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Abstract

In this paper the wind-induced, horizontal vibrations of a weakly damped vertical Euler–Bernoulli beam with and

without a tip-mass will be studied. The damping is assumed to be boundary damping and global Kelvin–Voigt damping.

The boundary damping is assumed to be proportional to the velocity of the beam at the top. The horizontal vibrations of

the beam can be described by an initial-boundary value problem. In this paper, the multiple-timescales perturbation

method will be applied to construct approximations of the solutions of the problem. Also it will be shown that a

combination of boundary damping and Kelvin–Voigt damping can be used to damp the wind-induced vibrations of a

vertical beam with tip-mass uniformly.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In many mathematical models oscillations of elastic structures are described by (non)linear wave equations
or by (non)linear beam equations. Examples of wave-like or string-like problems are given in Refs. [1,2].
Examples of beam-like problems are given in Refs. [3–7]. In this paper a vertical, cantilevered, uniform
Euler–Bernoulli beam with boundary damping and with global Kelvin–Voigt damping (see Fig. 1) as a simple
model for a tall building will be considered.

In recent years more and more tall buildings were built. For tall buildings, or high rise buildings, dampers,
active or passive, are used to dissipate the energy of the vibrations of the building. Vibrations induced by wind
or earthquakes can cause damage to an elastic structure. Vortex-shedding (high-frequency oscillations with
small amplitudes) and galloping (the effect of low-frequency vibrations with large amplitudes) can cause
material fatigue. Since these small and large amplitudes can cause damage to a building it is important to have
damping. To suppress the vibrations of a structure various types of boundary damping can be applied. In this
paper, the boundary damping is assumed to be proportional to the velocity of the beam at the top. Some
damping mechanisms give rise to a heavy tip-mass, that is why beams with and without such tip-masses will be
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. A simple model for a vertical cantilevered beam with tip-mass and velocity damper.
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considered in this paper. Boundary damping for horizontal beams with and without tip-masses has been
studied in Refs. [8–11]. In this paper, it is assumed that the beam is made of a viscoelastic material that satisfies
the Kelvin–Voigt constitutive equation. Global and local Kelvin–Voigt damping mechanisms for horizontal
beams have been studied in Refs. [12,13].

Furthermore, a uniform wind-flow is considered, which causes nonlinear drag and lift forces (FD;F L) acting
on the structure per unit length. A simple model of a vertical cantilevered Euler–Bernoulli beam equation with
Kelvin–Voigt damping subjected to wind-forces is given by

EIZXXXX þ BEIZXXXXt þ g½ðmþ rAðL� xÞÞZX �X þ rAZtt ¼ FD þ FL, (1)

where E is Young’s modulus, I is the moment of inertia of the cross-section, B is the coefficient of the
Kelvin–Voigt viscoelastic damping, r is the mass density of the beam, A is the cross-sectional area of the beam,
L is the length of the beam, Z is the deflection of the beam in Y-direction, t is the time, X is the position along
the beam (see Fig. 1), m is the mass of the tip-mass, and g is the acceleration due to gravity. The term
½gðmþ rAðL� xÞÞZX �X in Eq. (1) is a linearly varying compression force due to the weight of the beam and the
tip-mass. In Ref. [14] the Ritz–Galerkin method and perturbation methods have been used to determine
closed-form approximate solutions of the vibrations of a vertical beam.

The main goal of this paper is to study the possibility to stabilize vertical cantilevered beams with and
without tip-masses at the top in a wind-field. Explicit asymptotic approximations of the solutions for this
problem, which are valid on a long timescale, will be given.

A simple model for the damped, vertical, cantilevered Euler–Bernoulli beam subjected to wind-forces is
given by Eq. (1) and the boundary conditions Zð0; tÞ ¼ ZX ð0; tÞ ¼ 0, and

EIZXXX ðL; tÞ þ BEIZXXXtðL; tÞ ¼ mZttðL; tÞ � gmZX ðL; tÞ þ ĉZtðL; tÞ, (2)

EIZXX ðL; tÞ þ BEIZXXtðL; tÞ ¼ 0, (3)

where ĉ is a positive constant, the damping parameter. In Ref. [2] it has been shown that FD þ FL can be
approximated by

F D þ F L ¼
radv1a

2
Zt þ

b

v21
Z3t

� �
, (4)

where ra is the density of the air, d is the diameter of the cross-sectional area of the beam, v1 is the uniform
wind-flow velocity, and a and b depend on certain drag and lift coefficients, which are given explicitly in
Ref. [2]. In this paper the linearized partial differential equation (1) will be considered. The nonlinear
wind-force ðradv1a=2ÞðZt þ ðb=v21ÞZ

3
tÞ in Eq. (1) will give a coupling between (almost) all oscillation modes. In
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Refs. [2,15] also this nonlinear windforce has been considered. It has been shown that the windforce gives a
coupling between (almost) all oscillation modes. It is also known that the nonlinear term damps the vibrations.
In this paper the linearized initial-boundary value problem will be considered, because the main goal of this
paper is to determine the damping. If the damper damps the vibrations due to the linearized wind-force, the
damper also damps the vibration due to nonlinear wind-force, because the nonlinear term in the wind-force
also damps the vibrations.

To put the model in a non-dimensional form the following substitutions uðx; tÞ ¼ ðk=v1ÞðZðX ; tÞ=LÞ,

x ¼ X=L, and t ¼ ðk=LÞt, where k ¼ ð1=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=Ar

p
will be used. By applying these transformations, the

following linearized, dimensionless initial-boundary value problem can be introduced, which describes the
horizontal displacement of a damped vertical beam with tip-mass and with a uniform wind-flow acting on it:

L½u� ¼ �aut; t40; 0oxo1, (5)

uð0; tÞ ¼ uxð0; tÞ ¼ 0; tX0, (6)

uxxð1; tÞ þ buxxtð1; tÞ ¼ 0; tX0, (7)

uxxxð1; tÞ þ buxxxtð1; tÞ ¼ guttð1; tÞ � �guxð1; tÞ þ �cutð1; tÞ; tX0, (8)

uðx; 0Þ ¼ f ðxÞ; 0oxo1, (9)

utðx; 0Þ ¼ gðxÞ; 0oxo1, (10)

where � ¼ grAL3=EI is a small parameter, that is, 0o�51, b ¼ ðB=L2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
, g ¼ m=rAL, �a ¼ ðradL=

2ArÞðv1=kÞa, �c ¼ ĉ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=EIrA

q
, and where

L½u� � uxxxx þ buxxxxt þ �½ðgþ 1� xÞux�x þ utt. (11)

The functions f ðxÞ and gðxÞ represent the initial displacement and the initial velocity of the beam, respectively.
It should be observed that a (the parameter due to the wind-force), b (the Kelvin–Voigt damping parameter), c

(the boundary damping parameter), g (the mass of the tip-mass divided by the mass of the beam), and � are
dimensionless parameters. The parameters a and c are �-independent. The parameters g and b in general will
be small parameters. For the construction of approximations of the solution of Eqs. (5)–(10), however, it will
be assumed that b and g are �-independent parameters.

