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Abstract

In this paper the wind-induced, horizontal vibrations of a weakly damped vertical Euler-Bernoulli beam with and
without a tip-mass will be studied. The damping is assumed to be boundary damping and global Kelvin—Voigt damping.
The boundary damping is assumed to be proportional to the velocity of the beam at the top. The horizontal vibrations of
the beam can be described by an initial-boundary value problem. In this paper, the multiple-timescales perturbation
method will be applied to construct approximations of the solutions of the problem. Also it will be shown that a
combination of boundary damping and Kelvin—Voigt damping can be used to damp the wind-induced vibrations of a
vertical beam with tip-mass uniformly.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

In many mathematical models oscillations of elastic structures are described by (non)linear wave equations
or by (non)linear beam equations. Examples of wave-like or string-like problems are given in Refs. [1,2].
Examples of beam-like problems are given in Refs. [3-7]. In this paper a vertical, cantilevered, uniform
Euler—Bernoulli beam with boundary damping and with global Kelvin—Voigt damping (see Fig. 1) as a simple
model for a tall building will be considered.

In recent years more and more tall buildings were built. For tall buildings, or high rise buildings, dampers,
active or passive, are used to dissipate the energy of the vibrations of the building. Vibrations induced by wind
or earthquakes can cause damage to an elastic structure. Vortex-shedding (high-frequency oscillations with
small amplitudes) and galloping (the effect of low-frequency vibrations with large amplitudes) can cause
material fatigue. Since these small and large amplitudes can cause damage to a building it is important to have
damping. To suppress the vibrations of a structure various types of boundary damping can be applied. In this
paper, the boundary damping is assumed to be proportional to the velocity of the beam at the top. Some
damping mechanisms give rise to a heavy tip-mass, that is why beams with and without such tip-masses will be
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Fig. 1. A simple model for a vertical cantilevered beam with tip-mass and velocity damper.

considered in this paper. Boundary damping for horizontal beams with and without tip-masses has been
studied in Refs. [8—11]. In this paper, it is assumed that the beam is made of a viscoelastic material that satisfies
the Kelvin—Voigt constitutive equation. Global and local Kelvin—Voigt damping mechanisms for horizontal
beams have been studied in Refs. [12,13].

Furthermore, a uniform wind-flow is considered, which causes nonlinear drag and lift forces (Fp, F ) acting
on the structure per unit length. A simple model of a vertical cantilevered Euler—Bernoulli beam equation with
Kelvin—Voigt damping subjected to wind-forces is given by

Elnyyxx + SEMyyyy. +gl(m + pA(L — X)nyly + pAn,, = Fp+ Fr, (1)

where E is Young’s modulus, 7 is the moment of inertia of the cross-section, ¢ is the coefficient of the
Kelvin—Voigt viscoelastic damping, p is the mass density of the beam, 4 is the cross-sectional area of the beam,
L is the length of the beam,  is the deflection of the beam in Y-direction, t is the time, X is the position along
the beam (see Fig. 1), m is the mass of the tip-mass, and ¢ is the acceleration due to gravity. The term
[g(m + pA(L — x))ny]y in Eq. (1) is a linearly varying compression force due to the weight of the beam and the
tip-mass. In Ref. [14] the Ritz—Galerkin method and perturbation methods have been used to determine
closed-form approximate solutions of the vibrations of a vertical beam.

The main goal of this paper is to study the possibility to stabilize vertical cantilevered beams with and
without tip-masses at the top in a wind-field. Explicit asymptotic approximations of the solutions for this
problem, which are valid on a long timescale, will be given.

A simple model for the damped, vertical, cantilevered Euler—Bernoulli beam subjected to wind-forces is
given by Eq. (1) and the boundary conditions #(0,7) = 54(0,7) = 0, and

EI”XXX(La T) + gEI”XXXr(Lﬂ T) = mnrr(l‘ﬂ T) - gmnX(La T) + 5’71(147 T)9 (2)

EINyy (L, 1) + CEIN gy (L, 7T) = 0, 3)

where ¢ is a positive constant, the damping parameter. In Ref. [2] it has been shown that Fp + F; can be
approximated by

dvsa b
Fp+ Fp =25 ('11+UT’73)’ 4)
o0

2

where p, is the density of the air, d is the diameter of the cross-sectional area of the beam, vy, is the uniform
wind-flow velocity, and a and b depend on certain drag and lift coefficients, which are given explicitly in
Ref. [2]. In this paper the linearized partial differential equation (1) will be considered. The nonlinear
wind-force (p, dvsoa/2)(n, + (b/v2)n?) in Eq. (1) will give a coupling between (almost) all oscillation modes. In
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Refs. [2,15] also this nonlinear windforce has been considered. It has been shown that the windforce gives a
coupling between (almost) all oscillation modes. It is also known that the nonlinear term damps the vibrations.
In this paper the linearized initial-boundary value problem will be considered, because the main goal of this
paper is to determine the damping. If the damper damps the vibrations due to the linearized wind-force, the
damper also damps the vibration due to nonlinear wind-force, because the nonlinear term in the wind-force
also damps the vibrations.

