�L1Þ=R: L1pXpL2;

P3 ¼ P1e
mðL2�L1Þ=R: L2oXpL:

8><
>: (1)

In the second region, the normal reaction FN ¼ P=R per unit of length develops between the surface and the
beam. The frictional force acting on the beam is directed so as to oppose the velocity vector VT of material
particles on the beam relative to the surface. The absolute velocity of a particle on the beam has component
U ;T þ VU ;X in the lateral direction (where the comma subscript denotes partial differentiation) and V in the
axial direction. The surface’s lateral velocity is simply _D. Under the restriction of isotropic spatial friction [22],
the friction force vector per unit of length becomes

F ¼ �mF N

VT

jVTj
, (2)

with the lateral component

F L ¼ �mFN

U ;T þ VU ;X � _Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2 þ ðU ;T þ VU ;X � _DÞ2

q . (3)

In the motivating application, V is substantially greater than both _D and the beam’s lateral vibration
velocity, and as a result, F rotates by only a small angle during vibration. With the approximationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 2 þ ðU ;T þ VU ;X � _DÞ2
q

� V , the lateral force component over the second region becomes

F L ¼ �e
mðX�L1Þ=R mP1

RV

� �
ðU ;T þ VU ;X � _DÞ. (4)

In this manner, coupling between the surface and beam is equivalent to viscous damping having coefficient

C ¼ emðX�L1Þ=R mP1

RV

� �
(5)
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and the lateral component of the friction force per unit of length becomes CððU ;T þ VU ;X Þ � _DÞ. By defining
the dimensionless quantities

v ¼ V

ffiffiffiffiffiffi
r

P1

r
; vf ¼

ffiffiffiffiffiffiffiffiffiffiffi
EI

P1L
2

s
; o ¼ O

ffiffiffiffiffiffiffiffi
rL2

P1

s
; t ¼ T

ffiffiffiffiffiffiffiffi
P1

rL2

s
; c ¼

mP1

RV

� �
Lffiffiffiffiffiffiffiffi
P1r
p ,

x ¼
X

L
; ‘1 ¼

L1

L
; ‘2 ¼

L2

L
; d ¼

D

L
; d0 ¼

D0

L
; u ¼

U

L
; r ¼

R

L
, ð6Þ

the non-dimensional equation of motion becomes [8]

u;tt þ 2vu;xt þ v2 �
P

P1

� �
u;xx �

1

P1

dP

dx

� �
u;x þ v2f u;xxxx

þ cemðx�‘1Þ=rðu;t þ vu;x � _dÞðHðx� ‘1Þ �Hðx� ‘2ÞÞ ¼ 0, ð7Þ

where H denotes the Heaviside function.
The solution for the beam’s steady-state forced response uðjÞ in either region j ¼ 1 or 3 with tension Pj takes

the form

uðjÞðx; tÞ ¼ eiot
X4
k¼1

bðjÞk eb
ðjÞ

k
x, (8)

where the b
ðjÞ
k are roots of the dispersion relation

v2f ðb
ðjÞ
k Þ

4
þ v2 �

Pj

P1

� �
ðb
ðjÞ
k Þ

2
þ i2vob

ðjÞ
k � o2 ¼ 0. (9)

Since the equation of motion is inhomogeneous in the second region, the solution is represented instead by the
N-term power series

uð2Þðx; tÞ ¼ uð2Þp þ
XN

k¼1

akxk�1

 !
eiot, (10)

with the particular solution

uð2Þp ¼
XM
j¼0

gjx
j. (11)

The tension profile in the second region is likewise approximated by the finite series

emðx�‘1Þ=r ¼
XM
m¼0

fmxm, (12)

where

fm ¼
1

m!