This paper is organized as follows: in Section 2 the initial-boundary value problem with c ¼ a ¼ 0 will be
considered. This is the problem of a vertical beam with a tip-mass and with Kelvin–Voigt damping. Also it will
be explained why a multiple-timescales perturbation method will be applied. In Section 3, the unperturbed
initial-boundary value problem (i.e. � ¼ 0) will be considered. This is the problem of a beam with tip-mass and
Kelvin–Voigt damping. In Section 4 the energy of the initial-boundary value problem without wind-
perturbation (i.e. a ¼ 0) is considered. The boundedness of the solutions will be shown, assuming the existence
of a sufficiently smooth solution. In Section 5, formal approximations for the solutions of the initial-boundary
value problem (5)–(10) are constructed by using a two-time-scales perturbation method. Next, in Section 6, the
stability of the beam will be discussed. Finally, in Section 7 some conclusions will be drawn and some remarks
will be made.

2. The problem (5)–(10) with c ¼ a ¼ 0

In this section the wind-forces and the boundary damping acting on the beam are neglected. The horizontal
vibrations of a vertical beam with a tip-mass and with Kelvin–Voigt damping are studied. These vibrations
can be described by problem (5)–(10), with c ¼ a ¼ 0:

uxxxx þ buxxxxt þ �½ðgþ 1� xÞux�x þ utt ¼ 0, (12)

uð0; tÞ ¼ uxð0; tÞ ¼ uxxð1; tÞ þ buxxtð1; tÞ ¼ 0, (13)
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�guxð1; tÞ þ uxxxð1; tÞ þ buxxxtð1; tÞ � guttð1; tÞ ¼ 0, (14)

uðx; 0Þ ¼ f ðxÞ and utðx; 0Þ ¼ gðxÞ. (15)

Now look for non-trivial solutions of the partial differential equation (12) and the boundary conditions (13)
and (14) in the form X ðxÞTðtÞ. By substituting this into Eq. (12) and by dividing the so-obtained equation by
X ðxÞTðtÞ it follows that

X ð4Þ

X
1þ b

T 0

T

� �
þ
�½ðgþ 1� xÞX 0�0

X
þ

T 00

T
¼ 0. (16)

Now the case T þ bT 0 ¼ 0 will be considered first. By considering the boundary conditions it can be deduced
that, for the case T þ bT 0 ¼ 0, X ðxÞ has to satisfy

�b2½ðgþ 1� xÞX 0�0 þ X ¼ 0, (17)

X ð0Þ ¼ X 0ð0Þ ¼ �b2gX 0ð1Þ � gX ð1Þ ¼ 0. (18)

So, the only solution of Eqs. (17)–(18) is given by the trivial solution. This can be seen in the following way.
Multiply Eq. (17) by ðgþ 1� xÞX 0ðxÞ, integrate the so-obtained result with respect to x from 0 to 1, and use
Eq. (18) to obtain

�b2g2ðX 0ð1ÞÞ2 þ gðX ð1ÞÞ2 þ
Z 1

0

X 2ðxÞdx ¼ 0. (19)

From Eq. (19) it follows that X ðxÞ � 0. So, the only solution of Eqs. (17)–(18) is given by the trivial solution.
Therefore, the case T þ bT 0 ¼ 0 only leads to trivial solutions. Now to separate the variables in Eq. (16), Eq.
(16) can be differentiated with respect to t or to x (see also Refs. [16,17]). Differentiation of Eq. (16) with
respect to t, yields

b
X ð4Þ

X

T 0

T

� �0
þ

T 00

T

� �0
¼ 0. (20)

Now separate variables to obtain

X ð4Þ ¼ b1X , (21)

where b1 2 C is a separation constant. Then from Eq. (16) it also follows that

b1 1þ b
T 0

T

� �
þ

T 00

T
þ
�½ðgþ 1� xÞX 0�0

X
¼ 0. (22)

Again separate variables to obtain

�½ðgþ 1� xÞX 0�0 ¼ b2X , (23)

where b2 2 C is also a separation constant. From Eq. (13) it follows that X ð0Þ ¼ X 0ð0Þ ¼ 0. By substituting
x ¼ 0 into Eq. (23) it follows that X 00ð0Þ ¼ 0, and by differentiating Eq. (23) with respect to x and by
substituting x ¼ 0 into the so-obtained result it follows that X 000ð0Þ ¼ 0. Now the differential equation (20)
subject to X ð0Þ ¼ X 0ð0Þ ¼ X 00ð0Þ ¼ X 000ð0Þ ¼ 0 only has trivial solutions. So, differentiation of Eq. (16) with
respect to t only leads to trivial solutions. Now differentiate Eq. (16) with respect to x to obtain

X ð4Þ

X

� �0
1þ b

T 0

T

� �
þ

�½ðgþ 1� xÞX 0�0

X

� �0
¼ 0) T 0 ¼ yT , (24)

where y 2 C is a separation constant. Now because T 0 ¼ yT ) T 00 ¼ y2T the following eigenvalue problem
for X ðxÞ is obtained:

ð1þ byÞX ð4Þ þ �½ðgþ 1� xÞX 0�0 ¼ �y2X , (25)

X ð0Þ ¼ X 0ð0Þ ¼ ð1þ byÞX 00ð1Þ ¼ 0, (26)
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ð1þ byÞX 000ð1Þ þ �gX 0ð1Þ � gy2X ð1Þ ¼ 0. (27)

This fourth-order differential equation (25) can be solved exactly for � ¼ 0, but cannot be solved exactly for
�a0.