To put the model in a non-dimensional form the following substitutions u(x, ) = (k/ve0)(X,7)/L),
x=X/L, and t = (x/L)t, where x = (1/L)\/EI/Ap will be used. By applying these transformations, the
following linearized, dimensionless initial-boundary value problem can be introduced, which describes the
horizontal displacement of a damped vertical beam with tip-mass and with a uniform wind-flow acting on it:

Uu] = ey, t>0, 0<x<1, (%)

u(0,6) = u(0,£) =0, =0, (6)

U (1,8) + Puc(1,6) =0, =0, (7)

teex(L, 1) + a1, 1) = yun(1, 1) — eyux(1, 1) + ecul(l, 1), 120, ®)
u(x,0) =f(x), O0<x<l, 9)

u(x,0) =g(x), O<x<l, (10)

where ¢ = gpAL®/EI is a small parameter, that is, 0<e<1, = (c/L*)\/EI/pA, y = m/pAL, ¢ = (p,dL/

24p)(veo/K)a, ec = &/ L*/EIpA, and where

H—[u] = Uyxxx + ,Buxxxxt + ‘C[(V +1- X)blx]x + Uy (1 1)

The functions f(x) and g(x) represent the initial displacement and the initial velocity of the beam, respectively.
It should be observed that o (the parameter due to the wind-force), f (the Kelvin—Voigt damping parameter), ¢
(the boundary damping parameter), y (the mass of the tip-mass divided by the mass of the beam), and ¢ are
dimensionless parameters. The parameters o and ¢ are ¢-independent. The parameters y and f§ in general will
be small parameters. For the construction of approximations of the solution of Egs. (5)—(10), however, it will
be assumed that § and y are e-independent parameters.

This paper is organized as follows: in Section 2 the initial-boundary value problem with ¢ = o = 0 will be
considered. This is the problem of a vertical beam with a tip-mass and with Kelvin—Voigt damping. Also it will
be explained why a multiple-timescales perturbation method will be applied. In Section 3, the unperturbed
initial-boundary value problem (i.e. ¢ = 0) will be considered. This is the problem of a beam with tip-mass and
Kelvin—Voigt damping. In Section 4 the energy of the initial-boundary value problem without wind-
perturbation (i.e. = 0) is considered. The boundedness of the solutions will be shown, assuming the existence
of a sufficiently smooth solution. In Section 5, formal approximations for the solutions of the initial-boundary
value problem (5)—(10) are constructed by using a two-time-scales perturbation method. Next, in Section 6, the
stability of the beam will be discussed. Finally, in Section 7 some conclusions will be drawn and some remarks
will be made.

2. The problem (5)—(10) with c=a =0

In this section the wind-forces and the boundary damping acting on the beam are neglected. The horizontal
vibrations of a vertical beam with a tip-mass and with Kelvin—Voigt damping are studied. These vibrations
can be described by problem (5)—(10), with ¢ = o = 0:

Uyxxx T ﬂuxxxxt + 8[(V + 1 - x)ux]x + uy = O) (12)

M(O, Z) = ux(oa t) = uxx(la Z) + ﬁuxxt(la t) =0, (13)
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SVL{X(I, Z‘) + uxxx(la l) + ﬁuxxxt(ln Z) - Vult(la t) =0, (14)

u(x,0) =f(x) and u,(x,0) = g(x). (15)

Now look for non-trivial solutions of the partial differential equation (12) and the boundary conditions (13)
and (14) in the form X (x)7T(¢). By substituting this into Eq. (12) and by dividing the so-obtained equation by

X(x)T'(¢) it follows that
xX® T\ O +1-x)X7 T
Z _(14p= )+ —— L4~ . 1
(1) + 29T T (16)

Now the case T + ST’ = 0 will be considered first. By considering the boundary conditions it can be deduced
that, for the case T + ST’ = 0, X(x) has to satisfy

el +1—X)XT +X =0, (17)

X(0) = X'(0) = ¢f*pX'(1) —yX(1) = 0. (18)

So, the only solution of Egs. (17)—(18) is given by the trivial solution. This can be seen in the following way.
Multiply Eq. (17) by (y + 1 — x)X'(x), integrate the so-obtained result with respect to x from 0 to 1, and use
Eq. (18) to obtain

1
ef 7 (X'(D) + (X (1) + /0 X2(x)dx =0. (19)

From Eq. (19) it follows that X (x) = 0. So, the only solution of Eqs. (17)—(18) is given by the trivial solution.
Therefore, the case T + BT’ = 0 only leads to trivial solutions. Now to separate the variables in Eq. (16), Eq.
(16) can be differentiated with respect to ¢ or to x (see also Refs. [16,17]). Differentiation of Eq. (16) with

respect to ¢, yields
X(4) T/ / T// /
37 <7> + <7> =0. (20)

X9 =px, 21
where 5, € C is a separation constant. Then from Eq. (16) it also follows that

/31(1+[>’%)+T7”+M:0. (22)

Now separate variables to obtain

Again separate variables to obtain
diy +1-0XT =B, X, (23)

where 8, € C is also a separation constant. From Eq. (13) it follows that X(0) = X’(0) = 0. By substituting
x =0 into Eq. (23) it follows that X”(0) =0, and by differentiating Eq. (23) with respect to x and by
substituting x = 0 into the so-obtained result it follows that X”(0) = 0. Now the differential equation (20)
subject to X(0) = X’(0) = X”(0) = X"'(0) = 0 only has trivial solutions. So, differentiation of Eq. (16) with
respect to ¢ only leads to trivial solutions. Now differentiate Eq. (16) with respect to x to obtain

YO\’ T iy +1-xXTY _ ;
(7) (1 +ﬁ?> N <f) — 0= T =0T, (24)

where 0 € C is a separation constant. Now because 7" = 0T = T” = 0°T the following eigenvalue problem
for X(x) is obtained:

1+ BOXD +¢[(y +1 —x)X] = —0°X, (25)

X(0) = X'(0) = (1+ pO)X"(1) =0, (26)
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(14 BOX" (1) + ey X'(1) — 90> X(1) = 0. (27)

This fourth-order differential equation (25) can be solved exactly for ¢ = 0, but cannot be solved exactly for
e#0.

