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Abstract

A systematic method is described to obtain formulations based on the finite-difference approximation for computation
of the energy quantities of three-dimensional (3D)-sound fields from measurements. It uses up to the first-order terms of
the Taylor series expansion of the sound pressure about the microphone positions of a particular probe configuration. The
use of a symbolic computation allows approximate expressions to be obtained for all energy quantities as a function of the
cross-spectral densities of the microphone signals. The application of this approach is illustrated by the three components
of the active acoustic intensity vector and the energy densities for different types of 3D-probes consisting of 4-6
microphones. The inherent effect associated with the finite-sum and finite-difference approximations is evaluated for each
of these probes by considering 1D sound fields in order to make a comparison of their performance.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The finite-difference technique between two sensors is used to obtain the gradients of acoustic and vibration
fields, which are essential for the calculation of sound intensity (density of energy flow) and energy density
from measurement data. Soon after the publications of Fahy [1] and Pavic [2], this technique became very
popular in the 1980s and has been the basis of instruments for sound intensity measurements since. It has been
used to measure the energy density, for example, by Elko [3] and then more recently by Cazzolato and Hansen
[4]. Simple and obvious for the one-dimensional (1D) probes, the approximate formulations of the energy
quantities become much more complicated for different configurations of 3D-probes. Moreover, a probe
found in some publications with the same configuration can be oriented differently in the Cartesian coordinate
system and the identification number of each microphone can be modified. The methods used to obtain the
practical formulations for determination of sound quantities are not very explicit in the literature [5]. Some
authors [6] interpolate the sound pressure at virtual points between the microphones, in order to then apply
the approximation for the gradient in a direction by the difference of the pressures between the two virtual

*Corresponding author.
E-mail addresses: Jean-Claude.Pascal@univ-lemans.fr (J.-C. Pascal), Jingfang.Li@ VisualVibroAcoustics.com (J.-F. Li).

0022-460X/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsv.2007.08.029


www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.08.029
mailto:Jean-Claude.Pascal@univ-lemans.fr
mailto:Jingfang.Li@VisualVibroAcoustics.com

1094 J.-C. Pascal, J.-F. Li | Journal of Sound and Vibration 310 (2008) 1093-1111

points. It then remains a tedious calculation to be made that allows the practical formulations to be written in
terms of the cross-spectral power densities between microphone signals.

This article shows how it is possible to use a systematic approach and symbolic computational tools to
easily obtain the finite-sum and finite-difference approximation formulations and compute the energetic
quantities in sound fields from measurements using multi-microphone probes and multichannel FFT
analysers. Without wanting to be exhaustive, some formulations for 4-6-microphone probe configurations
listed in Appendix A are obtained to illustrate the method and compared by considering the difference-and-
sum inherent error caused by the high-frequency measurement limitations.

2. Principle of the method

The complex acoustic intensity IT and the total acoustic energy density E in a medium without flow are
expressed by the complex pressure p and complex particle velocity u in the following forms:
P> po.

P0y. 1
4oy tue (1)
where I and J are, respectively, active and reactive intensities, pg is the mass density of the fluid, ¢ the speed of
sound. V and T are the potential and kinetic energy densities, respectively. The superscript * denotes the
complex conjugate and |p| is the modulus of the complex pressure. The particle velocity is expressed in terms
of the gradient of the pressure according to Euler’s equation
J
u=—Vp, 2)
Po®

where @ = 2nf is the angular frequency, with f being the frequency in Hz. A more complete and general
representation of energy quantities of sound fields can be obtained by the definition of the field matrix [7] that
is written as

. 1
H:I—l—]J:zpu* and E=V+T=

2cV I, II, II.

It 2¢Ty 2cTyy 2Ty

L ;
F=300"=| 1 oc1% 2eT, 2T, | (3)
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where @ = [p//PoC \/PoC tix \/PoC Uy /PoC U-] " is the column vector of acoustic quantities normalized in order
to have the same dimensions (@" is the Hermitian transpose, i.e. the elements of the transpose matrix are
equal to the complex conjugates of the elements of the matrix). The field matrix includes components of the
complex intensity vector, potential energy density and components of kinetic energy density. The kinetic
energy components defined as, for example, T, = pouxujf /4 (with T, = T\, *), can be used to compute the
total kinetic energy density 7= T+ T,, + T or the curl of the active intensity vector [7]

VxI=40Im{T e, + T..e, + Tye.}. 4)

The finite-difference approximation is usually employed to approximate a component of the gradient of
pressure, then to calculate the particle velocity by using Eq. (2). The pressure between two sensors is expressed
by the arithmetic mean of the pressures at the two sensors (finite-sum approximation). By the use of the zero-
and first-order terms of the Taylor series expansion

00

1
P = — - V)'p, (5.1)

m=0
the pressure p(r) at a sensor located at a position r = (x, y, z) from the origin of the probe is written by
pr)~p+r-Vp, (5.2)

where p is the pressure and Vp is the pressure gradient at the origin of the probe (where the energy quantities
are estimated). By taking the example of a probe consisting of 4 microphones (the minimal number of
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microphones for a 3D sound intensity probe), Eq. (5.2) is written in the form of a linear system of 4 equations
(where p;=p(r;),i=1,2,3,4)
pr~p+x Op/ox+y, Op/dy+z Op/oz
Py~ p+ X2 Op/Ox+y, Op/Oy+z, Op/oz
p3~p+x3 Op/0x+y; Op/0y+z3 Op/0z
Pa~p+x4 Op/Ox+yy Op/Oy+z4 Op/0z

