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Abstract

Half a century ago Richard Skalak [see T.C. Skalak, A dedication in memoriam of Dr. Richard Skalak, Annual Review

of Biomedical Engineering 1 (1999) 1–18] published a paper with the title ‘‘An extension of the theory of water hammer’’

[R. Skalak, An Extension of the Theory of Water Hammer, PhD Thesis, Faculty of Pure Science, Columbia University,

New York, USA, 1954; R. Skalak, An extension of the theory of water hammer, Water Power 7/8 (1955/1956) 458–462/

17–22; R. Skalak, An extension of the theory of water hammer, Transactions of the ASME 78 (1956) 105–116], which has

been the basis of much subsequent work on hydraulic transients with fluid–structure interaction (FSI). The paper considers

the propagation of pressure waves in liquid-filled pipes and the coupled radial/axial response of the pipe walls. In a tribute

to Skalak’s work, his paper is revisited and some of his less-known results are used to assess the dispersion of pressure

waves in long-distance pipelines. Skalak’s theory predicts that the spreading of wave fronts due to FSI is small, at most of

the order of 10 pipe diameters.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The classical theory of water hammer [5] describes the propagation of pressure waves in fully liquid-filled
pipe systems. The theory correctly predicts extreme pressures and wave periods, but it usually fails in
accurately calculating damping [6] and dispersion [7] of wave fronts. In particular, field measurements usually
show much more damping and dispersion than the corresponding standard water-hammer calculations. The
reason is that a number of effects are not taken into account in the standard theory. These include: dissolved
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a inner radius of pipe (m)
A twice the ratio of fluid mass to pipe-wall

mass (dimensionless)
Ai Airy function of the first kind
c speed of sound in unconfined fluid (m/s)
ce elementary (water-hammer) wave speed

in fluid (m/s)
c0 elementary (thin-plate) wave speed in

pipe wall (m/s)
c1 (water-hammer) wave speed in fluid (m/s)
c2 (precursor) wave speed in pipe wall (m/s)
Cpn constant (Pa/m)
Cwn constant (m)
dn constant characterising dispersion of

wave front (m3/s)
d�n dimensionless dn (dimensionless)
Dn constant (1/s2)
E Young’s modulus of elasticity of pipe-

wall material (Pa)
fn average wake frequency (Hz)
f �n dimensionless fn (dimensionless)
fring ring frequency (Hz)
FSI fluid–structure interaction
h pipe-wall thickness (m)
I basic integral (dimensionless)
K bulk modulus of fluid (Pa)
L length of pipeline (m)

Ln length of wave front (m)
L�n dimensionless Ln (dimensionless)
pn asymptotic solution for pressure (Pa)
p0 initial fluid pressure for zo0 (Pa)
R square of wave-speed ratio c0/c (dimen-

sionless)
t time (s)
t* dimensionless time (dimensionless)
v0 initial axial fluid velocity for zo0 (m/s)
z axial distance along pipe (m)
z�n dimensionless axial distance along pipe

(dimensionless)

Greek letters

a added mass coefficient (dimensionless)
bn dimensionless constant characterising

propagation of wave front (dimension-
less)

G gamma function
l wavelength (m)
n Poisson’s ratio (dimensionless)
r0 (initial) mass density of fluid (kg/m3)
rs mass density of pipe-wall material (kg/m3)

Subscripts

n ¼ 1 water hammer
n ¼ 2 precursor
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and free air in the liquid, solidified sediment deposit at the pipe walls, unsteady friction and unsteady minor
losses in the transient flow, non-elastic behaviour of the pipe-wall material, and acoustic radiation to the
surroundings (for buried pipes, sub-sea pipes and rock-bored tunnels). Another omitted effect is
fluid–structure interaction (FSI) [8] manifesting itself in different ways: longitudinal pipe and bend motion,
rubbing and non-elastic behaviour at supports, radial pipe hoop motion (breathing), wall bending and shear
near steep wave fronts, and buckling and flutter of tubes conveying flow at (very) high velocity.