Now consider the case § = 0 (this is the case of a vertical beam with a tip-mass but without Kelvin—Voigt
damping) and introduce the eigenvalue 2 = —0*. In Ref. [18] it has been shown that the eigenvalues A of
problem (25)—(27) with § = 0 are real-valued. In addition, it has been shown in Ref. [18] that these eigenvalues
are certainly positive for sufficiently small values of ¢ and 7y, that is, if ¢ and 7y satisfy the following inequality:

e(y + %) <l (28)

Moreover, in Ref. [18] it has been proved that the eigenfunctions corresponding to problem (25)—(27) with
f = 0 can be chosen to be real-valued, and it has been shown that these eigenfunctions are orthogonal with
respect to the following inner product:

1
(), v(x)) = /0 [+ 780 — Du(x)o@) dx, (29)

where d(x) is the Dirac delta function, with the properties fol ox—1)dx=1,and 6(x — 1) =0 for x#1.

Although some properties of the eigenvalues and the eigenfunctions of problem (25)-(27) with =0 are
now known, the fourth-order differential equation (25) for f = 0 and for f#0 cannot be solved exactly. To
construct an approximation of a solution a perturbation method will be used. It has been assumed that
0<e<1. Then the term ¢[(y + 1 — x)X(x)'] in Eq. (25) is small compared to the other terms in the equation. In
this paper a two-time-scales perturbation method will be used in Section 5 to solve the problem (5)—(10), with
e#0 approximately. The reader is referred to the book of Nayfeh and Mook [19] for a description of this
method.

3. The problem (5)—(10) with ¢ =0

In this section the wind-forces, the effect due to gravity, and the boundary damping are neglected. So,
problem (5)—(10), with ¢ = 0 will be considered:

e + Bilnt + iy = 0, (30)

(0, 1) = ux(0, 1) = tex(1, 1) + Puxr(1, 1) = 0, 31)
Uxx(1, 1) + Prx(1, 1) — yun(1,2) = 0, (32)
u(x,0) = f(x) and u,(x,0) = g(x). (33)

The method of separation of variables will be used to solve the problem (30)—(33). Now look for non-trivial
solutions of the partial differential equation (30) and the boundary conditions (31)—(32) in the form X (x)7'(?).
By substituting this into Egs. (30)—(32) it follows that

X(4) I
X T TH+pT A (34

where 1 € C is a separation constant. Note that the case T + 7’ = 0 only leads to trivial solutions. By
considering the boundary conditions (31)—(32) a boundary value problem for X(x) is obtained:

XP(x) — X (x) =0, (35)
X(0)= X'(0) = X"(1) =0, (36)
X"(1) +92X(1) =0, (37)

and the following problem for 7(¢):
T'(t) + AT (1) + BT'(1)) = 0, (38)
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where A € C is a separation constant. The boundary value problem (35)—(37) is the same as problem (25)—(27)
with ¢ = f = 0. So the eigenvalues are real-valued and positive; the eigenfunctions can be chosen to be real-
valued, and two real-valued eigenfunctions belonging to two different eigenvalues are orthogonal with respect
to the inner product (29). Moreover, problem (35)—(37) can be solved analytically. The eigenvalues 4, = w! are
implicitly given by the roots of

h, (@) = 1 4 cosh(u) cos(u) + yu(cos(p) sinh(u) — cosh(w) sin(p)) = 0, (39)

which is equivalent to

(cos(p) + cosh(y) + yu sinh(u))

(714 cosh() — sin(u)) (40)

tan(u) =

The real-valued, positive roots of /,(u) are denoted by p,. It can be deduced that (n — 1)m <y, <nm, with
n € {1,2,3,...}, the elementary proof will be omitted here. For similar proofs the reader is referred to Ref. [20].
So, there are infinitely many isolated, real-valued, and positive eigenvalues. Definition (39) will have the
following approximate form (for large p) &,(u) =~ (y/2)uet cos(u)(1 + (1/yu) — tan(n)) and p, — (n — %)n for
n — oo and for y#0.

The eigenfunctions of the problem (35)—(37) can be determined, and are given by

¢,(x) = sin(u,x) — sinh(u,x) + f,(cosh(s,x) — cos(i,x)), (41)
where
g — SinGy) +sinh(y,)
"~ cos(u,) + cosh(u,)”

If the tip-mass is zero the eigenvalues and the eigenfunctions are given by Eqs. (39) and (41), respectively, with
y = 0. These eigenfunctions are also orthogonal with respect to the inner product (29) with y =0, and
ty, ~ (n — D (for large n).