= P~ MD, (6)

where P=[p, p, p; pd'. D=[p Op/ox 0Op/dy 0p/oz]' =[Dy D, D; D4' and a matrix M
dependent on the positions of the microphones is given by

I x1 y =21
I X y 2z

M = =[1 x y z] 7
I oxs s o [ ] (7
I x4 y4 z4

To obtain the finite-sum and finite-difference approximation expression for a probe, the approximate values
of the vector D can be written by

D~ M'P. ®)

The inverse of the matrix M is easily computed by using symbolic computation software [19]. By expressing
the coordinates of the 4 microphones with respect to the centre of the probe, the approximate pressure at the
central point is p = D; and the approximations of the three components of the velocity according to
the selected system of coordinates are @t = j/(p,w)[D2 D D4]"(the tilde sign ~ over a symbol denotes the
approximate value of the corresponding quantity). Substituting the expressions of p and i into Eq. (1) and
then using symbolic computation yield the finite-sum and finite-difference expressions that are usable for
experimental measurements. More generally, the column vector of the acoustic quantities @ used for
computing the field matrix F (see Eq. (3)) can be written as

O D, iDafk iDs/k DK ©)
where k = w/c is the wavenumber.

The method described above corresponds to the traditional procedure for measuring the energy quantities
of the sound fields by the use of probes consisting of several sensors. The energy quantities in terms of cross-
spectral power density are computed by multiplying the pressure and the particle velocity together, which are
obtained by the finite-sum and finite-difference approximations. Elko [3] gave an expression for the cross-
spectrum between two close microphones as a function of the energy quantities at the central point by using
the product of the first terms of the Taylor series of the pressure. By writing similar expressions for each of the
microphone pairs of a probe it is possible, from the product of the first three terms of the sum in Eq. (5.1), to
obtain a linear system where all the energy quantities of the field matrix in Eq. (3) are presented. This
development is detailed in Appendix B. Contrary to the method described above, the second-order term of the
Taylor series of the pressure is used and, as a result, the approximation of the energy quantities will be a priori
more precise. However, it requires the inversion of a linear system of 16 real equations comprising the 16
elementary energy variables, which is not easy to be solved analytically. It is possible, however, to obtain
numerical solutions at each frequency. In order to achieve the goal of this article, namely obtaining analytical
expressions, the following section is thus devoted to the first approach based on the linear system which is
constituted by using the first two terms of the series of Eq. (5.1) and described by Eqgs. (6)—(8).

3. Examples of applications

To illustrate the method described in Section 2, examples are given of the computation of the quadratic
acoustic quantities for the most widely used 3D-probes consisting of 4-6 microphones. The example of the
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6-microphone probe shows how the method based on a linear system of 4 equations can adapt to the
redundancy brought by the use of additional microphones. Placing the fifth microphone at the centre of the
4-microphone probe yields a 5-microphone probe that can be used to measure the pressure without
approximation. The descriptions of the probes used in this article and the corresponding abbreviations are
presented in Appendix A to provide help to the readers. In this section, detail computations are made only on
the active intensity and the potential and kinetic energy densities. However, the other acoustic quantities such
as the reactive intensity and the curl of active intensity can easily be calculated as well. For the sake of
completeness, the calculations of some of these energy quantities are given in Appendix C. In order to make a
comparison, the same distance d corresponds to the spacing between 2 microphones placed at the corners of
tetrahedron for the probes with 4 and 5 microphones, and to the spacing between 2 microphones placed on the
same axis for the probes with 6 microphones (see Fig. 2). In the following computations, the origin of the
coordinate system is defined as the geometrical centre of the probe (centroid), ry = Efv r;/N. The positions of
each microphone are defined from this origin.

3.1. Four-microphone 3D-probes

The 4-microphone probe arrangements are tetrahedral, among which one often finds two types (I and II)
shown in Figs. 2(a) and (b). Fig. 1 is the photograph of the type I. This type of probe was exhibited at the
Second International Congress one Acoustic Intensity in Senlis in 1985 [9] and was studied in Ref. [8]. In
Fig. 2(a), the base of the type I tetrahedral probes forming by the microphones 1-3 is parallel to the plane
(x, y) and the fourth microphone is located on the positive z-axis. This configuration can be found in the probe
described by Suzuki et al. [10], but the axes are different. One can verify, however, that the formulations of
these authors can be obtained from Eq. (14) by incrementing the indices by 1 (modulo 4) and by considering
that (Ix, 1y, I)syuki = (—1ys 1z, —11)ype 1- For the type I, the 4 microphones are located in two horizontal
planes. The first version of this type of probe was proposed by Santos et al. [6]. The 4 microphones are placed
on the opposite corners of a cube, whose three orthogonal coordinate axes cross the faces of the cube at their
centres. The type II considered here is shown in Fig. (2b), in which the microphones 1 and 2 are aligned in a
parallel direction of the x-axis and the microphones 3 and 4 are in a parallel direction of the y-axis. This

Fig. 1. Tetrahedral probe of the type I with 4 microphones having a base parallel with the (x, y) plane. Model with variable spacing and
%in microphones provided with a cap fixed on their grid to reduce the diffraction effect ([9], photo CETIM).
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(a)

o,
1

Fig. 2. Microphone configurations for probes studied in this article: (a) tetrahedral probe of the type I with 4 microphones, (b) tetrahedral
probe of the type II with 4 microphones, and (c) probe with 6 microphones comprising 3 pairs aligned on the 3 axes.

configuration allows the probe to be more easily oriented in space (a rotation of 45° around the z-axis allows
one to find the geometrical arrangement of the probe in Ref. [6]).