Now consider the case b ¼ 0 (this is the case of a vertical beam with a tip-mass but without Kelvin–Voigt
damping) and introduce the eigenvalue l ¼ �y2. In Ref. [18] it has been shown that the eigenvalues l of
problem (25)–(27) with b ¼ 0 are real-valued. In addition, it has been shown in Ref. [18] that these eigenvalues
are certainly positive for sufficiently small values of � and g, that is, if � and g satisfy the following inequality:

�ðgþ 1
2
Þo1. (28)

Moreover, in Ref. [18] it has been proved that the eigenfunctions corresponding to problem (25)–(27) with
b ¼ 0 can be chosen to be real-valued, and it has been shown that these eigenfunctions are orthogonal with
respect to the following inner product:

huðxÞ; vðxÞi ¼

Z 1

0

½1þ gdðx� 1Þ�uðxÞvðxÞdx, (29)

where dðxÞ is the Dirac delta function, with the properties
R 1
0 dðx� 1Þdx ¼ 1, and dðx� 1Þ ¼ 0 for xa1.

Although some properties of the eigenvalues and the eigenfunctions of problem (25)–(27) with b ¼ 0 are
now known, the fourth-order differential equation (25) for b ¼ 0 and for ba0 cannot be solved exactly. To
construct an approximation of a solution a perturbation method will be used. It has been assumed that
0o�51. Then the term �½ðgþ 1� xÞX ðxÞ0�0 in Eq. (25) is small compared to the other terms in the equation. In
this paper a two-time-scales perturbation method will be used in Section 5 to solve the problem (5)–(10), with
�a0 approximately. The reader is referred to the book of Nayfeh and Mook [19] for a description of this
method.

3. The problem (5)–(10) with � ¼ 0

In this section the wind-forces, the effect due to gravity, and the boundary damping are neglected. So,
problem (5)–(10), with � ¼ 0 will be considered:

uxxxx þ buxxxxt þ utt ¼ 0, (30)

uð0; tÞ ¼ uxð0; tÞ ¼ uxxð1; tÞ þ buxxtð1; tÞ ¼ 0, (31)

uxxxð1; tÞ þ buxxxtð1; tÞ � guttð1; tÞ ¼ 0, (32)

uðx; 0Þ ¼ f ðxÞ and utðx; 0Þ ¼ gðxÞ. (33)

The method of separation of variables will be used to solve the problem (30)–(33). Now look for non-trivial
solutions of the partial differential equation (30) and the boundary conditions (31)–(32) in the form X ðxÞTðtÞ.
By substituting this into Eqs. (30)–(32) it follows that

X ð4Þ

X
¼
�T 00

T þ bT 0
¼ l, (34)

where l 2 C is a separation constant. Note that the case T þ bT 0 ¼ 0 only leads to trivial solutions. By
considering the boundary conditions (31)–(32) a boundary value problem for X ðxÞ is obtained:

X ð4ÞðxÞ � lX ðxÞ ¼ 0, (35)

X ð0Þ ¼ X 0ð0Þ ¼ X 00ð1Þ ¼ 0, (36)

X 000ð1Þ þ glX ð1Þ ¼ 0, (37)

and the following problem for TðtÞ:

T 00ðtÞ þ lðTðtÞ þ bT 0ðtÞÞ ¼ 0, (38)
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where l 2 C is a separation constant. The boundary value problem (35)–(37) is the same as problem (25)–(27)
with � ¼ b ¼ 0. So the eigenvalues are real-valued and positive; the eigenfunctions can be chosen to be real-
valued, and two real-valued eigenfunctions belonging to two different eigenvalues are orthogonal with respect
to the inner product (29). Moreover, problem (35)–(37) can be solved analytically. The eigenvalues ln ¼ m4n are
implicitly given by the roots of

hgðmÞ � 1þ coshðmÞ cosðmÞ þ gmðcosðmÞ sinhðmÞ � coshðmÞ sinðmÞÞ ¼ 0, (39)

which is equivalent to

tanðmÞ ¼
ðcosðmÞ þ coshðmÞ þ gm sinhðmÞÞ
ðgm coshðmÞ � sinðmÞÞ

. (40)

The real-valued, positive roots of hgðmÞ are denoted by mn. It can be deduced that ðn� 1Þpomnonp, with
n 2 f1; 2; 3; . . .g, the elementary proof will be omitted here. For similar proofs the reader is referred to Ref. [20].
So, there are infinitely many isolated, real-valued, and positive eigenvalues. Definition (39) will have the
following approximate form (for large m) hgðmÞ � ðg=2Þmem cosðmÞð1þ ð1=gmÞ � tanðmÞÞ and mn ! ðn�

3
4
Þp for

n!1 and for ga0.
The eigenfunctions of the problem (35)–(37) can be determined, and are given by

f̂nðxÞ ¼ sinðmnxÞ � sinhðmnxÞ þ bnðcoshðmnxÞ � cosðmnxÞÞ, (41)

where

bn ¼
sinðmnÞ þ sinhðmnÞ

cosðmnÞ þ coshðmnÞ
.

If the tip-mass is zero the eigenvalues and the eigenfunctions are given by Eqs. (39) and (41), respectively, with
g ¼ 0. These eigenfunctions are also orthogonal with respect to the inner product (29) with g ¼ 0, and
mn � ðn�

1
2
Þp (for large n).

For each eigenvalue the function TnðtÞ can be determined from Eq. (38). So infinitely many non-trivial
solutions of the initial-boundary problem (30)–(33) have been determined. By using the superposition
principle the solution of the initial-boundary value problem is obtained

uðx; tÞ ¼
X1
n¼1

TnðtÞfnðxÞ, (42)

where

TnðtÞ ¼

e�ðbln=2ÞtðAn cosðsntÞ þ Bn sinðsntÞÞ if b2lno4;

ðAn þ BntÞe
�2
b t

if b2ln ¼ 4;

Ane
on1

t þ Bne
on2

t if b2ln44

8>><
>>: (43)

with

sn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln �

bln

2

� �2
s

, (44)

on1;2 ¼ �
bln

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2l2n � 4ln

q
, (45)

where fnðxÞ is the normalized eigenfunction

fnðxÞ ¼
f̂nðxÞ

hf̂nðxÞ; f̂nðxÞi
1=2

, (46)
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where f̂nðxÞ is given by Eq. (41), and where An and Bn are constants. The constants An and Bn are determined
by the initial displacement f ðxÞ and the initial velocity gðxÞ in the following way:

