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Abstract

A two-degree of freedom spring-mass system, described by two coupled second-order ODEs, is considered from a

higher-order one-particle (HOOP) viewpoint. A Lagrangian leading to the single fourth-order differential equation now

contains time derivatives greater than the first order. The Hamiltonian constructed according to Ostrogradski’s method,

traditionally regarded as the conserved energy of the system, is negative for one of the modes of vibration, an attribute that

would lead to a conclusion in some branches of physics that the mode is unphysical. Reversing this process, a given fourth-

order equation, with no apparent underlying second-order structure, is cast into a coupled second-order form allowing one

to construct a pseudo-mechanical energy which, unlike the Ostrogradski Hamiltonian, is always positive. The introduction

of a viscous damping element leads to velocity and jerk (third derivative)-dependent terms within the HOOP description.

In contrast, a physical realisation leading to an isolated velocity-dependent term in the HOOP description shows the

instability to be flutter caused by external excitation at the higher natural frequency, rather than an exchange of energy

between positive and negative energy modes.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Classical mechanics [1] is based upon Newton’s laws or, equivalently, the application of Hamilton’s
principle to a Lagrangian possessing time derivatives no higher than the first order; both approaches lead to
second-order differential equations of motion. In turn, the Hamiltonian H, an integral of the motion for
conservative systems, is typically equal to the mechanical energy Em and is positive. In contrast, modern
physics has considered the possibility of theories with higher-order time derivatives; examples include
corrections to general relativity, string theory, and quantum mechanics [2,3]. The Lagrangian now possesses
time derivatives higher than the first order, and the Hamiltonian H is constructed according to a procedure
introduced first by Ostrogradski (see Whittaker [4]); being a property of time invariance, H is still regarded as
the energy of the system. However, the energy of one of the modes of the higher-derivative theory is very often
negative, and there is a widespread view within the literature [5,6] that such modes should be regarded as non-
physical or ‘‘ghost’’. This so-called Ostrogradski instability suggests that the amplitude of both positive and
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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negative energy modes can simultaneously increase without bound, yet the total energy of the system remains
constant. Woodard [5] has suggested that this instability should provide a ‘‘no-go’’ test on the physical validity
of a candidate Lagrangian for any particular application, and that ‘‘Newton was right to expect that physical
laws take the form of second-order differential equations when expressed in terms of fundamental dynamical
variables.’’

The present work was motivated by two papers by Chervyakov and Nesterenko [7] and Nesterenko [8] in
which the formulation of Timoshenko beam theory (TBT), with its positive definite mechanical energy, was
proposed as a surrogate to avoid this instability. TBT describes the transverse vibration of elastic beams when
corrections for shear deformation and rotatory inertia are made to the classic Euler–Bernoulli theory.
Newton’s laws lead to two coupled second-order time-derivative equations in the transverse displacement and
the cross-sectional rotation; one of these variables, usually the rotation, is then eliminated to give a single
partial differential equation of the fourth order in both space and time for the transverse displacement.
Unfortunately, the second spectrum (TBT2) of natural frequency predictions are largely inaccurate when
compared with exact elastodynamic theory [9,10], suggesting that TBT2 is not a fair representation of the
actual physics, so the virtue of TBT as a surrogate is somewhat diminished.

At first sight, this instability would appear to be of little importance within classical mechanics, where the
fundamental governing equations are of second order. Moreover, the TBT model in Ref. [10] and the two-
degree of freedom model studied here, have features which render negative energy physically acceptable. First,
the absence of damping implies no interaction with the surroundings, and the negative energy mode would
thus be unobservable. Second, factorisation of the frequency equation of TBT into two distinct spectra, or two
frequencies as occurs here, implies no interaction between the negative and positive modes; the negative energy
mode is then acceptable, as the two modes cannot mutually excite one another. However, mode interaction is a
necessity for some TBT end conditions. Below the cut-off frequency oco ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAG=rI

p
, one has propagating

(TBT1) and evanescent (TBT2) waves associated with trigonometric and hyperbolic functions, respectively;
above the cut-off frequency, the hyperbolic functions become trigonometric, implying disturbance
propagation. End conditions for the hinged–hinged beam are satisfied by trigonometric functions alone,
which means that the frequency equation factorises, and there is no interaction between the positive and
negative energy modes. The negative energy second spectrum is thus isolated and can be disregarded;
consequently, it was found in Ref. [10] that first spectrum natural frequency predictions some five times greater
than the cut-off frequency were in excellent agreement with exact elastodynamic plane stress predictions.