One can verify that the centroid is at the probe origin by [X ¥ z]' 1=0 (1 is, in this case, a column
vector with unity for each of the four elements) and the distance from each microphone to the probe centre is
V/6d/4. Using Eq. (7) the matrices M for the probe types I and II are expressed, respectively, as

[, _ 4 _d _ d] 29y 4]
23 2 26 2 2V2
o d 4 d ¢ _d
2/3 2 2./6 2 22
M]Z d d and MH: d d . (10)
| [— 0 —— 1 0 - —
V3 26 2 22
Jod d d
Vba 10 = @ —
_1 0 0 ol _ V-

The finite-sum and finite-difference approximate expressions of the vector D for type I and II are,
respectively, obtained from symbolic calculation using Eq. (8)

p (P1+P2 403 +p4) /4 p (P1 + P2 +p3+pa)/4
b _ |PRx| | @r—pi—p)/(v3d) b _ | x| (P> —p1)/d
YT oo | (P2 —p1)/d C T [ opfay | T (p4—p3)/d
Op/0z (3py —p1 — P2 — p3)/ (V6d) op/0z (P4 +p3 —p1 —p2)/ (V2d)

(11)
Eq. (11) is used for computation of the column vector of the acoustic quantities ® by which the finite-
difference and -sum approximation of the field matrix is obtained by Eq. (3). It thus seems that each element
F,,, of the field matrix is a linear combination of the cross-products %p;“p_,. The 3 components of the active
intensity and the potential and kinetic energy densities are then obtained by

= 4
Io=Re{fn}. I=Re[fu}. L=Re(Fi}, 7= and T=5 3 Fp. (12)

For practical applications, these quantities should be written in the form of one-sided cross-spectral
densities by using the following notation [11]:

2
Gyj(@) = Cy(@) +jQy(w) = lim — E[P}(w, )P, T)], (13)
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which corresponds formally to the terms of the complex notation %p;"pj. P(w, T) is the Fourier transform of
the ith microphone signal over a finite length 7. The expressions for the intensity and the acoustic energy
densities obtained by using Eqs. (12)—(13) for the probes type I and II are, respectively, given by the following
(see Appendix A):

Probe type I (4MI)

I(w)= [3031(0) + 303(®) + Oy (@) + Opp(®w) — 2Q45(w)],

4J§ pockd
I() =4 k d[2Q21<w)+Q3l(w>+Q4l(w> O3() — Qpp(@)],
L(w) = f o [00(@) + 0i(©) + 0(@)) (14)
- 1 4.3 4 =
V(“’):W;; Gile) = 2(42)p 22 Gilo) + 02;,21 Ci(®), (15)
~ 3 4 4 0=t
UC hrowerey. ; Gi(@) = — kz = zzj ]Zl Cy(). (16)
Probe type IT (4MII)
I(@) =7 Ck 1o 2221(©) + 051() + Quy(@) = Q3(@) — Qyo(@)],
1) =7 k d[Q41(w)+ 0un(®) +2045() — 0s1(w) — Oy ()],
L) = ﬁ e 2@+ Q@)+ 031 (0) + Qfo)] (17)

The approximate expression for the potential energy density for the type II is the same as that for the type I
Eq. (15), because both have the same approximate expression for the sound pressure. It is also the case for the
kinetic energy density, although the finite-difference and finite-sum approximations of the components of the
particle velocity are different between the two types (see Eq. (11)).

3.2. Five-microphone 3D-probes

The approximation of the pressure at the central point between 2 microphones estimated from the
arithmetic mean of their pressures is less accurate than that estimated from the gradient of pressure using the
finite-difference approximation, as shown by the following equations [12—14]:

—p1 _ Opsin(kd cos 0/2)
d — or kdcos a2

Py + D

5 =P cos(kd cos a/2), P2

(18)

where o is the angle of the direction for an incident plane wave with respect to the r-axis of the 2
microphones and d is the microphone spacing. In order to improve the accuracy, the fifth micro-
phone is placed at the centre of the 4-microphone probe. To obtain the expressions of energy quantities,
one just needs to replace the arithmetic mean of the pressure in the first element of the vector D in Eq. (11)

by ps
D1 =p5, (19)
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and to compute again the field matrix F. Using Eq. (12) yields the new expressions of the components of the
active intensity for the two types of probes:
Probe type I (SMI)

o 1
I (w) = W[QSI((U) + Os5(®) — 2Q0s3(w)],

< 1
Iy(w) = pockd [O51(®) — Osy(w)],

. 1
I(w) = W [O51(®) + Os5(w) + Os3(w) — 30s4(w)]. (20)