XM
k¼m

ð�1Þk�m

ðk �mÞ!

m
r

� �k

‘k�m
1 . (13)

Substitution of Eqs. (10) and (12) into Eq. (7) yields the recurrence relation

ðk4
þ 6k3

þ 11k2
þ 6kÞakþ3 þ

v2

v2f
ðk þ 1Þkakþ1 þ

i2vo
v2f

kak �
o2

v2f
ak�1

�
1

v2f

XM1

m¼0

ððk þ 1�mÞðk �mÞfmakþ1�mÞ �
1

v2f

XM2

m¼0

ððmþ 1Þðk �mÞfmþ1ak�mÞ

þ
cv

v2f

XM1

m¼0

ððk �mÞfmak�mÞ þ
ico
v2f

XM1

m¼0

ðfmak�m�1Þ ¼ 0 ð14Þ
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for the coefficients ak with indices k ¼ 1; 2; . . . , N � 4, and

M1 ¼
M: k4M ;

k � 1: kpM ;

(
ð15Þ

M2 ¼
M � 1: k4M;

k � 1: kpM :

(
ð16Þ

The coefficients gj in Eq. (11) are determined through a similar approach. Constants bð1Þk , ak, and bð3Þk are
found through the simultaneous solution of the N � 4 recurrence relations of Eq. (14), subject to pinned
boundary conditions at x ¼ 0 ðj ¼ 1Þ and at x ¼ 1 ðj ¼ 3Þ, and to displacement, slope, moment, and shear
compatibility requirements at x ¼ ‘1 ðj ¼ 1Þ and at x ¼ ‘2 ðj ¼ 3Þ, as follows:

X4
k¼1

bðjÞk eb
ðjÞ

k
x ¼ 0, (17)

X4
k¼1

bðjÞk ðb
ðjÞ
k Þ

2eb
ðjÞ

k
x ¼ 0, (18)

X4
k¼1

bðjÞk eb
ðjÞ

k
x �

XN

k¼1

akxk�1 ¼
XM
j¼0

gjx
j, (19)

X4
k¼1

bðjÞk b
ðjÞ
k eb

ðjÞ

k
x �

XN

k¼2

akðk � 1Þxk�2 ¼
XM
j¼1

gj jx
j�1, (20)

X4
k¼1

bðjÞk ðb
ðjÞ
k Þ

2eb
ðjÞ

k
x �

XN

k¼3

akðk � 1Þðk � 2Þxk�3 ¼
XM
j¼2

gj jðj � 1Þxj�2, (21)

X4
k¼1

bðjÞk ðb
ðjÞ
k Þ

3eb
ðjÞ

k
x �

XN

k¼4

akðk � 1Þðk � 2Þðk � 3Þxk�4 ¼
XM
j¼3

gj jðj � 1Þðj � 2Þxj�3. (22)

3. Frequency response

The frequency response function describes the amplitude and phase of the beam’s vibration in response to
harmonic displacement D of the surface. Fig. 2 depicts the amplitude and phase responses of the beam at
midspan for the illustrative parameter values vf ¼ 2:83, v ¼ 0:068, ‘1 ¼ 0:431, ‘2 ¼ 0:569, and r ¼ 2, which are
representative of the motivating technical application. Here and in what follows, N ¼ 50 and M ¼ 10 in the
series representations of the displacement and tension. As indicated in Table 1, those choices are sufficient to
ensure accuracy in the predicted natural frequency and response amplitude. For instance, over x 2 ½‘1; ‘2�, the
approximation of Eq. (12) with M ¼ 5 has relative error less than 10�8, and the response amplitude converges
to four significant digits through the fifth mode for NX35. At the beam’s first natural frequency ðo1 ¼ 28:0Þ,
the relative response amplitude ju=d0j ¼ 1:008, and as the radius r is increased in Fig. 2, the magnitude at o1

does not change appreciably. At the third (o3 ¼ 251) and fifth (o5 ¼ 698) natural frequencies, the response
amplitudes become ju=d0j ¼ 1:067 and 1:182, respectively. Resonances of the even modes are not evident in
Fig. 2 because the surface is located at midspan, and speed v is small compared to the critical speed vc ¼ 8:94.