For each eigenvalue the function 7,(f) can be determined from Eq. (38). So infinitely many non-trivial
solutions of the initial-boundary problem (30)—(33) have been determined. By using the superposition
principle the solution of the initial-boundary value problem is obtained

o0
wx, ) =Y TuD)p,(x), (42)
n=1
where
e~ F/Dl( 4, cos(a,t) + By sin(ant)) if 24, <4,
=2
Tu(0) =4 (A, + But)e B if f20, =4, (43)
Ane”n’ + B,e®n! if B2l,>4
with
L (B
— ( ) (44)
P ﬁ;“” + % B2 — 47, (45)

where ¢,(x) is the normalized eigenfunction

Pu(X)

P = G

(46)
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where (},,(x) is given by Eq. (41), and where 4,, and B, are constants. The constants A, and B, are determined
by the initial displacement f(x) and the initial velocity g(x) in the following way:

1
A, = /0 [+ 780 — DI (x)by () dx, @7)
1 ﬁ n
ouBy = /0 [1 4 76(x — 1] (g(x) P )>¢ (x)dx (48)
if B2, <4,

1
a, = /0 [T+ yd(x — 1)]f(x)¢n(x) dx, (49)

1
B, = /0 [+ 73(x — 1)] (g(x) + ﬁf(x)) $2(0) dx (50)

if f22, =4, and

o ol 7900 = D)/ () — g(x))gy,(x) dx

(s1)
\/ B2 — 44,
_ JoT+730x = DIG) — 00, /() (x) dx 52

= \/ BPAE—4),

if f?),>4. The eigenfunctions ¢,(x) form an orthonormal set with respect to the inner product (29). After
lengthy but elementary calculations it can be shown that

sin(u,) + sinh(x,) > ? <sin(un) cosh(x,) — cos(,) sinh(un)) ?
cos(u,) + cosh(u,) 1, (cos(,) + cosh(y,)) ’

($n(x), () = ( (53)
and it can be shown that ((}Sn(x), (}5”(x)) — lifn — oo. In Section 5 this property will be used to determine the
type of damping.

4. The energy and the boundedness of solutions

The energy of the cantilevered beam with a tip-mass but with no wind force applied to it (i.e. problem
(5)—(10), with o = 0) is defined to be

1
E() = /0 %(uf(x, 1)+ (x, 1) — ey + 1 — x)(x, 1)) dx + l«/uf(l, 0. (54)

The time derivative of the energy is given by dE/dt = —ecu?(1,1) — f8 fo w2, (x, 1) dx, where c is the (boundary)
damping parameter, and where f is the coefficient of Kelvin—Voigt viscoelastic damping. So, the energy is
bounded if the initial energy is bounded and &(y + %) <1 (see also Eq. (28)). The existence of a solution of u(x, ¢)
is assumed, where u(x, ) is a twice continuously differentiable function with respect to ¢ and a four times
continuously differentiable function with respect to x. A proof of this assumption is beyond the scope of this
paper. Since u.(x,?) and uy(x,f) are continuous it follows that wu(x,?)= fdx ug(¢,1)dé  and
uy(x, 1) = f('f uez(E, f)dé. It then can be deduced by using the Cauchy—Schwarz inequality that (see also Ref.
[18] for a similar estimate)

2E(7) 2E(0)
(3 ”'</ el t)'dx<\/ £ t)dX\\/(l FEETN \/(l_s(v+%))’ )
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where it has been assumed that &(y + %) < 1. By using u(x, t) = f(;v ue(¢, t)d¢ the following inequality for |u(x, ?)|
can be derived similarly

2EO) 2E(0)

e = 56
I—er+h)  \U—er+1) (56)

1 1
MnmsjuMan</
0 0

So, also u(x, ) is bounded if the initial energy is bounded and &(y + %)< 1.
5. Formal approximations

In this section an approximation of the solution of the initial-boundary value problem (5)-(10) will be
constructed. A two-time-scales perturbation method will be used. Conditions like #>0,7>0, 0<x<1 will be
dropped, for abbreviation. Expand the solution in a Taylor series with respect to ¢, to obtain

u(x, t;€) = fig(x, 1) + ety (x, 1) + 2 (x, ) + - - - (57)

It is assumed that the functions #;(x, t) are ()(1). The approximation of the solution will contain secular terms.
Since the i;(x, ) are assumed to be ()(1), and because the solutions are bounded on timescales of ((¢"),
secular terms should be avoided when approximations are constructed on long timescales of ¢(¢~!). That is
why a two-time-scales perturbation method is applied. By using such a two-time-scales perturbation method
the function u(x, ) is supposed to be a function of x, ¢, and t = &¢. So put

u(x, t) = w(x, t,7;€). (58)

A result of this is
U, = W, + ewg, (59)
Uy = Wy + 26Wsr + & Wer. (60)

Substitution of Eqs. (58)—(60) into the problem (5)—(10) yields an initial-boundary value problem for w(x, z, 7).
Assuming that

w(x, 1,7 8) = ug(x, £, 7) + euy (x, 1, 7) + ur(x, ,7) + - - -, (61)
then by collecting terms of equal powers in ¢ it follows from the problem for w(x, ¢, ) that the @(1)-problem is
U0 + B0, +tho, =0, (62)
up(0,1,7) = up (0,2,7) =0, (63)
up, (1,2,7) + puy_,(1,¢,7) =0, (64)
uo,...(1,1,7) + fug,,.,(1,1,7) — yuo,(1,1,7) = 0, (65)
up(x,0,0) = f(x) and u,(x,0,0) = g(x), (66)
and that the ()(¢)-problem is
Ul + Brn,, 4w, = oo, = [(7 + 1 = Xuo, 1, — 2uo,, — Puo,,... (67)
u1(0,1,7) = u1 (0,,7) =0, (68)
ur, (1,4,0) + fur (1, 1,7) = —fuo,..(1,1,7), (69)
w (L t,t)+ pur, (1, ¢,7) = yuy,, (1, ¢, 1) — yuo, (1, 1,7) — Puo,.(1, 1, 7) + 2yuo,, (1, £, 7) + cuo,(1,1,7), (70)
u1(x,0,0) =0, (71)