In contrast, for the majority of beam end combinations, such as free–free, the hyperbolic functions are
necessary and the frequency equation does not factorise. Above the cut-off frequency, these hyperbolic
(evanescent) functions become trigonometric (propagating), which implies the interaction of positive and
negative energy modes. In Ref. [11], the concept of a pseudo-second spectrum was introduced to describe these
propagating contributions, and it was conjectured that such mode interaction would debase the overall theory.
(After all, if the second spectrum predictions are largely inaccurate for the hinged–hinged case, there seems no
good reason why the pseudo-second spectrum contributions should be accurate for the free–free.) Comparison
with experiment, and finite element and other simulations, for the free–free beam indicated that the cut-off
frequency did indeed represent an upper limit for reasonable accuracy of TBT. While stability issues were not
considered explicitly in Ref. [11], one might associate a negative energy mode with defective physics; in turn, its
necessary inclusion for end conditions such as free–free, might be interpreted as leading to defective frequency
predictions above the cut-off frequency.

While the above concepts are largely concerned with field theories, here they are explored within the context
of a discrete, two-degree of freedom spring-mass system, which is perfectly stable in the absence of external
excitation. It is shown how the traditional description of coupled 2� 2 matrix second-order differential
equations (consistent with Newton’s second law) can be written either as a coupled 4� 4 matrix first-order
differential equation (the familiar companion or phase-variable form) or, with equal validity but less
familiarity, as a single fourth-order differential equation (the so-called higher-order one-particle, or HOOP,
description), which may be determined also from a higher time-derivative Lagrangian. The latter allows the
conventional and Ostrogradski Hamiltonians to be related to the mechanical energy. Despite the stability of
the system, its HOOP description also displays the Ostrogradski instability. As noted above, the absence of
damping and the factorisation of the frequency equation, indicating two non-interacting modes, imply that the
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negative energy mode is physically acceptable. On the other hand, it is now difficult to regard the negative
energy mode as somehow physically defective, a charge which could be readily levelled at TBT2. This raises
questions as to what really can be concluded from a negative energy Ostrogradski Hamiltonian, and the
significance of the means by which the higher-derivative theory is constructed—answers to which,
unfortunately, are not available here.

The process of generating the higher-derivative formulation is then reversed: a single fourth-order differential
equation for which there is no explicit underlying second-order structure is cast into a (non-unique) coupled
2� 2 matrix second-order differential form. This allows one to introduce a pseudo-mechanical energy Ep-m, an
integral of the motion which, unlike the Ostrogradski Hamiltonian, is always positive.

Finally, the effect of damping is studied. Nesterenko [12] has recently considered the effect of a single
velocity-dependent term g _x, to represent interaction with the surroundings, on the higher-order differential
equation: the amplitude of the lower mode of oscillation decays exponentially with time, while the higher
mode increases exponentially. Here, it is shown that the introduction of a damping element within the coupled
two-degree of freedom spring-mass system leads to a higher-order equation containing not just an _x term, but
also an _ _ _x term; thus a single _x term within the higher-order equation cannot be regarded as a dissipative force.
A physical realisation of this single velocity-dependent term is presented in the form of a control system, and
the source of the instability becomes clear: it is not the Ostrogradski instability in the sense of an energy
exchange between positive and negative energy modes. Rather, the instability can be viewed as flutter under
external excitation at the higher natural frequency.

2. Example system

For the two-degree of freedom spring-mass system shown in Fig. 1, the governing equations of motion may
be written in the 2� 2 matrix form

m 0

0 m

� �
€x1

€x2

" #
þ

2k �k

�k 2k

� �
x1

x2

" #
¼ 0, (1)

where dot denotes differentiation with respect to time. Assuming synchronous vibration x1,2 ¼ X1,2 sinot

leads to natural frequencies o1 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
with mode shape ½X 1 X 2 �

ð1ÞT ¼ ½ 1 1 �T, and o2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3k=m

p
with

mode shape ½X 1 X 2 �
ð2ÞT ¼ ½ 1 �1 �T. (The symmetry of this simple system allows one to identify the first

and second mode shapes as symmetric and asymmetric, respectively, from which the natural frequencies
follow with little effort.) The general solution of Eq. (1) may be written as

x1

x2

" #
¼ A sin o1tþ B cos o1tð Þ

1

1

� �
þ C sin o2tþD cos o2tð Þ

1

�1

� �
; (2)

in order to evaluate the constants A, B, C, and D, two initial conditions are required for each mass. Thus, if the
system is at rest at time t ¼ 0, that is _x1ð0Þ ¼ _x2ð0Þ ¼ 0, one requires A ¼ C ¼ 0. Then, if the initial
displacements were to be consistent with the first mode of vibration, that is x1(0) ¼ x2(0) ¼ 1, one has B ¼ 1
and D ¼ 0, and the solution becomes [x1 x2]

T
¼ [1 1]T coso1t. If consistent with the second mode, that is

x1(0) ¼ �x2(0) ¼ 1, one has B ¼ 0 and D ¼ 1, and the solution becomes [x1 x2]
T
¼ [1 �1]T coso2t.