Probe type II (SMII)

o 1
I (w) = W[Qsl(w) — Os(w)],
1

Iy(w) = pockd [O53(®) — Os4(w)],
o 1
I(0) = W[QSI(CU) + O5(®) — Os3(w) — Osu(w)]. (21)

The expression for the kinetic energy density for the two types of the S-microphone probes is the same as that
for the 4-microphone probes (see Eq. (16)). The potential energy density for both types of 5-microphone
probes is given by

(22)

3.3. Six-microphone 3D-probes

The 6 microphones in the probe are aligned two by two along the x, y and z axes [15] (Fig. 2c) with a spacing
of d. Applying the above method yields a matrix M of 6 x 4 size which produces an over-determined system.
This shows well that using a 6-microphone probe results in redundant information. To calculate the inverse of
the matrix M in the system of equations given by Eq. (6) for this configuration, one should consider the
pseudo-inversion (M™)~'M". Applying the symbolic calculation, the approximate expression for the vector
D is obtained

p (py +py +Pp3+ Py +ps+pe)/6
Op/ox (P, —p1)/d
D=l opay| (s~ p9)/d | 29
Op/0z (ps —ps)/d

Pressure obtained by the approximation p= D; is the arithmetic mean of the 6-microphone pressures (probe
6MAYV, AV: average). Thus, the approximation of the pressure together with the finite-difference
approximation of the particle velocity leads to computing 15 cross-spectra between the 6 microphones,
which are used to compute the energy quantities by Eq. (12). The field matrix for the 6-microphone probe can
be obtained by taking Eq. (23) into account and using Egs. (3) and (9). The approximations for the three
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components of the active intensity are given by

N - I |
1) = g g 2 Im{Gn(©) - Ga(w)} = - Ck 7|20+ (Qn(@) = Qa(@) |,
i=1 i=34,5,6 ]
N R | ]
Iy(w) = Wz} Im{G(w) — Gis(w)} = W 2045(w) + P 256(Q[3(60) — Qu(®)) ],
5 - [ :
) = g 2 Im{ Gis) = G} = - — 20600+ 3 (0= Q)| @Y

It is noted that the expression for each component comprises 9 cross-spectral densities. The approximation for
the potential energy density proportional to the sum of all the elements of the cross-spectral matrix of the
6-microphone signals is expressed by

i—1

6
V((/) 2(62) Poc 222 l]( ) 2(62 22 ll( )+(62 ZZ ,](a)), (25)

i=1 j=1 i=2 j=1

and the kinetic energy density is given by

T(w) = 2k2d2 Z Gii(w) — 2k2d2 [Cao1(w) + Caz(w) + Ces(w)]. (26)

However the above approach has, to our knowledge, rarely been used for the 6-microphone probe.
The solution often adopted is to use the redundancy of information to simplify the formulation for the
measurements [15]. The idea is to consider the 2 microphones along each axis as a single 1D probe. The
approximations for the pressure and the gradient of pressure at the mid-point of the 2 microphones are
estimated, respectively, from the arithmetic mean of their pressures and by using the finite-difference
approximation. To adapt this configuration to our computational method, the linear system will be
constructed by considering p;, ~ p, F (d/2)0p/0x, p3 4 ~ p, F (d/2)0p/dy, ps ~ p. F (d/2)dp/0z, where p,,
py and p. are, respectively, approximations of the pressures for 1D probe on the three axes. This system results
in a 6x6 matrix M. The inverse of M will give approximate values for the vector D =
[p. p, p. Op/dx ¥p/dy 0p/dz]", in which p,~ (p,+p)/2, p, ~ (p3+ps)/2 and p. = (ps+ pg)/2,
whereas the approximations for 0p/0x, Op/dy and Op/0z are the same as those in Eq. (23). A modified vector
of 6 elements @ = [p, /. /PoC P.//PoC P-//PoC /PoCiix /PoClly WuZ]T is constituted from the vector D

and written as
O ~ (1//pec)[Di D> D3 jDs/k iDs/k jDe/k]". (27)

The intermediate 6-by-6 matrix can be obtained by using @' = 1®/®’H which allows the field matrix to be
reconstituted from its elements in the following way:

§(P) + Py + @) By Phs P

o ?, Py P P o8
o, @ 0y B |
2 Py D5 g

By using Eq. (12), the three components of the active acoustic intensity for this probe (6M3A, 3A: three axis)
are then given as follows:

0, ()
pockd’

Ops(®)
pockd’

O43(®)
pockd’

I() = I(w) = I(w) = (29)
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and the potential energy density is

" 1 1
V() = 30,20 Gil@) + 375 1Ca(@) 4 Cax(@) + Cos(@)) (30)
i=1

The kinetic energy density is, of course, identical to that of the preceding probe (see Eq. (26)).

For the probes with 7 microphones, Cazzolato and Hansen [4] added a seventh microphone to the probe,
leading to improved performance. They are not included here because this solution presents the disadvantage
of imposing heavy constraints in its practical realization, which causes it never to be used in practice.