Bergant et al. [9,10] studied several of the aforementioned effects in a systematic way, but they did not
consider the wave dispersion due to FSI. The present investigation fills this deficiency and attempts to quantify
the dispersion of steep pressure wave fronts due to dynamic effects caused by radial/axial pipe motion. The
focus is on the amount of spreading of the wave front and on the frequency of oscillation generated by a step
pressure load. The paper is entirely based on important theoretical work of Skalak [2]. It pays tribute to his
articles published half a century ago [3,4], which form a milestone in FSI research. Skalak’s work is
summarised and some of his main results are further explored. Dimensionless charts are presented that
characterise wave dispersion in water-filled steel and plastic pipes.
2. Skalak’s problem

Skalak [2–4] considered wave propagation in an infinitely long tube of inner radius a and wall thickness h,
which is filled with a fluid of density r0 and elasticity K. The tube wall material has density rs, elasticity E and
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Fig. 1. Initial conditions for wave propagation (adapted from Ref. [3]).
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a Poisson’s ratio of n. The assumed non-equilibrium situation at time t ¼ 0 is shown in Fig. 1. The pressure p

and axial fluid velocity v have positive initial values p0 and v0 in the left half of the tube (zo0), respectively,
related by

p0 ¼ r0cv0, (1)

where

c ¼

ffiffiffiffiffi
K

r0

s
. (2)

All other pressures, velocities and displacements are zero. These initial conditions correspond to a step wave
moving in the positive axial direction (z40) at speed c. The wave would propagate in an unchanged form in a
pipe with entirely rigid walls, but not so in a pipe with elastic walls.

Skalak used the following data in his test problem: a ¼ 0.3048m, h ¼ 4.857mm, r0 ¼ 999.8 kg/m3,
K ¼ 2.322GPa, rs ¼ 7849 kg/m3, E ¼ 206.8GPa, n ¼ 0.3, and herein p0 ¼ 100 kPa. Thus, c ¼ 1524m/s and
v0 ¼ 0.06563m/s.
3. Skalak’s model

Skalak considered axisymmetric thin-walled tubes. His mathematical model included—in addition to
standard water-hammer theory—the effects of radial inertia of liquid and pipe, and longitudinal stress
waves in the pipe wall. Bending stresses and rotatory inertia in the pipe wall, that may be of importance
near steep wave fronts and near pipe anchors, were also taken into account. Axisymmetric shear deformation,
fluid viscosity and lobar (non-circular) modes of wall vibration were neglected. The influence of lobar
modes on axial vibration is small at low frequencies because there is no significant oval–axial interaction
mechanism.
3.1. FSI four-equation model

In addition, Skalak presented a simplified model that is the low-frequency limit of the two-dimensional
fluid and shell representations. This so-called ‘‘FSI four-equation model’’ describes the axial/radial vibra-
tion of liquid-filled pipes. Two equations for the liquid are coupled with two equations for the pipe, through
terms proportional to Poisson’s contraction ratio, and through mutual boundary conditions. Skalak showed
that the ‘‘FSI four-equation model’’ permits solutions that are waves of arbitrary shape travelling
without dispersion at the phase velocity of either the liquid or the pipe, but he made no attempt to solve
the four equations in general. The model has been validated experimentally by many researchers [8], most
notably by Vardy and Fan [11], and it can be solved exactly [12,13]. This model is well-known and not pursued
herein.
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4. Skalak’s solution

Skalak applied Fourier and Laplace transforms to find dispersion relationships for the modes of free
vibration of the coupled fluid–pipe system. He applied inverse Fourier and Laplace transforms to arrive at
solutions in the form of single indefinite integrals of real-valued functions. The integrals were too difficult to
solve exactly, but Skalak was able to find asymptotic solutions for large values of axial distance z and time t.
An important result, analysed herein, and recognised by others: ‘‘His doctoral dissertation [2] was on the
water-hammer effect, and it received enough attention that the engineering director of the Grand Coulee Dam
project used the theoretical results to predict pressure wave propagation effects at distances of several miles
from the dam’’ [1].

Skalak’s asymptotic solutions revealed that wave fronts spread out proportionally to the cube root of time,
and that the pressure near a sharp wave front may exceed the classical Joukowsky value as a result of radial
pipe/fluid vibration. Skalak predicted and quantified precursor waves in the fluid. These are pressure changes
provoked by axial stress waves in the pipe wall and thus preceding the main water-hammer waves. Precursor
waves were actually observed in metal and plastic pipes by Thorley [14] and by Williams [15].