The second-order time-derivative 2� 2 matrix problem can be re-written in other, equally valid, forms. The
more familiar is a state-space formulation, which is the approach adopted within modern theory of dynamical
systems: introducing the velocities v1 ¼ _x1, and v2 ¼ _x2, Eq. (1) can be written as the 4� 4 first-order
m

k k 

1x 2x

m
k

Fig. 1. Two-degree of freedom spring-mass oscillator.
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time-derivative equation

_x1

_x2

_v1

_v2

2
6664

3
7775 ¼

0 0 1 0

0 0 0 1

�2k=m k=m 0 0

k=m �2k=m 0 0

2
66664

3
77775

x1

x2

v1

v2

2
6664

3
7775 (3)

or more compactly _s ¼ As, where the system matrix A is said to be in companion or phase-variable canonical

form. The underlying second-order origins of this first-order matrix equation are still evident, as the elements
of A are written in algebraic terms. However, if matrix A was to be obtained by some system identification
technique, when only numerical values would be known, extracting the underlying second-order structure is
not so straightforward, see Friswell et al. [13] and references therein.

Alternatively, Eq. (1) may be written as a single fourth-order derivative equation; from the first row, one has
x2 ¼ ðm €x1 þ 2kx1Þ=k, and substituting into the second gives

x
ð4Þ
1 þ 4ðk=mÞ €x1 þ 3ðk=mÞ2x1 ¼ 0, (4)

where the superscript (4) denotes the fourth differential with respect to time. This is the HOOP viewpoint.
According to Kerner [14]: ‘‘Physically, the imprint of particle two into the motion of particle one appears
equally clear whether one’s eye views them both together, or concentrates one’s gaze, and analytic machinery,
solely on particle one.’’ Eq. (4) may be written as

x
ð4Þ
1 þ o2

1 þ o2
2

� �
€x1 þ o2

1o
2
2x1 ¼ 0, (5)

where the natural frequencies o1 and o2 are defined above; setting x1 ¼ X1 sinot leads to the frequency
equation

o4 � o2
1 þ o2

2

� �
o2 þ o2

1o
2
2 ¼ 0, (6)

which factorises as

o2 � o2
2

� �
o2 � o2

1

� �
¼ 0. (7)

Thus, the HOOP formulation leads to precisely the same natural frequencies, as it should.
The general solution to Eq. (5) is

x1 ¼ A sin o1tþ B cos o1tþ C sin o2tþD cos o2t, (8)

which is just the first row of Eq. (2), and rather than two initial conditions for each particle, one now requires
four initial conditions for the single particle. As before, suppose the system is at rest at time t ¼ 0; now one can
only set _x1ð0Þ ¼ 0, to give Ao1 þ Co2 ¼ 0. Suppose, also, that the initial displacement is x1ð0Þ ¼ 1, which
gives B+D ¼ 1. For this HOOP solution, one requires higher-order initial conditions; thus the acceleration
may be expressed as

€x1 ¼ �Ao2
1 sin o1t� Bo2

1 cos o1tþ Ao1o2 sin o2tþ B� 1ð Þo2
2 cos o2t, (9)

with initial acceleration

€x1 0ð Þ ¼ �Bo2
1 þ B� 1ð Þo2

2. (10)

Then if B ¼ 1, the initial acceleration is €x1ð0Þ ¼ �o2
1 and one has vibration in the lower frequency mode only;

similarly, if B ¼ 0, the initial acceleration is €x1ð0Þ ¼ �o2
2 and one has vibration in the higher frequency mode

only. Last, suppose that the third derivative (the jerk) _ _ _x1ð0Þ ¼ 0; this allows one to determine that A ¼ C ¼ 0.

2.1. Lagrangians and Hamiltonians

Governing differential equations are generally found by application of Newton’s second law, or by application
of Hamilton’s principle. The Lagrangian function is (almost always) defined as L ¼ T�U, where T is
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the kinetic energy and U is the strain energy; for the present example

T ¼ m _x2
1=2þm _x2

2=2; U ¼ kx2
1=2þ k x2 � x1ð Þ

2=2þ kx2
2=2, (11a, b)

and according to Hamilton’s principle the governing equations are generated from d
R t2

t1
Ldt ¼ 0. Performing the

variation on the action integral, and integrating by parts in the usual way, leads to Eq. (1). The momenta
conjugate to the displacement coordinates are pi ¼ qL=q _xi, giving p1 ¼ qL=q _x1 ¼ m _x1 and p2 ¼ qL=q _x2 ¼ m _x2.
The Hamiltonian function H ¼

P
ipi _xi � L, or H ¼ p1 _x1 þ p2 _x2 � L ¼ m _x2

1 þm _x2
2 � T þU ¼ T þU . Thus,

the Hamiltonian H is equal to the sum of the kinetic and strain energies, which is equal to the mechanical energy
Em and is a conserved quantity, an integral of the motion.