An ¼

Z 1

0

½1þ gdðx� 1Þ�f ðxÞfnðxÞdx, (47)

snBn ¼

Z 1

0

½1þ gdðx� 1Þ� gðxÞ þ
bln

2
f ðxÞ

� �
fnðxÞdx (48)

if b2lno4,

an ¼

Z 1

0

½1þ gdðx� 1Þ�f ðxÞfnðxÞdx, ð49Þ

Bn ¼

Z 1

0

½1þ gdðx� 1Þ� gðxÞ þ
2

b
f ðxÞ

� �
fnðxÞdx ð50Þ

if b2ln ¼ 4, and

An ¼

R 1
0 ½1þ gdðx� 1Þ�ðon2 f ðxÞ � gðxÞÞfnðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2l2n � 4ln

q , (51)

Bn ¼

R 1
0 ½1þ gdðx� 1Þ�ðgðxÞ � on1f ðxÞÞfnðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2l2n � 4ln

q (52)

if b2ln44. The eigenfunctions fnðxÞ form an orthonormal set with respect to the inner product (29). After
lengthy but elementary calculations it can be shown that

hf̂nðxÞ; f̂nðxÞi ¼
sinðmnÞ þ sinhðmnÞ

cosðmnÞ þ coshðmnÞ

� �2

þ g
sinðmnÞ coshðmnÞ � cosðmnÞ sinhðmnÞ

mnðcosðmnÞ þ coshðmnÞÞ

� �2

, (53)

and it can be shown that hf̂nðxÞ; f̂nðxÞi ! 1 if n!1. In Section 5 this property will be used to determine the
type of damping.

4. The energy and the boundedness of solutions

The energy of the cantilevered beam with a tip-mass but with no wind force applied to it (i.e. problem
(5)–(10), with a ¼ 0) is defined to be

EðtÞ �

Z 1

0

1

2
ðu2

t ðx; tÞ þ u2
xxðx; tÞ � �ðgþ 1� xÞu2

xðx; tÞÞdxþ
1

2
gu2

t ð1; tÞ. (54)

The time derivative of the energy is given by dE=dt ¼ ��cu2
t ð1; tÞ � b

R 1
0 u2

xxtðx; tÞdx, where c is the (boundary)
damping parameter, and where b is the coefficient of Kelvin–Voigt viscoelastic damping. So, the energy is
bounded if the initial energy is bounded and �ðgþ 1

2
Þo1 (see also Eq. (28)). The existence of a solution of uðx; tÞ

is assumed, where uðx; tÞ is a twice continuously differentiable function with respect to t and a four times
continuously differentiable function with respect to x. A proof of this assumption is beyond the scope of this
paper. Since uxðx; tÞ and uxxðx; tÞ are continuous it follows that uðx; tÞ ¼

R x

0 uxðx; tÞdx and
uxðx; tÞ ¼

R x

0 uxxðx; tÞdx. It then can be deduced by using the Cauchy–Schwarz inequality that (see also Ref.
[18] for a similar estimate)

juxðx; tÞjp
Z 1

0

juxxðx; tÞjdxp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

u2
xxðx; tÞdx

s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ

ð1� �ðgþ 1
2
ÞÞ

s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð0Þ

ð1� �ðgþ 1
2
ÞÞ

s
, (55)
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where it has been assumed that �ðgþ 1
2
Þo1. By using uðx; tÞ ¼

R x

0 uxðx; tÞdx the following inequality for juðx; tÞj
can be derived similarly

juðx; tÞjp
Z 1

0

juxðx; tÞjdxp
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð0Þ

ð1� �ðgþ 1
2ÞÞ

s
dx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð0Þ

ð1� �ðgþ 1
2ÞÞ

s
. (56)

So, also uðx; tÞ is bounded if the initial energy is bounded and �ðgþ 1
2
Þo1.

5. Formal approximations

In this section an approximation of the solution of the initial-boundary value problem (5)–(10) will be
constructed. A two-time-scales perturbation method will be used. Conditions like t40; tX0, 0oxo1 will be
dropped, for abbreviation. Expand the solution in a Taylor series with respect to �, to obtain

uðx; t; �Þ ¼ û0ðx; tÞ þ �û1ðx; tÞ þ �
2û2ðx; tÞ þ � � � . (57)

It is assumed that the functions ûiðx; tÞ are Oð1Þ. The approximation of the solution will contain secular terms.
Since the ûiðx; tÞ are assumed to be Oð1Þ, and because the solutions are bounded on timescales of Oð��1Þ,
secular terms should be avoided when approximations are constructed on long timescales of Oð��1Þ. That is
why a two-time-scales perturbation method is applied. By using such a two-time-scales perturbation method
the function uðx; tÞ is supposed to be a function of x, t, and t ¼ �t. So put

uðx; tÞ ¼ wðx; t; t; �Þ. (58)

A result of this is

ut ¼ wt þ �wt, (59)

utt ¼ wtt þ 2�wtt þ �
2wtt. (60)

Substitution of Eqs. (58)–(60) into the problem (5)–(10) yields an initial-boundary value problem for wðx; t; tÞ.
Assuming that

wðx; t; t; �Þ ¼ u0ðx; t; tÞ þ �u1ðx; t; tÞ þ �2u2ðx; t; tÞ þ � � � , (61)

then by collecting terms of equal powers in � it follows from the problem for wðx; t; tÞ that the Oð1Þ-problem is

u0xxxx
þ bu0xxxxt

þ u0tt
¼ 0, (62)

u0ð0; t; tÞ ¼ u0x
ð0; t; tÞ ¼ 0, (63)

u0xx
ð1; t; tÞ þ bu0xxt

ð1; t; tÞ ¼ 0, (64)

u0xxx
ð1; t; tÞ þ bu0xxxt

ð1; t; tÞ � gu0tt
ð1; t; tÞ ¼ 0, (65)

u0ðx; 0; 0Þ ¼ f ðxÞ and u0t
ðx; 0; 0Þ ¼ gðxÞ, (66)

and that the Oð�Þ-problem is

u1xxxx
þ bu1xxxxt

þ u1tt
¼ au0t

� ½ðgþ 1� xÞu0x
�x � 2u0tt � bu0xxxxt , (67)