4. Comparisons of probe performance

In the absence of all other instrumentation errors, the errors caused by the finite-difference and sum
approximation technique are significant mainly at high frequencies. The proximity of point sources can bring
additional errors due to the sphericity of the wave front, which increase with the directivity and the order of
the sources [12,13]. From the study of 1D probes, it has been concluded that the distance from the monopole,
dipole or quadrupole sources to the probe centre must be greater than 2d in order that the error in the intensity
is lower than 1 dB (d is the microphone spacing). In practice, for extended surfaces the low-limit distance can
be reduced to the microphone spacing d. Experiences show that the use of plane waves with different angles of
incidence allows one to evaluate the magnitude of these errors at high frequencies and to define the limit for
the use of probes. Therefore, in this section the intensity vector and energy density are calculated for plane
waves as a function of the angle of incidence. For the plane waves we define the angle of incidence as (0, ¢),
where 6 and ¢ are, respectively, azimuth and elevation angles, see Fig. (4a). The magnitude of the active
intensity is written by Io = 4%/(2p,c), with 4 the amplitude of the plane wave. The pressure is expressed as

p(x,,z) = Ae ¥ = A exp(—jkx cos 0 cos ¢ — jky cos 0 sin ¢ — jkz sin 6). (31)
where
k = (k cos 0 cos ¢,k cos 0 sin ¢,k sin 0), (32)

is the wavenumber vector and r = (x, y, z) is the coordinates with respect to the centre of the probe (Fig. 4a).
The errors are also obtained by symbolic computation. The maximum and minimum values of the errors are
numerically evaluated. The results are shown in Figs. 3-9.

(@) B (b)

*

Fig. 3. Illustration of the fluctuations of the estimated values of the amplitude of the active intensity vector at kd = 2.2 corresponding to a
unit intensity vector produced by a plane wave coming in all directions: (a) for the probe with 6 microphones (6M3A) and (b) for the probe
with 4 microphones (4MI).
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(@) (b)

4
z 1
6M3A
} 3
! o
y | =
0, XEZ AMI& T
/ b SMI&I
o 1
O I " " "
0 05 1 15 2 25 3

kd

Fig. 4. (a) Notation used for the incident plane wave and (b) intervals of variation ALy of the estimate of the modulus of the intensity
vector versus kd for the six probes.

0 X
= S 2
S 5
4 | i
-6 ! !
0 1 2 3
kd
(c) (d)
0 4
22 )
3 3
4 _
-6 ! !
0 1 2 3

kd kd

Fig. 5. Extreme bounds for variation of the modulus of the active intensity vector versus kd when the angle of incidence of the progressive
plane wave varies: (a) 4-microphone probes of the types I and II, (b) 5-microphone probes of the types I and II, (c) 6-microphone probe
with averaged pressure (6MAV) and (d) 6-microphone probe processed as 3 one-dimensional probes (6M3A).

4.1. Errors in the estimate of the magnitude of the active intensity

In comparison to the 1D probes, the 3D probes have some characteristics that can easily be made obvious
by considering the estimate of both the magnitude and direction of the intensity vector of the 6-microphones
probe (6M3A: the three axes are treated separately). Expressing pressure at each microphone by Eq. (31) and

then calculating the magnitude of the active intensity vector [I| = \/INi +I~i +I~§ by Eq. (29) yields the
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(a) (b)
3 30
r4 1
25
K 20
y o: 15 |
Ag x g AMI&I
10
51 6MAV}.
SMI&II
0
0 0.5 1 1.5 2 2.5 3

kd

Fig. 6. (a) Error in the orientation angle of the estimated vector I and (b) Maximum values in degrees of this error as a function of kd for
the various probes.

(a) (b)
4 4
3 3
o
S,
s 2 2
~
<
1 1 4MI&II}
SMI&II
0 0
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 2.5 3
kd kd

Fig. 7. Bounds for the energy density estimates versus kd for the five probes: (a) bounds of variation for the potential energy density ALy
and (b) bounds of variation for the energy kinetic density ALz.

()

kd kd

Fig. 8. Extreme bounds of variation of the potential energy density versus kd when the angle of incidence of the progressive plane wave
varies: (a) 4-microphone probes of the type I and II, (b) 6-microphone probe with averaged pressure (6MAV) and (c) 6-microphone probe
used as independent pairs (6M3A).

expression for the relative error in estimating the magnitude of active intensity:

\/ sin(kd cos 0 cos ¢) + sin’(kd cos 0 sin ¢) + sin’(kd sin 0)
I +¢p = d .

()
Iy

(33)
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0 -\ 0
7 2 B 2
~ ~

4 4

4 4

(a) (b)
-6 -6
0 1 2 3 0 1 2 3
kd kd

Fig. 9. Extreme bounds of variation of the kinetic energy density versus kd when the angle of incidence of the progressive plane wave
varies: (a) probes with 4 and 5 microphones of the type I and II and (b) 6-microphone probes with averaged pressure (6MAV) and used as
independent pairs (6M3A).