Since the Hamiltonian is a constant of the motion, its time derivative must be zero, from which one finds

dH=dt ¼ _x1 m €x1 þ 2kx1 � kx2ð Þ þ _x2 m €x2 þ 2kx2 � kx1ð Þ ¼ 0; (12)

this restores the two coupled second-order equations, Eq. (1), under the assumption that the velocities _x1a0,
_x2a0. Note that the kinetic energy is quadratic in the velocities, and strain energy is independent of the
velocities, Eqs. (11a, b), and this is the requirement stated in Ref. [1] that the Hamiltonian should be equal to
the mechanical energy, that is H ¼ Em.

Now, it is equally valid to write the Langrangian as L ¼ a(T�U) where a is any constant; of particular
interest is the case when a is set equal to �1. The governing equations of motion are unchanged, but the
generalised momenta become p1 ¼ �m _x1 and p2 ¼ �m _x2; the Hamiltonian becomes H ¼ �ðT þUÞ ¼ �Em,
and is still a conserved quantity. It is mere convention that the Lagrangian is not chosen in this way; the total
mechanical energy is a positive quantity, and it is natural that the Hamiltonian should likewise be positive, and
a is chosen as equal to +1. Quoting Lemos [15] ‘‘one cannot refrain from pointing out that there seems to be
no a priori physical reason to require H ¼ Em in classical mechanics. The derivation of Hamilton’s equations
in any modern book on analytical mechanics reveals that the Hamiltonian is constructed directly from the
Lagrangian, and its possible connection with the energy is discussed only a posteriori.’’

2.2. Higher-order Lagrangian

The single fourth-order Eq. (4) or (5) can be determined from the higher-order Lagrangian

L ¼
m2

2k
€x2
1 �

4k

m
_x2
1 þ

3k2

m2
x2
1

� �
(13)

or

L ¼
m2

2k
€x2
1 � o2

1 þ o2
2

� �
_x2
1 þ o2

1o
2
2x

2
1

� �
, (14)

and variation of the action integral, leading to the Euler–Lagrange equation (see Whittaker [4])

qL

qx
�

d

dt

qL

q _x

� �
þ

d2

dt2
qL

@ €x

� �
¼ 0. (15)

While this higher-order Lagrangian no longer has the structure L ¼ T�U, and now contains a term dependent
on the square of the acceleration, the ð _x1Þ

2 and (x1)
2 terms are negative and positive, respectively, which would

be consistent with negative kinetic and strain energies. The Hamiltonian associated with this higher-order
Lagrangian can be constructed according to a procedure described first by Ostrogradski, again see Ref. [4].
The canonical coordinates are defined as q1 ¼ x1, and q2 ¼ _x1, and these are conjugate to the generalised
momenta p1 ¼ ðqL=q _x1Þ � ðd=dtÞðqL=q €x1Þ and p2 ¼ qL=q €x1. One finds p2 ¼ ðm

2=kÞ €x1 and p1 ¼ �4m _x1�

ðm2=kÞ _ _ _x1; the latter has no obvious physical meaning. The (Ostrogradski) Hamiltonian is then constructed as
HO ¼ p1 _q1 þ p2 _q2 � L, and one finds

HO ¼
m2

2k
€x2
1 � 2m _x2

1 �
m2

k
_x1

_ _ _x1 �
3

2
kx2

1. (16)
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Since this Hamiltonian is conserved, its time derivative must be zero; from Eq. (16) one finds

dHO=dt ¼ �m2 _x1=k
� �

x
ð4Þ
1 þ 4ðk=mÞ €x1 þ 3ðk=mÞ2x1

	 

¼ 0, (17)

which restores the governing fourth-order Eq. (4), under the assumption that the velocity _x1a0.
Now write x1 ¼ X 1 sin ot in Eq. (16) to give

HO ¼
m2o4

2k
�

3k

2

� �
X 2

1 sin
2 otþ

m2o4

k
� 2mo2

� �
X 2

1 cos
2ot; (18)

the frequency equation (6) may now be used to show that

m2o4

2k
�

3k

2

� �
¼

m2o4

k
� 2mo2

� �
, (19)

in which case the Hamiltonian becomes explicitly independent of time t, as it should, and may be expressed as