u1ð0; t; tÞ ¼ u1x
ð0; t; tÞ ¼ 0, (68)

u1xx
ð1; t; tÞ þ bu1xxt

ð1; t; tÞ ¼ �bu0xxt ð1; t; tÞ, (69)

u1xxx
ð1; t; tÞ þ bu1xxxt

ð1; t; tÞ ¼ gu1tt
ð1; t; tÞ � gu0x

ð1; t; tÞ � bu0xxxt ð1; t; tÞ þ 2gu0tt ð1; t; tÞ þ cu0t
ð1; t; tÞ, (70)

u1ðx; 0; 0Þ ¼ 0, (71)

u1t
ðx; 0; 0Þ ¼ �u0t ðx; 0; 0Þ. (72)
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The solution of the Oð1Þ-problem (62)–(66) has been determined in Section 3 and is given by

u0ðx; t; tÞ ¼
X1
n¼1

T0nðt; tÞfnðxÞ, (73)

where

T0nðt; tÞ ¼

eð�bln=2ÞtðA0nðtÞ cosðsntÞ þ B0nðtÞ sinðsntÞÞ if b2lno4;

ðA0nðtÞ þ B0nðtÞtÞeð�2=bÞt if b2ln ¼ 4;

A0nðtÞeon1
t þ B0nðtÞeon2

t if b2ln44;

8><
>: (74)

and where sn, on1 , on2 , the orthonormal eigenfunction fnðxÞ corresponding to ln, A0nð0Þ, and B0nð0Þ are given
by Eqs. (44)–(52). Now the solution of the Oð�Þ-problem will be determined. The problem (67)–(72) has an
inhomogeneous boundary condition. For classical inhomogeneous boundary conditions the inhomogeneous
boundary conditions are made homogeneous. However, for inhomogeneous non-classical boundary
conditions such as Eq. (70) a different procedure has to be followed. In fact, a transformation will be used
such that the partial differential equation and the inhomogeneous boundary condition, after the
transformation, ‘‘match’’; if a solution which is expanded in eigenfunctions fnðxÞ, defined by Eq. (41),
satisfies the transformed partial differential equation it immediately satisfies the transformed inhomogeneous
boundary condition. A similar ‘‘matching’’ for a non-self-adjoint string-like problem has been introduced in
Ref. [1]. Introduce the following transformation:

u1ðx; t; tÞ ¼ vðx; t; tÞ þ
�x2

2
þ

x3

6

� �
hðt; tÞ. (75)

By substituting the latter transformation into Eqs. (67)–(72) it follows that

vxxxx þ bvxxxxt þ vtt ¼ au0t
� ½ðgþ 1� xÞu0x

�x � 2u0tt � bu0xxxxt �
�x2

2
þ

x3

6

� �
httðt; tÞ, (76)

vð0; t; tÞ ¼ vxð0; t; tÞ ¼ 0, (77)

vxxð1; t; tÞ þ bvxxtð1; t; tÞ ¼ 0, (78)

vxxxð1; t; tÞ þ bvxxxtð1; t; tÞ ¼ gvttð1; t; tÞ � gu0x
ð1; t; tÞ � bu0xxxt ð1; t; tÞ þ 2gu0tt ð1; t; tÞ þ cu0t

ð1; t; tÞ

� hðt; tÞ � bhtðt; tÞ �
g
3

httðt; tÞ, ð79Þ

vðx; 0; 0Þ ¼ �
�x2

2
þ

x3

6

� �
hð0; 0Þ, (80)

vtðx; 0; 0Þ ¼ �u0t ðx; 0; 0Þ �
�x2

2
þ

x3

6

� �
htð0; 0Þ. (81)

Introduce the following infinite sum for vðx; t; tÞ:

vðx; t; tÞ ¼
X1
n¼1

vnðt; tÞfnðxÞ, (82)

and substitute the infinite sum into the partial differential equation (76) and into the boundary condition (79)
to obtainX1

n¼1

ðvntt
þ lnðvn þ bvnt

ÞÞfnðxÞ ¼ au0t
� ½ðgþ 1� xÞu0x

�x � 2u0tt � bu0xxxxt �
�x2

2
þ

x3

6

� �
httðt; tÞ, (83)
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and X1
n¼1

ðvn þ bvnt
Þfnxxx

ð1Þ � gvntt
fnð1Þ ¼ � gu0x

ð1; t; tÞ � bu0xxxt ð1; t; tÞ þ 2gu0tt ð1; t; tÞ þ cu0t
ð1; t; tÞ

� h� bht �
g
3

htt, ð84Þ

respectively. Note that the dependency of vnðt; tÞ, T0nðt; tÞ, and hðt; tÞ on t; t have been dropped for
abbreviation. Now the function hðt; tÞ will be determined. By letting x tend to x ¼ 1 in Eq. (83), by using the
first boundary condition in x ¼ 1 (i.e. fnxx

ð1Þ ¼ 0), and by multiplying the so-obtained result by g, it follows
that

g
X1
n¼1

ðvntt
þ lnðvn þ bvnt

ÞÞfnð1Þ ¼ agu0t
ð1; t; tÞ þ gu0x

ð1; t; tÞ � 2gu0tt ð1; t; tÞ � bgu0xxxxt ð1; t; tÞ þ
g
3

httðt; tÞ. (85)

Now by adding Eqs. (84) and (85), and by using the second boundary condition in x ¼ 1 (i.e.
fnxxx
ð1Þ þ glnfnð1Þ ¼ 0) and Eq. (35) in x ¼ 1 (i.e. fnxxxx

ð1Þ ¼ lnfnð1Þ) it follows that hðt; tÞ satisfies the
following first-order differential equation:

hþ bht � ðcþ agÞu0t
ð1; t; tÞ ¼ 0. (86)

From Eqs. (38), (73), and (86) hðt; tÞ and httðt; tÞ can be determined, yielding

hðt; tÞ ¼ ~gðtÞe�t=b þ ðcþ agÞ
X1
n¼1

ðblnT0n þ T0nt
ÞÞfnð1Þ, (87)

httðt; tÞ ¼
~gðtÞ

b2
e�t=b � ðcþ agÞ

X1
n¼1

lnT0nt
fnð1Þ, (88)

respectively, and where ~gðtÞ is an arbitrary function in t. From now on let ~gðtÞ be equal to zero, that is,
~gðtÞ � 0. Note that in this way hðt; tÞ is a transformation such that Eqs. (76) and (79) ‘‘match’’. The function
httðt; tÞ will be used to obtain a differential equation for vmðt; tÞ. Now a differential equation will be obtained
for vmðt; tÞ. Eq. (83) can be used to obtain this differential equation for vmðt; tÞ after expanding ðð�x2=2Þ þ
ðx3=6ÞÞ in series of orthonormal eigenfunctions fnðxÞ:

�x2

2
þ

x3

6
¼
X1
n¼1

CnfnðxÞ, (89)

where

Cn ¼

Z 1

0

½1þ gdðx� 1Þ�
�x2

2
þ

x3

6

� �
fnðxÞdx. (90)

By using integration by parts and by using that fnðxÞ is a solution of problem (35)–(37), with l ¼ ln, it follows
that

Cn ¼ �
fnð1Þ

ln

. (91)

Multiply Eq. (83) by ð1þ gdðx� 1ÞÞfmðxÞ, integrate the so-obtained result with respect to x form 0 to 1, use
that the eigenfunctions fnðxÞ are orthogonal with respect to the inner product (29), and use Eqs. (88) and (91),
to obtain

vmtt
þ lmðvm þ bvmt

Þ ¼ � 2T0mtt � blmT0mt þ 2kmT0mt
þYmmT0m

þ
X1

n¼1;nam

YnmT0n � ðcþ agÞfnð1Þfmð1Þ
ln

lm

T0nt

� �
, ð92Þ
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where

km ¼
a
2
�

1

2
ðcþ gaÞf2

mð1Þ, (93)

where T0mðt; tÞ is given by Eq. (74), and where Ymn ¼
R 1
0 ðgþ 1� xÞfmx

ðxÞfnx
ðxÞdx. In Ref. [14] explicit

expressions forYnm have been obtained for the case g ¼ 0. From Eq. (74) it follows that T0mðt; tÞ and T0mt
ðt; tÞ are

solutions of the homogeneous equation corresponding to Eq. (92), and that T0nðt; tÞ and T0nt
ðt; tÞ with nam are not

solutions of the homogeneous equation corresponding to Eq. (92). Therefore, the right-hand side of Eq. (92) contains
terms which are solutions of the homogeneous equation corresponding to Eq. (92). These terms will give rise to
unbounded terms, the so-called secular terms, in the solution vmðt; tÞ of Eq. (92). Since it is assumed in the asymptotic

expansions that the functions u0ðx; t; tÞ; u1ðx; t; tÞ; u2ðx; t; tÞ; . . . are bounded on timescales of Oð��1Þ these secular
terms should be avoided. In T0mðt; tÞ the functions A0mðtÞ and B0mðtÞ are still undetermined. These functions will be
used to avoid secular terms in the solution of Eq. (92) in the following way. Let the sum of the terms in the right-hand
side of Eq. (92) that give rise to secular terms in the solution of Eq. (92) be equal to zero, yielding

�2T0mtt � blmT0mt þ 2kmT0mt
þYmmT0m ¼ 0. (94)

By substituting T0mðt; tÞ, given by Eq. (74), into Eq. (94) (coupled) differential equations for the functions

A0mðtÞ and B0mðtÞ can be obtained. From Eq. (74) it follows that T0mðt; tÞ for the case b2lmo4, T0mðt; tÞ for
the case b2lm ¼ 4, and T0mðt; tÞ for the case b

2lm44 are given in a qualitatively different way. Therefore, from
Eq. (94), it follows that qualitatively different differential equations for A0mðtÞ and B0mðtÞ will be obtained for

these cases. Now the case b2lmo4, the case b2lm ¼ 4, and the case b2lm44 will be considered.
At first, the case b2lm ¼ 4 will be considered. By substituting T0mðt; tÞ ¼ ðA0mðtÞ þ B0mðtÞtÞeð�2=bÞt into

Eq. (94) equations for A0mðtÞ and B0mðtÞ can be obtained. These equations cannot be used to obtain an
approximation of the solution of problem (5)–(10). The reason for this is that for the case b2lm ¼ 4 it cannot
be expected that the solution of the unperturbed problem (5)–(10) can be expanded in a Taylor series with
respect to �. To show this a so-called auxiliary equation will be introduced. Suppose that the solution of Eq.
(38) is given by TðtÞ ¼ ert, where r is a parameter to be determined. By substituting TðtÞ ¼ ert into Eq. (38) the
auxiliary equation is obtained, given by

r2 þ blrþ l ¼ 0, (95)

where l40. Now consider the following equation:

r2ð�Þ þ blð�Þrð�Þ þ lð�Þ ¼ 0, (96)

where lð�Þ depends smoothly on � and where lð0Þ ¼ l. Then Eq. (95) is the corresponding unperturbed
equation of Eq. (96). From the implicit function theorem it follows that if

2rð0Þ þ blð0Þ ¼ 0, (97)

it cannot be expected that the root rð�Þ of Eq. (96) can be expanded in a Taylor series with respect to � (see also
Ref. [21, Chapter 10]), and that there may be bifurcation solutions. From Eq. (95) it follows that 2rð0Þ þ
blð0Þ ¼ 0 if b2lð0Þ ¼ 4. From 2rð0Þ þ blð0Þ ¼ 0 and b2lð0Þ ¼ 4 it follows that rð0Þ ¼ �2=b. Now, it also
follows that rð0Þ ¼ �2=b is a bifurcation point. For different values of the parameters b and l the solution of
Eq. (95) will be qualitatively different. Now assume that lm is an eigenvalue of the unperturbed problem (i.e.
(Eqs. (5)–(10)) with � ¼ 0) such that b2lm ¼ 4. Then it cannot be expected that the solution of the perturbed
problem (i.e. Eqs. (5)–(10)) can be expanded in a Taylor series with respect to �. To find an approximation of
the solution of problem (5)–(10) for the case b2lm ¼ 4 a very different expansion will be needed. Therefore, the
case b2lm ¼ 4 will not be considered any further in this paper.