Away from resonances of the odd modes, the response’s amplitude decreases with r owing to a
corresponding decrease in the equivalent damping coefficient c. For instance, with a four-fold increase in r, the
transmission of vibration from the surface to the beam decreases by a factor of approximately 4.5. At the anti-
resonances between adjacent odd modes in Fig. 2, the phase of the response relative to the surface’s motion
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Fig. 2. (a) Magnitude and (b) phase of the beam’s frequency response at x ¼ 0:5 for harmonic motion of the surface; vf ¼ 2:83, v ¼ 0:068,
‘1 ¼ 0:431, ‘2 ¼ 0:569, and r ¼ 1=32, 1/8, 1/2, and 2. The arrows indicate increasing values of r.

Table 1

Convergence of the solution method as the number N of terms in the displacement’s series is varied

N Mode 1 Mode 3 Mode 5

o1 ju=d0j o3 ju=d0j o5 ju=d0j

10 27.98 0.9847 259.6 0.01023 732.1 0.001414

15 28.01 1.008 273.2 0.1056 659.6 0.004627

20 28.01 1.008 251.3 0.9899 691.4 0.06552

25 28.01 1.008 251.4 1.067 734.2 0.9070

30 28.01 1.008 251.4 1.067 698.0 0.7841

35 28.01 1.008 251.4 1.067 698.0 1.182

40 28.01 1.008 251.4 1.067 698.0 1.182

100 28.01 1.008 251.4 1.067 698.0 1.182

For the first three odd modes, the natural frequency o and the magnitude ju=d0j of the amplitude ratio between the beam at midspan and

the surface is shown; ‘1 ¼ 0:431, ‘2 ¼ 0:569, vf ¼ 2:83, v ¼ 0:068, m ¼ 0:2, r ¼ 2, and M ¼ 10.
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abruptly changes from �90� to 90�. Near the odd natural frequencies the phase decreases from 90� to �90�

and passes through 0� at the natural frequencies. The behavior illustrated in Fig. 2, in which the amplitude
ju=d0j approaches unity and the phase approaches zero at resonance, is consistent with vibration transmission
through the mechanism of viscous coupling. An analog of that process is a single degree of freedom oscillator
of stiffness Ks and mass Ms that is excited through the damper Cs by prescribed base displacement
DsðTÞ ¼ dse

iOT . With the mass’s displacement being Us ¼ use
iOT , the complex response amplitude is

us

ds

¼
iCsO

Ks � O2Ms þ iCsO
. (23)

At resonance O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks=Ms

p
, the amplitude is precisely that of the disturbance itself. Even as Cs grows, the

amplitude at resonance remains unchanged, although the half-bandwidth of the resonant peak does increase.
At resonance, the oscillator’s motion is in phase with, and approximately equal in amplitude to, the
disturbance.

As the transport speed is varied in Fig. 3, the even modes are not discernible in the frequency response for
small v. Since the mode shapes are complex functions for va0, and the nodal points are not fixed in space, the
even modes’ contribution to the midspan response increases with v. At o2 ¼ 112, ju=d0j ¼ 0:016 for v ¼ 1, and
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the amplitudes of the higher-frequency even modes are smaller than the amplitude of the second mode. As the
speed is increased to v ¼ 8:9, which is near the critical speed, the natural frequencies of all modes are lowered,
the half-bandwidths of the odd modes are reduced, and the contribution of the even modes become more
pronounced; for instance, ju=d0j ¼ 5:3 at o2.

The surface’s engagement length ‘ ¼ ‘2 � ‘1, and the placement ‘ ¼ ð‘2 þ ‘1Þ=2 of the surface along the
beam’s length, can be chosen in order to minimize the level of vibration in a particular mode that is
transmitted from the surface to the beam. The influence of engagement length on vibration transmission is
shown in Fig. 4 at v ¼ 4:5. Contours for the magnitude of the beam’s midspan response are shown in Fig. 4(a)
as functions of ‘ and o. The peaks in Figs. 4(b) and (c) at o ¼ 28, 251, and 698 correspond to the first, third,
and fifth modes, respectively, and the even resonances are located at o2 ¼ 111 and o4 ¼ 445. Critical values of
‘ exist for which the response of certain modes can be significantly reduced. For instance, in Fig. 4(b),
transmission to the third mode is minimized at the design point ‘ ¼ 0:678, and transmission to the fifth mode
is minimized at ‘ ¼ 0:402 in Fig. 4(c).