HO ¼ mo2X 2
1

mo2

k
� 2

� �
. (20)

From this HOOP viewpoint, the kinetic and strain energies can be expressed as

T ¼
m _x2

1

2
þ

m

2

m _ _ _x1 þ 2k _x1

k

� �2

; U ¼
kx2

1

2
þ

k

2

m €x1 þ kx1

k

� �2

þ
k

2

m €x1 þ 2kx1

k

� �2

, (21a, b)

where x2 has been eliminated from Eqs. (11a, b) by employing x2 ¼ ðm €x1 þ 2kx1Þ=k. Setting x1 ¼ X 1 sin ot in
Eqs. (21a, b) leads to

T ¼
X 2

1 cos
2ot

2
5mo2 �

4m2o4

k
þ

m3o6

k2

� �
; U ¼

X 2
1 sin

2 ot

2
6k � 6mo2 þ

2m2o4

k

� �
; (22a, b)

employing the frequency equation (6), these reduce to

T ¼ mo2X 2
1 cos

2 ot; U ¼ mo2X 2
1 sin

2ot, (23a, b)

and the mechanical energy Em ¼ T þU reduces to Em ¼ mo2X 2
1. The Ostrogradski Hamiltonian, Eq. (20),

may now be re-expressed as

HO ¼ mo2X 2
1

mo2

k
� 2

� �
¼ Em

mo2

k
� 2

� �
, (24)

so the general expression for HO is no longer equal to the mechanical energy; this might have been anticipated,
as the kinetic energy, Eq. (21a), is no longer a quadratic function of the now single velocity.

For the lower natural frequency, o1 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, one finds

H
ð1Þ
O ¼ �kX 2

1o0; (25)

in contrast, the mechanical energy associated with this mode can be calculated as E 1ð Þ
m ¼ kX 2

140, so one has
H
ð1Þ
O ¼ �Eð1Þm . For the higher natural frequency, o2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3k=m

p
, one finds

H
ð2Þ
O ¼ 3kX 2

140, (26)

which is equal to the mechanical energy for this mode, that is H
ð2Þ
O ¼ Eð2Þm . This is the Ostrogradski instability:

the Hamiltonian associated with one of the natural frequencies—here the lower of the two—is negative. It is
simple to confirm that these quantities are indeed conserved during vibration. For example, if one has the
initial conditions x1ð0Þ ¼ X 1, x2ð0Þ ¼ �X 1, with _x1ð0Þ ¼ _x2ð0Þ ¼ 0, that is the velocities are initially zero, and
the initial displacements are in accordance with the eigenvector for the higher frequency, then vibration will
occur only at the higher frequency; the initial strain energy is then equal to 3kX 2

1 which is the conserved
quantity. Similarly, if one has the initial conditions x1ð0Þ ¼ X 1, x2ð0Þ ¼ X 1, with _x1ð0Þ ¼ _x2ð0Þ ¼ 0, then
vibration will occur only at the lower frequency; the initial strain energy is then equal to kX 2

1 which is the
negative of the conserved quantity according to Eq. (25).
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Now, one can equally define the Lagrangian to be the negative of that in Eq. (13), as

L ¼
m2

2k
� €x2

1 þ
4k

m
_x2
1 �

3k2

m2
x2
1

� �
. (27)

The canonical coordinates are still defined as q1 ¼ x1, and q2 ¼ _x1 while the conjugate generalised momenta
become p1 ¼ ðqL=q _x1Þ � ðd=dtÞðqL=q €x1Þ ¼ 4m _x1 þ ðm

2=kÞ _ _ _x1 and p2 ¼ ðqL=q €x1Þ ¼ �ðm
2=kÞ €x1. The Hamilto-

nian is again constructed as HO ¼ p1 _q1 þ p2 _q2 � L, and one finds

HO ¼ �
m2

2k
€x2
1 þ 2m _x2

1 þ
m2

k
_x1

_ _ _x1 þ
3

2
kx2

1, (28)

which is exacty the negative of that given in Eq. (16). In turn, for each of the two modes, one finds expressions
for H