Eq. (33) shows that the error in estimating of the magnitude of the active intensity is dependent of the
angles of incidence (0, ¢) as well on kd. When the value of kd increases, the estimate of the intensity magnitude
is always lower than its true value, as is shown in Fig. 3a for a unit intensity vector in all directions when
kd = 2.2. If sound wave propagates in the direction of axis of a pair of microphones, one can obtain the
maximum error of the 1D probes [16]. For example, for § = 0 and ¢ = 0, the error is maximum and represents
the lower bound

()| _ 1 ()] _sin kd
Iy Iy, kd

(34)
inf
On the contrary, the error will be minimum when the apparent spacing of microphone in the direction of
wave propagation is the smallest [16]. For the probe shown in Fig. 2c, this condition is satisfied when the
incidence angle with respect to each axis is identical, i.e. when the three components of the active intensity
have identical absolute values. In this case (0 = %+ arcsin 1/\/§, ¢ = £n/4 + n/2), we obtain a high bound of
uncertainty

()| sin(kd /+/3)
= . (35)
lo |y  kd/V3
The magnitude of the estimated intensity vector fluctuates between these two bounds according to the
incidence angles (0, ¢) of the plane waves. This error, that depends at the same time on kd and on the direction
of the wave propagation (0, ¢), can be corrected for a plane wave incident at a single angle. Unfortunately, the
estimated direction will often be that of a resulting vector of the contribution from waves coming from
different directions and the correction is not possible. Thus, it has, in practice, to tolerate an uncertainty
limited by the bounds defined by Egs. (34) and (35) for the probe 6M3A. For the other probes, the expressions
obtained by the symbolic computation are much more complicated. The estimates of the magnitude of a unit
intensity vector are shown in Fig. 3b for the probe 4MI at kd = 2.2. In Fig. 4b are shown the comparisons of
the difference between the high and low bounds ALy = Ly | — Ly |irlf for the probes consisting, respectively,

sup
4, 5 and 6 microphones. The two bounds Ly, ’sup and Ly |inf of each of these probes are, respectively, illustrated

in Figs. 5a—d.

4.2. Error in the estimate of the direction of the active intensity vector

By considering the 3D probe, similar kinds of remarks as those in the above sub-section can be made.
The error in the estimate of the direction of the active intensity for the 6M3A probe is zero (i) when the plane
wave propagates along the direction of an axis of a pair of microphones, (i1) when one component is zero and
the two others have identical absolute values or (iii) when the absolute values of the three components are
identical. Otherwise, the error in the estimate of the direction of the active intensity increases with kd. This
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error corresponds to the angle formed by the wave vector k and the estimated intensity vector I (Fig. 6a) and is
expressed as

k-1
A& = arccos—. 36
¢ K| (36)

The maximum value of the error A¢ (in degree) is shown in Fig. 6(b) for the six probes.

4.3. Errors in the estimate of the energy densities

An evaluation similar to that for the magnitude of the intensity vector is made for the estimate of the
potential energy density ¥ and kinetic energy density 7', which is expressed in terms of kd and the direction of
the wave propagation (0, ¢). The ratio of 4pc>V /A* to 4p,c>T /A? is calculated in the function of 0 and ¢.
For each value of kd, the maximum and minimum errors provide, respectively, the lower and upper bounds.
The differences between the upper and lower bounds AL  and AL (both in dB) are shown in Fig. 7 for the
different type of probes. Figs. 8 and 9 show the bounds of this error versus kd for each of the six probes. The
S-microphone probe, for which the pressure is measured by the microphone at the probe centre, can be used to
estimate the potential energy density without bias. In addition, the fact that the type I and type II of the 4- and
S-microphone probes have the same approximate expressions for the pressure gradient leads to the same
estimations of the kinetic energy density, just like the two types of 6-microphone probes.

4.4. Comments

4.4.1. High limit of the frequency range

From the above analysis on the behaviour of the probes for an incident plane wave, the inherent error
caused by the finite-difference and sum approximation depends on the travelling wave direction and on the
non-dimensional parameter of frequency kd. The high-frequency limit for using each probe can be obtained by
fixing a criterion for the maximum error. The error to be considered is the difference between the upper and
lower bounds, because a correction by the average values of the upper and lower bound curves can be made in
calculating the magnitude of the active intensity. As in the measurements of 3D intensity, the estimate of the
direction of a vector is of primary importance; it is a criterion limiting the uncertainty on A¢ that is selected
here to compare the probes. By inspection of the curves A versus kd shown in Fig. 6, the high-frequency limit
for use of the probes is obtained by determining k;d at a maximum uncertainty A = 5°. Table 1 contains the
values k;d for each probe. The maximum errors of the magnitude of the intensity AL and the potential and
kinetic energy densities ALy, AL are also given in Table 1.

4.4.2. Other four-microphones probes

The tetrahedral disposition of the microphones is not found in one of the first 3D probes used for the
experimental characterization of acoustic intensity fields described by Vandenhout et al. [17] and then named
“cubic probe” by Cazzolato and Ghan [5] in their work. The first microphone is placed at the origin of an
orthogonal coordinate system, the other 3 microphones are, respectively, placed on each axes with a distance d
from the origin. The x-component of the intensity is estimated by a microphone pair (1-2), the y-component
by the microphone pair (1-3) and the z-component by the microphone pair (1-4). The authors mentioned in

Table 1
Comparison of the performance of the probes for a progressive one-dimensional plane wave