“l[(x: 0: 0) = —M01(X, 09 0) (72)
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The solution of the ((1)-problem (62)—(66) has been determined in Section 3 and is given by

up(x,1,7) = Y Toult, )b, (%), (73)
n=1

where
PV 4,() coS(a,t) + Bon(t) sin(ant))  if 24, <4,
Tou(t,7) = { (Aon(7) + Bon(1)1)e=2/P1 if Bi, =4, (74)
Aon(1)e™1 " 4+ Boy(t)e™! if 22, >4,

and where ¢, @,,, w,,, the orthonormal eigenfunction ¢, (x) corresponding to 4,, 4o,(0), and By,(0) are given
by Egs. (44)—(52). Now the solution of the ((¢)-problem will be determined. The problem (67)—(72) has an
inhomogeneous boundary condition. For classical inhomogeneous boundary conditions the inhomogeneous
boundary conditions are made homogeneous. However, for inhomogeneous non-classical boundary
conditions such as Eq. (70) a different procedure has to be followed. In fact, a transformation will be used
such that the partial differential equation and the inhomogeneous boundary condition, after the
transformation, “‘match’; if a solution which is expanded in eigenfunctions ¢,(x), defined by Eq. (41),
satisfies the transformed partial differential equation it immediately satisfies the transformed inhomogeneous
boundary condition. A similar “matching” for a non-self-adjoint string-like problem has been introduced in
Ref. [1]. Introduce the following transformation:

—x? X

u(x,t,7) = v(x,1,17) + (T + F) h(t, 7). (75)

By substituting the latter transformation into Egs. (67)—(72) it follows that

—x2 X3
Usxx + PUxxxxr + Vg = athy, — [(7y + 1 — X)up, ], — 2uo,, — Puo,.... — <T + E) hu(t,7), (76)
U(Oa t: T) = UX(OB t; T) = 0’ (77)
Uxx(lstaf)_’_ﬁvxxt(l,ts T) = O, (78)

UXXX(17 l’ ‘C) + ﬁUxxxt(la lﬂ T) = VUn(la ta T) - ’yuox(la [: T) - ﬁu(),\»x,\-f(la la T) + ZVUO,I(L l) ‘C) + Cuo;(la ta ‘C)

= h(t,7) = Bhi(1,7) = L) (19)
v(x,0,0) = — <_sz + %) h(0,0), (80)
2 53
0(x,0,0) = —up_(x,0,0) — (T z) h:(0,0). (81)
Introduce the following infinite sum for v(x, t, 7):
w660 = S (e, 06,00, (82)

n=1

and substitute the infinite sum into the partial differential equation (76) and into the boundary condition (79)
to obtain

—X

00 2 3
Z(vn,, + /ln(vn + ﬂvn,))¢n(x) = Uy, — [(’V +1- x)uox]x - 2u0rr - BHO,\«,\M - (T + %) hll(t’ T)’ (83)

n=1



J.W. Hijmissen, W.T. van Horssen | Journal of Sound and Vibration 310 (2008) 740-754 749

and
Z(vn + Bup ), (1) = yvn,d,(1) = — yuo (1, 1,7) — Bug,..(1,2,7) + 2yuo,. (1, 1,7) + cuo,(1,2,7)

—h— Py =S b, (84)

respectively. Note that the dependency of v,(¢,7), To.(t,7), and h(z,7) on t,7 have been dropped for
abbreviation. Now the function A(z, 7) will be determined. By letting x tend to x = 1 in Eq. (83), by using the
first boundary condition in x = 1 (i.e. ¢, (1) = 0), and by multiplying the so-obtained result by 7, it follows
that

&)
DD (b, + 2o+ Bn )by (1) = s (1,1,7) + 720, (1,1,9) = 29000, (1, 1,9) = By, (1,,7) + Lt 7). (85)

n=1

Now by adding Egs. (84) and (85), and by using the second boundary condition in x=1 (i.e.
¢, (1) +744¢,(1) = 0) and Eq. (35) in x=1 (ie. ¢, (1)=71,¢,1)) it follows that h(z,7) satisfies the
following first-order differential equation:

h+ phy — (¢ + ay)up,(1,1,7) = 0. (86)
From Egs. (38), (73), and (86) A(t,7) and /,(t,7) can be determined, yielding

Myxxx

h(t,7) = g0 + (c+ o) > (BinTon + Ton))b,(1), (87)

n=1

hu(t,7) = g[gf) e /P —

e+ ) 7nTonbu(1), (88)

n=1

respectively, and where §(r) is an arbitrary function in 7. From now on let §(t) be equal to zero, that is,
g(t) = 0. Note that in this way A(z, 7) is a transformation such that Egs. (76) and (79) “match”. The function
hy(t,7) will be used to obtain a differential equation for v,,(¢, 7). Now a differential equation will be obtained
for v,(t,7). Eq. (83) can be used to obtain this differential equation for v,,(t, 1) after expanding ((—x?/2) +
(x*/6)) in series of orthonormal eigenfunctions qb,,(x)'

- + 5= 2 G, (89)

=1

where
1 ) 3
C, = /O [1+78(x — 1)] (Tx + %) b, (x) dx. (90)

By using integration by parts and by using that ¢,(x) is a solution of problem (35)—(37), with 4 = 4,,, it follows
that

C,=— . 1)