ð1Þ
O and H

ð2Þ
O which are the negative of those in Eqs. (25) and (26); now the higher frequency mode has the

negative energy.
We are thus led to the following unsatisfactory state of affairs: a system which is perfectly stable in the

absence of external excitation, considered from a HOOP point of view has a negative Ostrogradski
Hamiltonian for one mode of vibration; in some branches of modern physics this would be sufficient to
conclude that the mode is unphysical. Moreover, since the original sign of the Lagrangian is arbitrary, it seems
that one cannot decide which of the two modes is associated with the negative energy. For this example, one
has the advantage of the underlying second-order structure and the positive definite mechanical energy;
however if one is presented with a given Lagrangian containing time derivatives greater than the first, leading
to a fourth-order time-derivative equation, it may not be apparent that the same fourth-order equation can
also be derived from two coupled second-order equations, by elimination of one of the variables. Further, one
might expect the higher-order Lagrangian/fourth-order equation to have some standing in its own right,
irrespective of the means by which it is derived; thus the implication of the negative Ostrogradski
Hamiltonian, indeed the existence of the Ostrogradski instability, is called into question. A means of avoiding
this issue is now developed.

3. Pseudo-mechanical energy

The starting point is now the higher-order time-derivative Eq. (5), also known as the Pais–Uhlenbeck
equation [2]. Introducing the expression

€x1 ¼ ax2 þ bx1, (29)

and hence x
ð4Þ
1 ¼ a €x2 þ b €x1, where a and b are as yet undefined real constants having the units of (radian

frequency)2, into Eq. (5) gives

€x2 þ bþ o2
1 þ o2

2

� �
x2 þ

b2
þ b o2

1 þ o2
2

� �
þ o2

1o
2
2

a

 !
x1 ¼ 0; (30)

the variable x2 may be thought of as hidden. Eqs. (29) and (30) may be written in the matrix form

1 0

0 1

� �
€x1

€x2

" #
þ

�b �a

b2
þ b o2

1 þ o2
2

� �
þ o2

1o
2
2

a
bþ o2

1 þ o2
2

2
4

3
5 x1

x2

" #
¼ 0, (31)

or more compactly €xþ Kx ¼ 0 where matrix K and vector x are defined accordingly. One may regard K as a
pseudo-stiffness matrix for a two-degree of freedom system in which the mass of each particle is unity. Writing
x1;2 ¼ X 1;2 sin ot leads to

�b� o2 �a

b2
þ b o2

1 þ o2
2

� �
þ o2

1o
2
2

a
bþ o2

1 þ o2
2 � o2

2
64

3
75 X 1

X 2

" #
¼ 0; (32)
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for a non-trivial solution the determinant must be zero, and this leads to frequency equation (6), indicating
that the choice of the constants a and b has no influence upon the natural frequencies. However, we choose to
require that the pseudo-stiffness matrix K should be symmetric. (This requirement may be unnecessarily
restrictive, but it suits the present purpose.) The strain energy associated with the pseudo-stiffness matrix is
U ¼ xTKx=2, and we wish this to be positive-definite. It is well known that a positive-definite quadratic form
is only defined for a symmetric matrix, and the eigenvalues must be positive. For the present problem, the
eigenvalues are the squares of the natural frequencies, that is l1 ¼ o2

1, l2 ¼ o2
2, which are clearly positive.

Therefore positive-definiteness is assured if we require that K be symmetric, that is

b2
þ b o2

1 þ o2
2

� �
þ o2

1o
2
2 ¼ �a2. (33)

This may be expressed as

bþ o2
1

� �
bþ o2

2

� �
¼ �a2, (34)

and since the right-hand side is clearly negative, and o2 is taken as the higher of the two frequencies, so one
must have ðbþ o2

1Þo0, and ðbþ o2
2Þ40; these results are employed later.

Now define a pseudo-mechanical energy Ep-m as

Ep�m ¼ _x2
1=2þ _x2

2=2þ xTKx=2, (35)

which is clearly positive-definite, leading to

2Ep�m ¼ _x2
1 þ _x2

2 � bx2
1 � 2ax1x2 þ bþ o2

1 þ o2
2

� �
x2
2. (36)

Substitute from Eq. (29), x2 ¼ ð €x1 � bx1Þ=a, to give

2Ep�m ¼ 1þ
b2

a2

� �
_x2
1 �

2b

a2
_x1

_ _ _x1 þ
1

a2

_ _ _x2
1 þ bþ

b3
þ b2 o2

1 þ o2
2

� �
a2

( )
x2
1

� 2x1 €x1 �
2 b2
þ b o2

1 þ o2
2

� �� �
a2

x1 €x1 þ
bþ o2

1 þ o2
2

a2

� �
€x2
1 ð37Þ

and eliminating a in favour of b, using Eq. (34) gives

Ep�m ¼
1

2 bþ o2
1

� �
bþ o2

2

� � b o2
1 þ o2

2

� �
þ o2

1o
2
2

� �
_x2
1 þ 2b _x1

_ _ _x1 �

_ _ _x2
1



þbo2

1o
2
2x2

1 � 2o2
1o

2
2x1 €x1 � bþ o2

1 þ o2
2

� �
€x2
1

�
; ð38Þ

this is the general expression for the pseudo-mechanical energy, and possible alternative to the Ostrogradski
Hamiltonian. Since this energy is a constant, its time derivative must be zero; from Eq. (38) one finds

dEp�m=dt ¼ b _x1 �

_ _ _x1ð Þ x
ð4Þ
1 þ o2

1 þ o2
2

� �
€x1 þ o2

1o
2
2x1

	 