Table 2 depicts the magnitude of steady-state response in the vicinity of o5, as well as the beam’s
corresponding displacement profiles, for three choices of the engagement length. At ‘ ¼ 0:3, the half-
wavelength of the beam’s profile extends over 67% of the surface with an antinode located at ‘. Also at that
condition, the beam’s midspan vibrates in phase with the surface’s motion. When the engagement length is
alternatively chosen to equal the wavelength of the fifth mode (‘ ¼ 0:4), the surface engages equal beam
portions that vibrate in-phase and out-of-phase relative to the surface. At that design point, ju=d0j is reduced
near o5 by 99.8% relative to the design ‘ ¼ 0:3. As the engagement length is increased further to ‘ ¼ 0:5 in
Table 2, 60% of the surface extends over portions of the beam that move in the opposite direction of the
antinode at midspan. The surface moves out-of-phase with the beam’s response at midspan, but in-phase with
motions at the antinodes located on either side of midspan. A second critical engagement length develops at
‘ � 0:8, approximately twice the wavelength of the fifth mode, as shown in Fig. 4(a). In that case, the surface
extends over equal-length portions of the beam that vibrate in-phase and out-of-phase with the surface, and
ju=d0j is reduced by some 99.9% near o5.

The critical engagement lengths ‘c where transmitted vibration is minimized are identified in Fig. 5 for
the third through sixth modes. At v ¼ 0, the ‘c are integer multiples of the modal wavelengths. As v increases,
‘c increases by only 9% in the third mode, by 4% in the fourth mode, and by even lesser amounts in the
higher modes. For the fifth and sixth modes, multiple ‘c exist because the wavelengths of those modes are
less than half of the beam’s length. The response’s sensitivity to placement of the surface is shown in Fig. 6
for the fifth mode’s first critical engagement length ‘c ¼ 0:4. For each ‘ shown, vibration transmission to the
fifth mode is reduced by nearly 99% relative to the amplitude realized in the baseline case of Fig. 2. For ‘o0:5,
the even modes contribute significantly since ‘ does not coincide with a nodal point of the lower even modes.
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Fig. 4. (a) Magnitude of the beam’s frequency response at x ¼ ‘ ¼ 0:5 as a function of the engagement length ‘, and the frequency

response magnitudes at midspan for designs (b) ‘ ¼ 0:677 and (c) ‘ ¼ 0:402; vf ¼ 2:83, m ¼ 0:2, r ¼ 2, and v ¼ 4:5. Contours in (a) indicate

values of log10ju=d0j.
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4. Optimizing surface geometry

The level of vibration that is transmitted to a particular mode can be minimized by judicious selection of the
engagement length, but in that approach, the critical values of ‘c vary for each mode. With a view toward
reducing transmission simultaneously in multiple modes, the surface can be designed as in Fig. 7 with a
contour that comprises a multiplicity of regions each potentially having different radius of curvature (R2, R3,
and R4), engagement length, and damping coefficient (C2, C3, and C4).

1 The beam’s steady-state forced
vibration is obtained through the procedure outlined in Eqs. (7)–(22), with the exception that five regions now
comprise the two free spans j ¼ 1 and 5 and the three surface regions j ¼ 2, 3, and 4.