Multiply Eq. (83) by (1 + yo(x — 1))¢,,(x), integrate the so-obtained result with respect to x form 0 to 1, use
that the eigenfunctions ¢, (x) are orthogonal with respect to the inner product (29), and use Eqgs. (88) and (91),
to obtain

Umy, + j~m(Um + ﬁvm,) = - 2TOnuI - .[g)hm TOmI + 2Km TOm, + @mm TOm

o0

+ Z (Qnm Ton—(c+ O‘V)¢;1(l)¢n1(l) T0n1> 92)

n=ln#m
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where

= 2= 2 (708D, ©3)

S)

where T,(z,7) is given by Eq. (74), and where ©,,, = fol 7+ 1 =26, ()¢, (x)dx. In Ref. [14] explicit
expressions for @,,,, have been obtained for the case y = 0. From Eq. (74) it follows that T, (¢, t) and T, (, T) are
solutions of the homogeneous equation corresponding to Eq. (92), and that T, (z, t) and T, (¢, T) with n#m are not
solutions of the homogeneous equation corresponding to Eq. (92). Therefore, the right-hand side of Eq. (92) contains
terms which are solutions of the homogeneous equation corresponding to Eq. (92). These terms will give rise to
unbounded terms, the so-called secular terms, in the solution v,,(z, t) of Eq. (92). Since it is assumed in the asymptotic
expansions that the functions u(x, t, 7), u1 (x, ¢, 7), us(x, ¢, 7), ... are bounded on timescales of ((¢~!) these secular
terms should be avoided. In T, (¢, 7) the functions Ay,,(t) and By,,(t) are still undetermined. These functions will be
used to avoid secular terms in the solution of Eq. (92) in the following way. Let the sum of the terms in the right-hand
side of Eq. (92) that give rise to secular terms in the solution of Eq. (92) be equal to zero, yielding

_2T0m,, - ﬁ/lm TOmT + ka TOm, + @mm TOm =0. (94)

By substituting T',(z, t), given by Eq. (74), into Eq. (94) (coupled) differential equations for the functions
Aom(t) and By,(1) can be obtained. From Eq. (74) it follows that T,,(z, 7) for the case *A,, <4, Ton(t, 7) for
the case Ay = 4, and Ton(2, 1) for the case >4, >4 are given in a qualitatively different way. Therefore, from
Eq. (94), it follows that qualitatively different differential equations for Ay,,(t) and By,,(t) will be obtained for
these cases. Now the case [32/1,,1 <4, the case /32/1m =4, and the case B%m >4 will be considered.

At first, the case >4, =4 will be considered. By substituting Tom(7,7) = (Aom(t) + Bom(1)1)e2/P into
Eq. (94) equations for Ay,(tr) and By,(t) can be obtained. These equations cannot be used to obtain an
approximation of the solution of problem (5)~(10). The reason for this is that for the case >/, = 4 it cannot
be expected that the solution of the unperturbed problem (5)—(10) can be expanded in a Taylor series with
respect to . To show this a so-called auxiliary equation will be introduced. Suppose that the solution of Eq.
(38) is given by T(¢) = €", where r is a parameter to be determined. By substituting 7(¢) = ¢ into Eq. (38) the
auxiliary equation is obtained, given by

P4 pir+i=0, (95)
where 1>0. Now consider the following equation:
(&) + BAe)r(e) + &) = O, (96)

where A(¢) depends smoothly on ¢ and where A(0) = A. Then Eq. (95) is the corresponding unperturbed
equation of Eq. (96). From the implicit function theorem it follows that if

21(0) + BA(0) = 0, 97)

it cannot be expected that the root r(e) of Eq. (96) can be expanded in a Taylor series with respect to ¢ (see also
Ref. [21, Chapter 10]), and that there may be bifurcation solutions. From Eq. (95) it follows that 2r(0) +
BA0) = 0 if p>2(0) = 4. From 2r(0) 4+ fA(0) = 0 and B*A(0) =4 it follows that r(0) = —2/B. Now, it also
follows that r(0) = —2/f is a bifurcation point. For different values of the parameters f and A the solution of
Eq. (95) will be qualitatively different. Now assume that 4,, is an eigenvalue of the unperturbed problem (i.e.
(Egs. (5)~(10)) with ¢ = 0) such that >/, = 4. Then it cannot be expected that the solution of the perturbed
problem (i.e. Egs. (5)—(10)) can be expanded in a Taylor series with respect to ¢. To find an approximation of
the solution of problem (5)~(10) for the case °/,, = 4 a very different expansion will be needed. Therefore, the
case %4, = 4 will not be considered any further in this paper.

Now the case f°A,<4 will be considered. By substituting Tom(z,7) = eF/D1( 4, (t) cos(amt) +
Boyu(7) sin(o,,1)) into Eq. (94), it follows that A4y, (tr) and By,(t) are solutions of the following system of
coupled differential equations:

dAOm
dt

= KmAOm - QmBOma (98)
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dB
O = KmB()m + QmAOma (99)
dt
where
Qm — (@mm - B’bﬂ’@’n) , (100)
20,

where x,, is given by Eq. (93), ¢,, by Eq. (44), ©0,,, = fol ¢+ 1=x9,, ()¢, (x)dx, 4, = 1, and where p,, is
the mth positive root of Eq. (39). From Egs. (98) and (99) Ag,,(tr) and By, (t) can be determined, yielding

A()m(T) = eKWT(AOm(O) COS(QmT) - BOm(O) Sin(QmT))a (101)