¼ 0, (39)

which restores the governing fourth-order Eq. (5), under the condition that ðb _x1 �

_ _ _x1Þa0, or equivalently _x2a0.
Now demonstrate that Ep-m is independent of time and positive for both modes of vibration: write

x1 ¼ X 1 sin ot, to give

Ep�m ¼
X 2

1 cos
2ot

2 bþ o2
1

� �
bþ o2

2

� � b o2
1 þ o2

2

� �
þ o2

1o
2
2

� �
o2 � 2bo4 � o6

� �

þ
X 2

1 sin
2 ot

2 bþ o2
1

� �
bþ o2

2

� � bo2
1o

2
2 þ 2o2

1o
2
2o

2 � bþ o2
1 þ o2

2

� �
o4

� �
. ð40Þ

For the lower frequency, set o ¼ o1 to give

E 1ð Þ
p�m ¼

o2
1X 2

1 o2
2 � o2

1

� �
2 bþ o2

2

� � , (41)
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which is positive, as the denominator ðbþ o2
2Þ40, and explicitly independent of time. For the higher

frequency, set o ¼ o2 to give

E 2ð Þ
p�m ¼

�o2
2X 2

1 o2
2 � o2

1

� �
2 bþ o2

1

� � , (42)

which is also positive, as ðbþ o2
1Þo0, and also independent of time. Thus, in contrast with the Ostrogradski

energy, the proposed pseudo-mechanical energy is positive for both natural frequencies.
Now consider possible values for b: the requirements ðbþ o2

2Þ40 and ðbþ o2
1Þo0 imply o2

1o� boo2
2, and

seemingly no more. However, a specific choice for b within the required range has implications on the mode
shapes: for example, if one takes b ¼ �ðo2

1 þ o2
2Þ=2, the pseudo-mechanical energy simplifies to

Ep�m ¼
1

o2
2 � o2

1

� �2 o4
1 þ o4

2

� �
_x2
1 þ 2 o2

1 þ o2
2

� �
_x1

_ _ _x1 þ 2 _ _ _x2
1



þo2

1o
2
2 o2

1 þ o2
2

� �
x2
1 þ 4o2

1o
2
2x1 €x1 þ o2

1 þ o2
2

� �
€x2
1

�
ð43Þ

and writing x1 ¼ X 1 sin ot gives

Ep�m ¼
X 2

1 cos
2ot

o2
2 � o2

1

� �2 o4
1 þ o4

2

� �
o2 � 2 o2

1 þ o2
2

� �
o4 þ 2o6

� �

þ
X 2

1 sin
2ot

o2
2 � o2

1

� �2 o2
1o

2
2 o2

1 þ o2
2

� �
� 4o2

1o
2
2o

2 þ o2
1 þ o2

2

� �
o4

� �
. ð44Þ

For the lower frequency, o ¼ o1, this reduces to

E 1ð Þ
p�m ¼ o2

1X
2
1, (45)

while for the higher, o ¼ o2, one finds

E 2ð Þ
p�m ¼ o2

2X
2
1. (46)

The first implication of this particular choice for b is, from Eq. (34), that a ¼ �ðo2
2 � o2

1Þ=2; further,
substituting these values into the first row of matrix Eq. (32) one finds the two possible modes shapes as
X1 ¼ X2 and X1 ¼ �X2. (The choice of 7 in the expression for a only affects which of the two frequencies—
subscript 1 or 2—is associated with which mode shape.) Thus, the specific pseudo-mechanical energies, Eqs.
(45,46), are seen to be equal to the mechanical energies, assuming two particles each having a mass of unity for
a symmetric system such as that shown in Fig. 1. Alternatively, the pseudo-mechanical energy for both modes
is precisely double what one would expect for a single particle having unity mass, if governed by the fourth-
order time-derivative equation.