The re-calculated solution to Skalak’s test problem is shown to scale in Fig. 2(a). The water-hammer wave
has travelled a distance of c1t ¼ 980.9m at time t ¼ 1 s. The precursor, hardly visible at the scale of Fig. 2(a),
but magnified in Fig. 2(b), has travelled a distance of c2t ¼ 5279m. The wave speeds c1 and c2 are

c1;2 ¼ c
2ARþ Rþ R2ð1� n2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ARþ Rþ R2ð1� n2Þ
� �2

� 4R2ð1� n2Þð2Aþ RÞ

q
2ð2Aþ RÞ

8<
:

9=
;

1=2

, (3)

where c1 has the minus sign and c2 the plus sign, and where

A ¼
r0
rs

a

h
and R ¼

c0

c

� �2
(4)

with c0 defined below. Here A ¼ 7.994 and R ¼ 12.47. The water-hammer wave speed c1 is an exten-
sion of the Korteweg formula ce, and the precursor wave speed c2 is approximately the wave speed in thin
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Fig. 2. Pressure as a function of distance at time t ¼ 1 s: (a) water hammer with precursor wave; (b) precursor wave front (detail of (a)).
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plates c0, with

ce ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Ka=Eh
� �q and c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rsð1� n2Þ

s
. (5)

Here, ce ¼ 981.9m/s and c0 ¼ 5381m/s.
The pressure at z ¼ 0 in Fig. 2(a) is substantially lower than p0 ¼ 105 Pa, because the impedance p/v

(at z ¼ 0) is not equal to p0/v0, but to r0c1 ¼ (c1/c)(p0/v0). The oscillations trailing the wave fronts are not due
to numerical error, but predicted by the theory. Fig. 3 shows these oscillations in a non-dimensional diagram,
which is assumed to be independent of the early history. The horizontal axis gives the dimensionless distance
relative to the wave front,

z�n ¼ ðz� cntÞ=
ffiffiffiffiffiffiffi
dnt3

p
, (6)

where the index n is 1 for the water-hammer wave and 2 for the precursor wave. The constants dn are defined by

dn ¼ ca2
ðAþ 4Þ cn=c

� �5
� cn=c
� �3

ð1þ RÞ þ cn=c
� �

R
h i

�16 cn=c
� �2

ð2Aþ RÞ þ 8Rð2Aþ 1Þ þ 8R2ð1� n2Þ

8<
:

9=
;. (7)

Here, d1 ¼ 2.926m3/s and d2 ¼ 11.48m3/s. The original dn given by Skalak contains a (h/a)2-term that has
been left out here, not only because it is small, but also because it could not be re-derived. The vertical axis in
Fig. 3 gives the dimensionless wave height through the integral

IðbnÞ ¼
1

2
�

1

p

Z �1
0

sinðZþ bnZ
3Þ

Z
dZ

¼
1

3
�

Z 1=
ffiffiffiffiffi
3bn

3
p

0

AiðxÞdx, ð8Þ

which has been drawn as a function of z�n ¼ 1=
ffiffiffiffiffi
bn

3
p

with

bn ¼
dnt

ðz� cntÞ3
. (9)

The upper bound in the first integral is +N for bn40 and �N for bno0. Three integrals can be calculated
analytically:

Ið0�Þ ¼ 1; Ið0þÞ ¼ 0 and Ið�1Þ ¼ 1
3
. (10)
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Fig. 3. Wave front dispersion; horizontal axis: z�n (Eq. (6)) and vertical axis: I (Eq. (8)).
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The other integrals have been calculated numerically for 1000 values of |bn| in the range 10�7–103, with the
upper bound in the first integral in Eq. (8) as large as possible [16]. Using tables of Ai—the Airy function of
the first kind—Skalak [17] computed numerically the second integral in Eq. (8). The integral I, and hence the
wave height, is constant when bn is constant, which is along the curves

z ¼ cntþ

ffiffiffiffiffiffiffi
dnt

bn

3

s
(11)

in the distance–time plane. The wave front, where bn ¼7N and 1=
ffiffiffiffiffi
bn

3
p

¼ 0, is clearly identified as the only
point travelling at both constant speed, cn, and constant dimensionless height, 1

3
.

The dimensional pressure for water-hammer (n ¼ 1) and precursor (n ¼ 2) waves travelling in the positive z

direction is (up to a constant, vertical shift):

pnðbnÞ ¼ CpnCwn

Z �1
0

sinðZþ bnZ
3Þ

Z
dZ (12)

with

Cpn ¼ 2r0c
2
n=a½ðc2n=c2Þ � 1�; Cwn ¼ p0=prshðcn=c� 1ÞDn,

Dn ¼ 4r0c
4
n=rshc2aðc2n=c2 � 1Þ2 þ 2c20½n

2=ð1� c20=c2nÞ
2
þ 1� n2�=a2,

where a (h/a)2-term has been neglected in Dn. Here, Cp1Cw1 ¼ �26,105 Pa and Cp2Cw2 ¼ �146.5 Pa.