BOm(T) = eK”ﬂ(BOm(O) COS('QmT) + AOm(O) Sin(Qm‘E))a (102)

where A,,(0) and By,,(0) are given by Egs. (47) and (48), respectively. Hence, for %2, <4, Ton(t,7) is found
to be

To,,1(l, T) = ei(mm/Z)HKMT(AOm(O) COS(O-mt - me) + BOm(O) Sin(amt - me))~ (103)

Now by substituting © = & and Eq. (93) into —(f4,,/2)t + x,,7 and by dividing the so-obtained result by ¢ it
follows that the damping coefficient (0,,,), for B*)m <4, can be approximated by

O1im = =3B — e+ e(c + y0) by (1), (104)
where
4
2 —
O = [ s, shG,) Y (109
P T+ cos(n,,) cosh(x,,)
From Eq. (44), Eq. (100), and ¢ = et it follows that the frequency (0,,,) can be approximated by
2
92 = /’Lm _ % e @Iﬂﬂl ﬁ;”me . (106)
’ 2 20,

Now the effect of gravity on the frequency will be considered. By lengthy but elementary calculations it can be
shown that the quotient ©,, /20, is given by (see Ref. [14] for a similar expression)

@nn ]

2
V:un S(:un) 2
- 1 243 —27. |, 107
S0, 4Jn(( + Wy X))+ )+26n (v;u(cos(un) m cosh(,u,,)) + W,y 7) (107)

where

_ sin(u,) — sinh(s,)
~ cos(s,) + cosh(n,)’

wn

and where s(u) = sin(u) cosh(u) — cos(u) sinh(). Since y, — —1 and s(u,) — 0 for n — oo, and since g, = §2
if f =0 it follows that @,, /20, = (1) if f = 0. The compression force due to gravity, the self-weight of the
beam, and the mass of the tip-mass is represented by the integral ¢®,,,. This integral shows up in Eq. (106) and
does not show up in Eq. (104). Hence, the compression force does not have a significant effect on the damping
rates of the oscillation modes, but only has a significant effect on the frequency of the oscillation modes. Since
0., >0 it follows that the frequency reduces by increasing mass of the tip-mass, that is, by increasing y and by
increasing the mass of the beam itself, that is, by increasing e.

Lastly, the case f°A,>4 will be considered. By substituting Tom(z,7) = Aon()e” " + By, (t)e®" into
Eq. (94), it follows that A, (t) and By,(t) are solutions of the following differential equations:

dAOm _ 2Kma)m1 + @mm
dt 20, + Pim

AOma (108)



752 J.W. Hijmissen, W.T. van Horssen | Journal of Sound and Vibration 310 (2008) 740-754
dBo _ Zmemz + Oum
dt  20m, + P

where w,,,, and x,, are given by Eqgs. (45) and (93), respectively. From Egs. (108) and (109) Ag,,(t) and Bo,(t)
can be determined, yielding

Bom, (109)

(2Kma)ml + @mm)f

:u%q \/ ﬁz/lm - 4

B (2Km Wy + @mm)‘c

2B —4 |

where A,,(0) and B,,(0) are given by Eqs. (51) and (52), respectively. Hence, for >/,,>4, Ton(z,7) is found
to be

Aom(t) = Aom(0) exp

BOm(T) = BOm(O) exXp

(Zmem] + @mm)'f (Zmemz + @mm)f

.“%7 \V Bz/lm -4 :“%1 \V ﬁ2)~m -4

The damping properties of T, (z,7) will now be considered. From Eq. (110) and 7 = &7 it follows that the
damping coefficients (d,y,,,) of T,(,7) can be approximated by

TOm(ta T) = AOm(O) CXP | Wm, t+

+ Bom(0)exp | wpm,t —

(110)

26K, £0

- wml,Z :I: V7
/v‘;zn \/ ﬁz)“m -4 ,u% \ ﬂzim -4

Now it will be shown that there exist a constant d <0 such that dpm,, <d<0 for all m € N with 22,,>4. This
property of the damping rates will be used to obtain the type of damping of the problem (5)—(10). From
Eq. (45) it follows that there exists an e-independent constant @ <0 such that w,, , <® <0 for all m € N with
f*m>4. From Egs. (93) and (107) it follows that «,,/g2, = (1) and that ©,,,/12, = (¢(1). Then there also
exists an ¢-independent constant d <0 such that dm,, <d<0 for all m e N with ,82/1,,,>4. Furthermore, it
follows from Eq. (111) that the compression force, which is related to 0,,,, has a significant effect on the
damping rates.

The functions Ag,,(t) and By,,(t) have been determined for the case ﬂzjum?é‘]'. So, an ()(¢)-approximation,
given by Eq. (73), of the initial-boundary value problem (5)—(10) for the case >/, #4, valid on timescales of
O(¢~"), has been determined. It is beyond the scope of this paper to prove that the ((¢)-approximation are
indeed valid on timescales of ((¢71).