Probe krd for A = 5° ALy, (dB) ALy (dB) ALz (dB)
4M types I and 11 2.294 0.82 0.34 0.33
5M types I and II 2.588 0.85 0 0.43
6M AV 2.575 0.73 0.27 1.73

6M 3A 1.287 0.87 0.06 0.41
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[17] that “‘the resulting intensity components consequently do not relate to one single point, but only
approximate the intensity components for that point”. However, by considering the microphone 1 as the
centre of the probe where the energy quantities will be estimated (probe 4MV), the use of the procedure
described by Egs. (7)—(9), (3) and (12) leads to the formulations in Ref. [17] for the vector D and the three
components of the active intensity

D~ (o G2=p0/d (s=p/d (py=p/d] (37)
F _ 0, () z _ 031 () F _ 04 (®)
Loy =200 To) =000 L) =800 (38)

The potential energy density is naturally expressed as a function of the auto-spectrum of only microphone 1
and the kinetic energy is expressed by

4

3Gh() + ) 2Ch(0) — Gi(w)
i=2

T(w) = . (39)

2po2k*d?

Another approach can be chosen by calculating the energy quantities at the geometrical centre (the centroid)
of the probe, the position of which in the coordinates of probe 4MV is ry = Z?eri/4 =[d/4 d/4 d/4".
The following equation is thus obtained (probe 4MC):

D~ [0 +p24ps+00/4 02=p)/d s =p)/d (y=p)/d] . (40)
| 4 u=x i=1,

o) = —— | 20u@) + Y 0u(@) = Qyw) | for § u=y. i=2, (41)
Po ji=1 =z, i=3,

J#i

6 3 4
V(w) = % (Z Gi(@)+ > > ng(w)> : (42)

32pc* \ i =1 j=it]
The kinetic energy density is also expressed by Eq. (39). For the two probes, Fig. 10 shows the bounds of
variation of these different quantities when the angle of incidence of the progressive plane wave Eq. (39) varies
with respect to the probes. It is noticed that the two probes have identical performances for the kinetic energy
density (due to the same formulation). It is also shown that probe 4 MV, the microphone 1 of which is at the
origin, does not show an error in the measurement of the potential energy density and presents better results
for the active intensity—completely similar to the probe 6MA comprising 6 microphones (Figs. 5-9).

4.4.3. Behaviour of probes in more complicated fields

The results presented in this paper correspond to the most elementary sound field: the plane progressive
wave. The studies of the 1D probe for the acoustic intensity have shown that this simple field could sufficiently
provide a realistic estimate of the errors and the high-frequency limit of the use of the probes. If a quasi-
stationary wave is considered,

p(r) = A|e7*" + Ree*T|, (43)

it is possible to note that the results concerning the bias error of the acoustic intensity (magnitude and
orientation angle of the vector), shown in Figs. 3-6 and 10a—b, do not change with the values of the reflection
coefficient R. One can also note that these results are independent of the position of the probe with respect to
the maximum and minimum values of the pressure (0 <¢ <w). Unfortunately, it is not the case for the bias
error of the potential and kinetic energy densities. Cazzolato and Hansen [4] have already observed different
errors in progressive and stationary waves from the studies on the estimated values of the total energy density.
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Fig. 10. Extreme bounds of variation when the angle of incidence of the progressive plane wave varies for the probes 4MV and 4MC:
(a) modulus of the active intensity vector, (b) orientation angle of the estimated active intensity vector, (c) potential energy density and
(d) kinetic energy density.

When R = 1, these errors are maxima. Fig. 11 illustrates the errors in 7, ¥ and E versus the position of the
centre of the 4 microphone probe of type I (4MI) in the standing wave for kd = 1 and for the limit values
krd=2.3.

4.4.4. Synthesis

There are no differences in performance between the tetrahedral probes of types I and I1. The orientation of
the probe does not have an influence on the magnitude of the errors. Though the formulae for the active
intensity written in terms of the cross-spectral power densities are different for the two types of probes, they
lead to inherent errors with the same magnitude. By using our method for the configuration of the tetrahedral
probe of Santos et al. [6] the same formulations are obtained as those presented in their publication, but the
performance obtained are the same as those of types I and II. Adding the fifth microphone at the centre of the
4-microphone probe brings a limited improvement by increasing 13% the high-frequency limit. In
counterpart, the smallest distance between 2 microphones is reduced by almost 40% because of the central
microphone, which increases the diffraction effects. In practice, the advantage of the 5S-microphone-probe does
not seem to be sufficiently important especially because of the increased difficulty of practical implementation,
except for the case when an accurate measurement of the potential energy density (or quadratic pressure) is
required.

If the performance for acoustic intensity measurements is completely independent of the standing-wave
ratio, it is not the same for the determination of the energy densities. In the applications where energy densities
and the intensity must be measured simultaneously, the limit must be reduced to approximately kd = 1.

The 6-microphone probe makes an improvement only if the pressure is averaged over all microphones. The
most popular probe used that is arranged in 3 independent pairs of microphones leads to simpler
formulations, but with errors much more significant in the case of the 1D field used here. To draw a final
conclusion from the discussion, it will be necessary to consider more complicated fields such as the 2D fields
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Fig. 11. Measurement errors for energy densities in a standing wave with the 4-microphone probe of the type I (4MI): (a) fluctuations of
T, V and E along the axis of the standing wave, expressed as a function of the phase of R in Eq. (37) (|R| = 1). Extreme bounds of
variation for: (b) total energy density E, (c) potential energy density ¥, (d) kinetic energy density 7,—for the limit k;d = 2.3 and --- for a
lower value kd = 1.

produced by interferences of plane waves, in which the vortex of the active intensity stream lines can be
observed [18].