4.1. FSI wave front spreading

From Fig. 3 it is seen that the initial step wave front spreads out, that is, the steepness of the front slope
continuously diminishes. Skalak defined a measure for the length Ln of the wave front, namely the reciprocal
of the slope at the point (z�n ¼ 0, I ¼ 1

3
) for the unit jump in Fig. 3. He derived the following formula:

LnðtÞ ¼
3p

ffiffiffiffiffiffiffi
dnt3
p

Gð1
3
Þ sinðp

3
Þ
� 4

ffiffiffiffiffiffiffi
dnt3

p
, (13)

where G is the gamma function. For the data given in Skalak’s test problem, L1(1 s) ¼ 5.810m (water-hammer
wave) and L2(1 s) ¼ 9.163m (precursor wave), as shown in Fig. 4. The length of the wave front increases
proportionally to the cube root of time t. For non-step excitation one might start at the proper initial length in
Fig. 4, noting that the diagram is not valid for small t, say to1 s.

4.2. FSI wave front oscillation

From Fig. 3 it is seen that the passage of a wave front causes a decaying oscillation of increasing frequency.
The maximum overshoot is 1.2744, where the classical Joukowsky value would be 1. The average frequency
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0
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Fig. 4. Wave front spreading. Lengths of water hammer (L1, solid line) and precursor (L2, dashed line) wave fronts as a function of time.
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Fig. 5. Wave front oscillation. Average frequencies of water hammer (f1, solid line) and precursor (f2, dashed line) waves as a function

of time.
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estimated from the 10 maxima in Fig. 3, propagating at almost the speed cn, is

f nðtÞ � 0:36
cnffiffiffiffiffiffiffi
dnt3
p � 1:44

cn

Ln

. (14)

This average frequency decreases in time as displayed in Fig. 5. The average frequency f1 decreases from
about 250Hz at t ¼ 1 s to about 100Hz at t ¼ 10 s, which is much lower than the ring frequency of a freely
vibrating pipe hoop,

f ringðaÞ ¼
1

2pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rs þ a a=h
� �

r0

s
, (15)

where the coefficient a determines the added fluid mass. In the literature values of a of 1
4
, 1
3
and 1

2
have been

proposed [18–21], depending on the assumed distribution of the radial fluid velocity. Here, the values
fring(

1
4
) ¼ 1550Hz, fring(

1
3
) ¼ 1400Hz and fring(

1
2
) ¼ 1200Hz are much higher than the values of f1 (t41 s) in

Fig. 5. Interaction with longitudinal fluid and pipe modes has been totally ignored in the derivation of fring.
The cut-on frequency of the lowest lobar mode (ovaling) of vibration is 16Hz [16].
5. Dimensionless charts

Introducing the dimensionless quantities

t� ¼
c

a
t; L�n ¼

Ln

a
; f �n ¼

a

c
f n; c�n ¼

cn

c
; d�n ¼

dn

ca2
, (16)

Eqs. (13) and (14) become

L�nðt
�Þ � 4

ffiffiffiffiffiffiffiffiffi
d�nt�

3

q
(17)

and

f �nðt
�Þ � 0:36

c�nffiffiffiffiffiffiffiffiffi
d�nt�3

p . (18)

The parameters c�n and d�n depend on A, R and n. The wave speed c in Eq. (16) depends only on the
properties of the contained fluid, and c is about 1500m/s for water. It should be noted that for water-hammer
problems the real time t is related to t* by t ¼ ða=cÞt� ¼ ðc1=cÞða=LÞðL=c1Þt

�, where L is the length of the
pipeline and L/c1 is the fundamental time scale in water hammer.
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Fig. 7. Water-filled steel pipe. Water-hammer wave front frequency f �1 ¼ a f 1=c as a function of time t* ¼ ct/a for five different values

of a/h. From top line to bottom line: a/h ¼ 5, 10, 20, 40 and 80.

A.S. Tijsseling et al. / Journal of Sound and Vibration 310 (2008) 718–728 725
5.1. Water-filled steel pipe

Typical values of A, R and n for a water-filled steel pipe are: A ¼ (1/8)(a/h), R ¼ 12.5 and n ¼ 0.3. Fig. 6
displays the dependence of L�1ðt

�Þ on the ratio a/h of pipe radius to wall thickness. The length of the water-
hammer wave front is at most of the order of 10 pipe diameters, and thicker pipe walls lead to shorter
wave fronts. Correspondingly, thicker pipe walls give higher frequencies of wave front oscillation, as shown
in Fig. 7.
5.2. Water-filled plastic pipe

In plastic pipes viscoelastic behaviour of the wall material influences wave dynamics [9,22], but in the
vicinity of steep wave fronts an instantaneous elastic response is expected instead of a retarded viscous
response. Additionally, the strong dependence of c1 on a/h in plastic pipes makes it worthwhile pursuing the
elastic approximation.