Now the case b2lmo4 will be considered. By substituting T0mðt; tÞ ¼ eð�blm=2ÞtðA0mðtÞ cosðsmtÞ þ

B0mðtÞ sinðsmtÞÞ into Eq. (94), it follows that A0mðtÞ and B0mðtÞ are solutions of the following system of
coupled differential equations:

dA0m

dt
¼ kmA0m � OmB0m, (98)
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dB0m

dt
¼ kmB0m þ OmA0m, (99)

where

Om ¼
Ymm � blmkm

2sm

� �
, (100)

where km is given by Eq. (93), sm by Eq. (44), Ymn ¼
R 1
0
ðgþ 1� xÞfmx

ðxÞfnx
ðxÞdx, lm ¼ m4m, and where mm is

the mth positive root of Eq. (39). From Eqs. (98) and (99) A0mðtÞ and B0mðtÞ can be determined, yielding

A0mðtÞ ¼ ekmtðA0mð0Þ cosðOmtÞ � B0mð0Þ sinðOmtÞÞ, (101)

B0mðtÞ ¼ ekmtðB0mð0Þ cosðOmtÞ þ A0mð0Þ sinðOmtÞÞ, (102)

where A0mð0Þ and B0mð0Þ are given by Eqs. (47) and (48), respectively. Hence, for b2lmo4, T0mðt; tÞ is found
to be

T0mðt; tÞ ¼ e�ðblm=2ÞtþkmtðA0mð0Þ cosðsmt� OmtÞ þ B0mð0Þ sinðsmt� OmtÞÞ. (103)

Now by substituting t ¼ �t and Eq. (93) into �ðblm=2Þtþ kmt and by dividing the so-obtained result by t it
follows that the damping coefficient (y1;m), for b

2lmo4, can be approximated by

y1;m ¼ �1
2
ðblm � �aþ �ðcþ gaÞf2

mð1ÞÞ, (104)

where

f2
mð1Þ ¼

4

1þ gþ g2m2m
2 sinðmmÞ sinhðmmÞ

1þ cosðmmÞ coshðmmÞ

� � . (105)

From Eq. (44), Eq. (100), and t ¼ �t it follows that the frequency (y2;m) can be approximated by

y2;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lm �

blm

2

� �2
s

� �
Ymm � blmkm

2sm

� �
. (106)

Now the effect of gravity on the frequency will be considered. By lengthy but elementary calculations it can be
shown that the quotient Ynn=2sn is given by (see Ref. [14] for a similar expression)

Ynn

2sn

¼
1

4sn

ðð1þ mnwnÞ
2
þ 3Þ þ

gmn

2sn

gmn

sðmnÞ

cosðmnÞ þ coshðmnÞ

� �2

þ mnw
2
n � 2wn

 !
, (107)

where

wn ¼
sinðmnÞ � sinhðmnÞ

cosðmnÞ þ coshðmnÞ
,

and where sðmÞ ¼ sinðmÞ coshðmÞ � cosðmÞ sinhðmÞ. Since wn !�1 and sðmnÞ ! 0 for n!1, and since sn ¼ m2n
if b ¼ 0 it follows that Ynn=2sn ¼ Oð1Þ if b ¼ 0. The compression force due to gravity, the self-weight of the
beam, and the mass of the tip-mass is represented by the integral �Ynm. This integral shows up in Eq. (106) and
does not show up in Eq. (104). Hence, the compression force does not have a significant effect on the damping
rates of the oscillation modes, but only has a significant effect on the frequency of the oscillation modes. Since
Ynn40 it follows that the frequency reduces by increasing mass of the tip-mass, that is, by increasing g and by
increasing the mass of the beam itself, that is, by increasing �.

Lastly, the case b2lm44 will be considered. By substituting T0mðt; tÞ ¼ A0nðtÞeon1
t þ B0nðtÞeon2

t into
Eq. (94), it follows that A0mðtÞ and B0mðtÞ are solutions of the following differential equations:

dA0m

dt
¼

2kmom1
þYmm

2om1
þ blm

A0m, (108)
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dB0m

dt
¼

2kmom2
þYmm

2om2
þ blm

B0m, (109)

where om1;2 and km are given by Eqs. (45) and (93), respectively. From Eqs. (108) and (109) A0mðtÞ and B0mðtÞ
can be determined, yielding

A0mðtÞ ¼ A0mð0Þ exp
ð2kmom1

þYmmÞt

m2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2lm � 4

q
0
B@

1
CA,

B0mðtÞ ¼ B0mð0Þ exp
�ð2kmom2

þYmmÞt

m2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2lm � 4

q
0
B@

1
CA,

where Amð0Þ and Bmð0Þ are given by Eqs. (51) and (52), respectively. Hence, for b2lm44, T0mðt; tÞ is found
to be

T0mðt; tÞ ¼ A0mð0Þ exp om1
tþ
ð2kmom1

þYmmÞt

m2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2lm � 4

q
0
B@

1
CAþ B0mð0Þ exp om2

t�
ð2kmom2

þYmmÞt

m2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2lm � 4

q
0
B@

1
CA. (110)

The damping properties of T0mðt; tÞ will now be considered. From Eq. (110) and t ¼ �t it follows that the
damping coefficients (dm1;2 ) of T0mðt; tÞ can be approximated by

dm1;2 ¼ 1�
2�km

m2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2lm � 4

q
0
B@

1
CAom1;2 �

�Ymm

m2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2lm � 4

q
0
B@

1
CA. (111)

Now it will be shown that there exist a constant d̂o0 such that dm1;2od̂o0 for all m 2 N with b2lm44. This

property of the damping rates will be used to obtain the type of damping of the problem (5)–(10). From
Eq. (45) it follows that there exists an �-independent constant ôo0 such that om1;2oôo0 for all m 2 N with

b2lm44. From Eqs. (93) and (107) it follows that km=m2m ¼ Oð1Þ and that Ymm=m2m ¼ Oð1Þ. Then there also

exists an �-independent constant d̂o0 such that dm1;2od̂o0 for all m 2 N with b2lm44. Furthermore, it

follows from Eq. (111) that the compression force, which is related to Ymm, has a significant effect on the
damping rates.

The functions A0mðtÞ and B0mðtÞ have been determined for the case b2lma4. So, an Oð�Þ-approximation,

given by Eq. (73), of the initial-boundary value problem (5)–(10) for the case b2lma4, valid on timescales of

Oð��1Þ, has been determined. It is beyond the scope of this paper to prove that the Oð�Þ-approximation are

indeed valid on timescales of Oð��1Þ.