Ay, = | 14 (111)

6. Damping results

In this section the damping properties of the wind-induced vibrations of a weakly damped vertical beam
with a tip-mass will be discussed. These vibrations are described by Egs. (5)—(10). In the previous section an

approximation of the solution of problem (5)~(10) for the case 4,4 has been found and is given by
Eq. (73), where To,(t, 1), for the case %4, <4, is given by Eq. (103), and where T,,(z, ), for the case 1, >4,
is given by Eq. (110). The damping rates of the modes such that >4, <4 are given by Eq. (104) and the
damping rates of the modes such that >4, >4 are given by Eq. (111). Now the modes of u(x, 7, 7), given by
Eq. (73), will be damped uniformly (i.e. exponentially) if there exist constants 0 and d such that 01.m < 0<0 for
all m € N with ﬁzim <4, and such that d,, <d <0 for all m € N with /32/1,,1 > 4. If such constants 0 or d do not
exist, but 0;,,<0 for all m € N with %4, <4, and d,,,, <0 for all m € N with 24, >4, the modes will be
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Table 1
Numerical approximations of qb,z,(l) and of the damping coefficient 0, for f =0 and y =1

n (D) 01
1 0.80753 eor/2 — 0.40376(c + o)e
2 0.08998 ex/2 — 0.04499(c + o)e
3 0.03395 eor/2 — 0.01698(¢c + a)e
4 0.01717 ex/2 — 0.00859(c + o)e
5 0.01033 e0/2 — 0.00516(c + a)e
6 0.00688 e0t/2 — 0.00344(c + o)e
7 0.00491 eor/2 — 0.00246(c + o)e
8 0.00368 e0t/2 — 0.00184(c + o)e
9 0.00286 e0/2 — 0.00143(c + a)e

10 0.00228 e0r/2 —0.00114(c + o)e

damped strongly (i.e. asymptotically). In the last paragraph of the previous section is has been shown that

there exist a constant d such that dp,, <d <0 for all m with ﬂzﬂtm >4. So the modes of uy(x, ¢, 7) with Bzim >4
will be damped uniformly. Now the value of the damping coefficients (0;,,) of the modes of uy(x, ¢, 1) with
B2, <4 will be considered for several values of the parameters f, ¢, 7, and a.

First, consider the case that the Kelvin—Voigt damping is not included (i.e. § = 0). Hence $°4,, <4 and
therefore Eq. (104) is the damping coefficient for all modes. Now if a beam without a tip-mass (i.e. y = 0) is
considered, it follows that 0}, = («/2) — 2¢. So, the oscillation modes of a vertical beam subjected to wind-
forces will be damped uniformly if ¢>a«/4. And a vertical beam not subjected to wind-forces will be damped
uniformly for every positive value of the damping parameter c.

Now the damping rates of a vertical beam with a tip-mass but not subjected to Kelvin—Voigt damping (i.e.
>0, f = 0) will be considered. Since y,, — (m — %)n for m — oo and for y>0 it follows that

sin(u,,) sinh(u,,)
1 + cos(u,,) cosh(u,,)

> — 1 for m — oo and for y>0.

Hence it follows from Eq. (105) that (;’),2"(1) — 0 for m — oo and for y>0. Now consider Eq. (104) where
the parameter ex is the negative damping due to the wind. If this wind-force is not included (i.e. & = 0)
it can similarly be deduced that the damping rates 0,,, tend to zero for m — oo. Hence, for this case, the
modes will be damped strongly, but not uniformly, because c is a positive parameter and because 0;,, — 0
for m — oo. The first ten damping coefficients for this case with y = 1 are listed in Table 1. If the wind-force
is included (i.e. «>0) not all modes of the wind-induced vibrations of the vertical beam will be damped
by the boundary velocity damper, with damping parameter ¢>0. If y (the ratio of the mass of the tip-mass
and the mass of the beam) is a small parameter also yy,, will be small. Then the damping coefficients
of the lower-order modes can be approximated by 0,, ~ («/2) — 2¢. Hence the velocity damper will damp
the lower modes if ¢>o/4. However, a velocity damper is not sufficient to suppress the wind-induced
modes of vibrations of a vertical beam with a tip-mass. In particular, the higher-order modes will hardly be
damped.

Since low- and high-frequency vibrations can cause damage to a building it is important to have damping
for all of the oscillation modes. Now the damping coefficients 0, ,, of a vertical beam with boundary damping,
with Kelvin—Voigt damping, and with a tip-mass in a wind-field will be considered. It follows in this case that
the modes will be damped uniformly if &< (Bu /e) + (¢ + ocy)(bi(l) for all m € N, where yu,, - (m — %)n for
m — oo and where (m — 1)<y, <mn (see Section 3). So, if fu} >ex for m =1 the velocity damper is not
necessary to obtain uniform damping. But if there exists an integer M > 1 such that fu} <ex for all m< M and
Bt > ex for all m> M the velocity damper is necessary to obtain damping for the first M oscillation modes.

These M modes will be damped uniformly if the damping parameter c is such that (8,,/¢) + (¢ + ay)¢2,(1)>a
for all m< M.
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7. Conclusions

In this paper a weakly damped vertical beam with and without a tip-mass in a wind-field has been
considered. Boundary damping and global Kelvin—Voigt damping have been considered. The boundary
damping is assumed to be proportional to the velocity of the beam at the top. By using the energy integral it
has been shown that the solutions (assuming the existence of a sufficiently smooth solution) are bounded in
absence of a windforce. Explicit asymptotic approximations of the solutions have been derived. The damping
rates for several cases have been considered. It has been shown that if the damping parameter is large enough
(i.e. ¢>a/4) that the wind-induced vibrations of a vertical beam without tip-mass and without Kelvin—Voigt
damping will be damped uniformly. The vibrations of a vertical beam with a tip-mass but without
Kelvin—Voigt damping and not subjected to wind-forces will be damped strongly. Finally it has been shown
that a combination of boundary damping and Kelvin—Voigt damping can be used to damp the wind-induced
vibrations of a vertical beam with tip-mass uniformly. It also has been shown that the compression force due
to the mass of the tip-mass and due to the mass of the beam itself has a significant effect on the frequency.
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