Typical values of A, R and n for a water-filled plastic pipe are: A ¼ a/h, R ¼ 1 and n ¼ 0.4. Because R ¼ 1,

the dimensionless wave speeds are c�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Þ=ð2Aþ 1Þ

p
and c�2 ¼ 1, so that the precursor wave speed c2
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Fig. 10. Water-hammer wave speed c�1 ¼ c 1=c as a function of a/h, for (a) water-filled steel pipe and (b) water-filled plastic pipe.
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is independent of A and n. Figs. 8 and 9 display L�1ðt
�Þ and f �1ðt

�Þ. Like the steel pipe, the wave front length is
of the order of 10 diameters, but—surprisingly—the front length decreases for increasing ratio a/h. This means
that for given pipe radius, thicker pipe walls cause more dispersion. Further investigation of this fact showed
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that for a very thin-walled steel pipe the same phenomenon occurs: for ratios a/h larger than 112, L�1 decreases
for increasing a/h. Similarly, for very thick-walled plastic pipes, with a/h smaller than 0.24, L�1 decreases for
decreasing a/h. This behaviour can be explained from the strong a/h-dependence of the wave-speed ratio
c1=c ¼ c�1, shown in Fig. 10, as a consequence of pipe hoop elasticity. The plastic pipe (Fig. 10(b)) has much
smaller values of c1/c than the corresponding steel pipe (Fig. 10(a)), and this has according to Eq. (7) a strong
effect on d�n. The much smaller values of c�1 ¼ c1 = c also explain (see Eq. (18)) that the frequencies in the
plastic pipe (see Fig. 9) are much smaller than the corresponding frequencies in the steel pipe (see Fig. 7).

6. Practical considerations

Skalak’s theory describes reflection-free wave propagation in long liquid-filled pipes. In cross-country
pipelines, the pressure waves in the liquid may travel long distances without significant reflection, but the stress
waves in the wall will meet pipe supports and/or anchors at regular intervals. The stress waves will partly
reflect from these supports, and most likely non-axisymmetric bending will be generated. The influence of
these reflections on Skalak’s results is unknown.

Skalak’s instantaneous and flat excitation is difficult to realise in practice [23]. Only the collapse of column
separations [24] and the impact of gas shock waves [25–28] may be similar to such an extreme excitation. This
means that the trailing oscillations associated with radial vibration will be difficult to generate.

The smoothing of the wave front is found to be very small and will be difficult to distinguish from other
damping effects in laboratory tests and field measurements. For example, in an analysis similar to Skalak’s,
Bahrar et al. [29] have shown that fluid viscosity has a significant long-term effect on the dispersion of the
wave front.

Skalak’s asymptotic solution is valid for large time t and z (compared to radius a). In his approximations,
terms of the order of 1/Ot have been neglected, which formally means that tb1. Unfortunately, Skalak has
not made the time t non-dimensional. Also, long wavelength approximations have been made, where the
wavelength lb2pa and l42p

ffiffiffiffiffiffiffiffiffiffiffiffi
d1=c1

p
, although the local behaviour near wave fronts includes short

wavelengths. The loss of accuracy caused by the truncation of several integrals is another matter of concern.
Nevertheless, Skalak’s dispersion theory has been partly confirmed by others in the impact of elastic bars
[17,23,30] and in water hammer in liquid-filled pipes [29,31,32].

7. Conclusion

Skalak’s asymptotic solution describing the propagation and dispersion of water hammer (n ¼ 1) and
precursor (n ¼ 2) waves has been investigated. The solution is shown in the ‘‘universal’’ Fig. 3 and it is valid
for large zn ¼ cnt. Skalak defined the important length scale

ffiffiffiffiffiffiffiffi
dn t3
p

, which stretches the wave front and trailing
oscillation in Fig. 3. Skalak presented results for one test problem, the solution of which is shown to scale in
Fig. 2. New estimates of front length and average frequency of oscillation are given for a range of situations in
dimensionless diagrams (Figs. 6–9). The main conclusion from these diagrams is that in unrestrained water-
filled steel and plastic pipes wave front spreading due to FSI is small, at most of the order of 10 pipe diameters.
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