6. Damping results

In this section the damping properties of the wind-induced vibrations of a weakly damped vertical beam
with a tip-mass will be discussed. These vibrations are described by Eqs. (5)–(10). In the previous section an

approximation of the solution of problem (5)–(10) for the case b2lma4 has been found and is given by

Eq. (73), where T0mðt; tÞ, for the case b
2lmo4, is given by Eq. (103), and where T0mðt; tÞ, for the case b

2lm44,

is given by Eq. (110). The damping rates of the modes such that b2lmo4 are given by Eq. (104) and the

damping rates of the modes such that b2lm44 are given by Eq. (111). Now the modes of u0ðx; t; tÞ, given by

Eq. (73), will be damped uniformly (i.e. exponentially) if there exist constants ŷ and d̂ such that y1;moŷo0 for

all m 2 N with b2lmo4, and such that dm1;2od̂o0 for all m 2 N with b2lm44. If such constants ŷ or d̂ do not

exist, but y1;mo0 for all m 2 N with b2lmo4, and dm1;2o0 for all m 2 N with b2lm44, the modes will be
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Table 1

Numerical approximations of f2
nð1Þ and of the damping coefficient y1;n for b ¼ 0 and g ¼ 1

n f2
nð1Þ y1;n

1 0.80753 �a=2� 0:40376ðcþ aÞ�
2 0.08998 �a=2� 0:04499ðcþ aÞ�
3 0.03395 �a=2� 0:01698ðcþ aÞ�
4 0.01717 �a=2� 0:00859ðcþ aÞ�
5 0.01033 �a=2� 0:00516ðcþ aÞ�
6 0.00688 �a=2� 0:00344ðcþ aÞ�
7 0.00491 �a=2� 0:00246ðcþ aÞ�
8 0.00368 �a=2� 0:00184ðcþ aÞ�
9 0.00286 �a=2� 0:00143ðcþ aÞ�
10 0.00228 �a=2� 0:00114ðcþ aÞ�
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damped strongly (i.e. asymptotically). In the last paragraph of the previous section is has been shown that

there exist a constant d̂ such that dm1;2od̂o0 for all m with b2lm44. So the modes of u0ðx; t; tÞ with b2lm44

will be damped uniformly. Now the value of the damping coefficients (y1;m) of the modes of u0ðx; t; tÞ with
b2lmo4 will be considered for several values of the parameters b; c; g, and a.

First, consider the case that the Kelvin–Voigt damping is not included (i.e. b ¼ 0). Hence b2lmo4 and
therefore Eq. (104) is the damping coefficient for all modes. Now if a beam without a tip-mass (i.e. g ¼ 0) is
considered, it follows that y1;m ¼ ða=2Þ � 2c. So, the oscillation modes of a vertical beam subjected to wind-
forces will be damped uniformly if c4a=4. And a vertical beam not subjected to wind-forces will be damped
uniformly for every positive value of the damping parameter c.

Now the damping rates of a vertical beam with a tip-mass but not subjected to Kelvin–Voigt damping (i.e.

g40;b ¼ 0) will be considered. Since mm ! ðm�
3
4
Þp for m!1 and for g40 it follows that

sinðmmÞ sinhðmmÞ

1þ cosðmmÞ coshðmmÞ

� �
! 1 for m!1 and for g40.

Hence it follows from Eq. (105) that f2
mð1Þ ! 0 for m!1 and for g40. Now consider Eq. (104) where

the parameter �a is the negative damping due to the wind. If this wind-force is not included (i.e. a ¼ 0)
it can similarly be deduced that the damping rates y1;m tend to zero for m!1. Hence, for this case, the
modes will be damped strongly, but not uniformly, because c is a positive parameter and because y1;m ! 0

for m!1. The first ten damping coefficients for this case with g ¼ 1 are listed in Table 1. If the wind-force
is included (i.e. a40) not all modes of the wind-induced vibrations of the vertical beam will be damped
by the boundary velocity damper, with damping parameter c40. If g (the ratio of the mass of the tip-mass
and the mass of the beam) is a small parameter also gmm will be small. Then the damping coefficients
of the lower-order modes can be approximated by ym � ða=2Þ � 2c. Hence the velocity damper will damp
the lower modes if c4a=4. However, a velocity damper is not sufficient to suppress the wind-induced
modes of vibrations of a vertical beam with a tip-mass. In particular, the higher-order modes will hardly be
damped.

Since low- and high-frequency vibrations can cause damage to a building it is important to have damping
for all of the oscillation modes. Now the damping coefficients y1;m of a vertical beam with boundary damping,
with Kelvin–Voigt damping, and with a tip-mass in a wind-field will be considered. It follows in this case that

the modes will be damped uniformly if aoðbm4m=�Þ þ ðcþ agÞf2
mð1Þ for all m 2 N, where mm ! ðm�

3
4
Þp for

m!1 and where ðm� 1Þpommomp (see Section 3). So, if bm4m4�a for m ¼ 1 the velocity damper is not

necessary to obtain uniform damping. But if there exists an integer MX1 such that bm4mp�a for all mpM and

bm4m4�a for all m4M the velocity damper is necessary to obtain damping for the first M oscillation modes.

These M modes will be damped uniformly if the damping parameter c is such that ðblm=�Þ þ ðcþ agÞf2
mð1Þ4a

for all mpM.
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7. Conclusions

In this paper a weakly damped vertical beam with and without a tip-mass in a wind-field has been
considered. Boundary damping and global Kelvin–Voigt damping have been considered. The boundary
damping is assumed to be proportional to the velocity of the beam at the top. By using the energy integral it
has been shown that the solutions (assuming the existence of a sufficiently smooth solution) are bounded in
absence of a windforce. Explicit asymptotic approximations of the solutions have been derived. The damping
rates for several cases have been considered. It has been shown that if the damping parameter is large enough
(i.e. c4a=4) that the wind-induced vibrations of a vertical beam without tip-mass and without Kelvin–Voigt
damping will be damped uniformly. The vibrations of a vertical beam with a tip-mass but without
Kelvin–Voigt damping and not subjected to wind-forces will be damped strongly. Finally it has been shown
that a combination of boundary damping and Kelvin–Voigt damping can be used to damp the wind-induced
vibrations of a vertical beam with tip-mass uniformly. It also has been shown that the compression force due
to the mass of the tip-mass and due to the mass of the beam itself has a significant effect on the frequency.
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