4. Damping

Nesterenko [12] considered recently the inclusion of a single viscous damping term into the HOOP
description, when Eq. (5) becomes

x
ð4Þ
1 þ o2

1 þ o2
2

� �
€x1 þ o2

1o
2
2x1 þ g _x1 ¼ 0 (47)

and g is assumed small and positive; setting x1 ¼ X 1e
iot gives

o4 � o2
1 þ o2

2

� �
o2 þ o2

1o
2
2 þ igo ¼ 0. (48)

Writing

o ¼ o1;2 þ iDo1;2, (49)
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Fig. 2. Two-degree of freedom spring-mass oscillator, with servo.
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where the Do1,2 are assumed small, ignoring terms in (Do1,2)
2 and higher, and also gDo1,2, leads to

Do1 ¼
g

2 o2
2 � o2

1

� �40 (50)

for the lower frequency, and

Do2 ¼
g

2 o2
1 � o2

2

� �o0 (51)

for the higher. In turn, the response at the lower frequency is

x1 ¼ X 1e
io1t e�Do1t, (52)

which represents a stable decaying oscillation as Do1 is positive; on the other hand, for the higher frequency

x1 ¼ X 1e
io2t e�Do2t, (53)

which is unstable, as Do2 is negative.
Now consider how such a term might arise. The inclusion of a viscous damper into the system, Fig. 1, will in

general lead to terms in both _x1 and

_ _ _x1 in the HOOP description; for example, if a single damper (coefficient c)
is placed to the left of the left-hand mass (mass 1), or to the right of the right-hand mass (mass 2), the resulting
higher-derivative equation is

x
4ð Þ
1 þ 4 k=m

� �
€x1 þ 3 k=m

� �2
x1 þ 2kc=m2

� �
_x1 þ c=m

� � _ _ _x1 ¼ 0. (54)

Thus the single g _x term in Eq. (47) cannot be regarded as a simple dissipative force within the context of a
second-order formalism.

A physical realisation of Eq. (47) is now presented: consider the coupled equations

m 0

0 m

� �
€x1

€x2

" #
þ

0 0

c 0

� �
_x1

_x2

" #
þ

2k �k

�k 2k

� �
x1

x2

" #
¼ 0. (55)

Again the first row is employed to eliminate the fundamental variable x2, to give

x
4ð Þ
1 þ 4 k=m

� �
€x1 þ 3 k=m

� �2
x1 þ kc=m2

� �
_x1 ¼ 0; (56)

this is identical in form to Eq. (47) when one sets o1 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
and o2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3k=m

p
as in Section 2, and

g ¼ kc=m2. The first row of matrix Eq. (55) indicates that the left-hand mass (mass 1) of Fig. 1 experiences no
damping force, while the second row indicates that the right-hand mass (mass 2) experiences a force dependent
solely on the velocity of mass 1. This can be realised by the addition of a control system, as depicted in Fig. 2.
The dotted line represents the signal from a transducer measuring the velocity of mass 1, _x1, which feeds into a
high-input impedance amplifier; for an ideal instrumentation system, this will have no effect on mass 1. The
amplifier then provides a force c _x1 precisely proportional to the velocity of mass 1, with no phase lag. The
effect of this ideal servo is clear: in the lower mode of vibration, the two masses move in-phase and the force
c _x1 will oppose the motion of mass 2, and thereby damp oscillation of the system. On the other hand, for the
higher mode the two masses move in anti-phase; suppose mass 1 is moving to the right (that is _x1 is positive),
then mass 2 will be moving to the left and the force c _x1 will excite its motion. The instability can thus be seen
as a flutter caused by external excitation at the higher natural frequency.
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5. Conclusions

A two-degree of freedom spring-mass system has been considered from the higher-order one-particle
(HOOP) point of view. The single governing fourth-order differential equation may be derived by elimination
of one of the fundamental variables from the coupled second-order equations, or from a Lagrangian
containing derivatives higher than the first order. The Ostrogradski Hamiltonian associated with the HOOP
description, regarded as the conserved energy of the system, is negative for one of the modes; in some branches
of physics, this would be sufficient to conclude that the mode is unphysical. However, given the obvious
stability of the system in the absence of external excitation, and the apparently arbitrary sign of the
Lagrangian, and in turn the Ostrogradski Hamiltonian, the existence of the Ostrogradski instability has been
called in to question.

To avoid these issues, a given fourth-order equation with no explicit underlying second-order structure, is
cast into a non-unique second-order matrix form, allowing the construction of a pseudo-mechanical energy, a
conserved quantity which is always positive.

The effect of damping has also been considered; a single velocity-dependent term within the HOOP
description, previously known to result in the instability of the higher-mode of vibration, cannot be regarded
as a simple dissipative force within the second-order formalism. A physical realisation consists of an ideal
control system, and the source of the instability becomes clear: it is not the exchange of energy between
positive and negative energy modes, rather a flutter caused by external excitation at the higher natural
frequency.
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