In the motivating data storage application, the beam can move bidirectionally over the surface, and in the
light of that symmetry, the lengths of regions j ¼ 2 and 4 and their radii of curvature are chosen to be the
same; thus, ‘2 � ‘1 ¼ ‘4 � ‘3, and r2 ¼ r4. The total engagement length ‘T ¼ ‘4 � ‘1, the surface’s inner width
‘i ¼ ‘3 � ‘2, and the ratio r2=r3 of radii are taken as the degrees of freedom in an optimization analysis in
order to minimize the amplitude of response over 50ooo850, a range that encompasses the second through
fifth natural frequencies. By using a three-dimensional Nelder-Mead simplex method [23], the design
1The non-dimensional r2, r3, r4, ‘3, ‘4, c2, c3, and c4 are calculated in the same manner as r, ‘1, and c in Eq. (6).
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Table 2

Magnitude of the beam’s frequency response at x ¼ ‘ ¼ 0:5, and displacement profiles along the beam’s length, for designs ‘ ¼ 0:3, 0.4,
and 0.5; vf ¼ 2:83, v ¼ 0:068, m ¼ 0:2, and r ¼ 2
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parameters are optimized in terms of the cost function

f C ¼
XNS

n¼1

jun=d0j

NS

, (24)

where un is the magnitude of the beam’s midspan displacement at o ¼ 50þ 800ðn� 1Þ=ðNS � 1Þ, and
NS ¼ 3001. For the case r3 ¼ 2, the sensitivities of the optimal engagement length and radii to the transport
speed are shown in Fig. 8. In optimization, the inner engagement length was driven to its bound ‘i ¼ 0:01,
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Fig. 8. Optimal (a) total engagement length and (b) ratio of radii for the surface design of Fig. 7; r3 ¼ 2 and vf ¼ 2:83. The third design

parameter, the inner width, was driven to the realistic lower bound ‘i ¼ 0:01 in optimization.
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Fig. 9. (a) Magnitude and (b) phase of the beam’s frequency response at x ¼ 0:5 for the optimized surface (——; ‘T ¼ 0:732, ‘i ¼ 0:01,
r2=r3 ¼ 7:507, and r3 ¼ 2) comprising three regions of varying radii of curvature, and the baseline one-region surface (– – –; ‘ ¼ 0:138, and
r ¼ 2); vf ¼ 2:83, v ¼ 0:068, and m ¼ 0:2.
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which is the smallest realistic value. The optimal total engagement length and radius ratio are only weakly
dependent on r3 and for a given v, they differ by less than 2% as r3 is varied from 1=32 to 2.

The frequency response at midspan for the optimized surface is compared in Fig. 9 to that realized
with the baseline geometry with r ¼ r3 ¼ 2. For the optimized surface, the response magnitudes at the o3

and o5 resonances have been reduced by over 99%, and the phase of the response is approximately
constant over the range 50ooo1000. While the results of the optimization are relatively insensitive to the
choice of scaling parameter r3, the response magnitude does depend on r3 as depicted in Fig. 10. Away from
resonance, as r3 is increased by a factor of four, the magnitude of the response likewise decreases by
approximately fourfold.
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5. Summary

A model for vibration transmission from a laterally oscillating surface to a traveling tensioned beam is
developed as an analog of the interaction between a moving read/write head and magnetic tape in data
storage. The level of vibration transmission can be minimized in particular vibration modes by designing the
width, placement, coefficient of friction, and curvature of the surface, the contact pressure between the surface
and the moving beam, and the beam’s translation speed. A surface having a multiplicity of contact regions,
each potentially of different length and radius of curvature, can be useful in reducing transmission to several
modes simultaneously. The primary contributions and conclusions of this investigation are:
1.
 For a surface having a constant radius of curvature, vibration transmission from the surface to the beam
can be minimized in a vibration mode by choosing an engagement length that is approximately an integer
multiple of the mode’s wavelength. In certain applications where it may not be feasible to implement
surfaces of such width for the lower vibration modes, this approach may be useful to limit excitation of
higher-frequency modes which can be more problematic in the present application.
2.
 A surface having a multiplicity of contact regions can be useful to reduce vibration transmission over a
range of frequencies and for a chosen set of vibration modes.
3.
 For a surface having three contact regions as in Section 4, the optimal widths of the regions, and the ratio of
the radii of curvature of the outer regions to the inner region, depend weakly on the center section’s radius
of curvature. However, by decreasing the radius of curvature of the center section, vibration transmission
can be significantly reduced.
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