5. Conclusion and remarks

It is shown that the expressions for calculating the quadratic quantities for 3D probes based on the finite-
sum and finite-difference approximations can easily be obtained by the use of a systematic method and
symbolic computation tool independently of the probe geometry. All the energy quantities can be deduced
from a field matrix that is calculated by this method. The examples of 3D probes consisting of 46
microphones illustrate the application of this method, allowing one to easily obtain the practical formulations
used for measurements. The analysis of the maximum errors for the amplitude and direction angle of the
intensity vector in a quasi-stationary plane wave shows that the error interval for the most popular 3D probe
consisting of 6 microphones, arranged in 3 independent pairs (6M3A), is more important than that of the 4
tetrahedral microphone probes. The latter ones seem to present the best ratio of performance/cost. The errors
are independent of the direction of the tetrahedron with respect to the orthogonal coordinate system. The
estimate of the intensity vector is independent of the standing-wave ratio, whereas the energy densities not
only depend strongly on this parameter, but also on the factor kd and the position of the probes in the field.

Appendix A. List of abbreviations used for identification of the probes

4M 1 tetrahedral probe with 4 microphones, the base of which is parallel to the (x, y) plane and the fourth
microphone is placed on the z-axis (Figs. 1 and 2a)

4M 1II tetrahedral probe with 4 microphones positioned in the way that one edge is parallel to x-axis and
another to y-axis (Fig. 2b)
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4MV non-tetrahedral probe with 4 microphones, three of which are positioned on the axis of the Cartesian
coordinates and the forth is at its origin

4MC same configuration as that of the probe 4MV, but the energy quantities are computed at the centroid

SM 1 tetrahedral probe with 5 microphones, four of which have an identical position to the 4M I probe and
the fifth microphone placed at its centre

SM II tetrahedral probe with 5 microphones, composed of the probe 4M II and the fifth microphone placed
at its centre

6M3A conventional probe with 6 microphones in which each pair of microphone aligned on one axis of the
orthogonal system is treated as a 1D probe (Fig. 2c)

6MAY probe with 6 microphones whose positions are the same as those of the probe 6M3A. The spatially
averaged pressure over all positions is evaluated (Fig. 2c)

Appendix B. Relations between the cross-product of the pressures at 2 microphones and the energy quantities

The cross-product between the pressure p; = p(r;) and pj= p(r;) at two points r; and r; can be computed by
the use of the 0-2 order terms of the Taylor series expansion of Eq. (5.1) by which the pressure at each point is
expressed by the pressure and its derivatives at the origin of the probe

1 1 1 1
zmﬁkg(p+@rvm+5m.w%>Qﬁ+m~wﬁ+§m'W%ﬂ. (B.1)
Considering Egs. (1)-(3) as well as the following expressions of the energy quantities:
1 -
H_I+JJ—2pu 2 wp Vp*, (B.2)
J=—Lvpp, (B.3)
4p0(U 4 '
Po * 1 2
T=Tw+T,,+T..= Vp - Vp* = |Vpl~. (B.4)
»y 4(p0w)2 4p0w2

Eq. (B.1) can be written in the following form:
30}~ 2008V = pyooles + 1) -3 pyoole; ) -1
= P (6 = ) Tos + 0 = 1) Ty + (= )T
~2p0? [(x,- — )0 — VIRAT o) + (0 — ) — Z)ReAT ) + (21 — 2)(x; — xj)Re{sz}}

+j2p0w2 |:(xiyj - x}'yj)Im{Txy} + (y'Z/ - iji)Im{T -3+ (Zix;' - Z_/')C,‘)Im{ sz}:|
1
2Poa) (x +X;

_ l P 2 _x 2 I, 2 ol
2P0w _(x,‘ x/) Ox + (i — ) + (z; ) aZ:|
1 [ oJ, oJ oJ, 0J. 0J aJx
—5P0® (xiyi + X)) <$ + a—y) + izi + ;z)) (—y + o ) + (zixi + Z/X/)< g)]

i [ ol, oI, ofl, alz oI, oI,
2 5 Po® (xiyi — X)) <$ J) + iz — yﬂﬂ( oy + (zix; — Z]xj) + o

+ (r[ V) p(r; - Vp*) + Z (r/ - V)2 p*(r; - Vp) + 1 (r[ V) p(r; - V)'p*. (B.5)

+y2)—+(z +z
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The last line of Eq. (B.5) corresponds to terms in O(r°) that are naturally neglected. It is noticed that the first
4 lines comprise the 16 terms constituting the real and imaginary parts of all the elements of the field matrix.
The 6 pairs of a probe with 4 microphones lead to 12 equations (by separating the real and imaginary parts).
Four other real equations are obtained by considering the expressions of 5 |pl|2 which can as well be calculated
by putting j = i in Eq. (B.5) as by using the first three terms of the Taylor series for the variable |p(r;)|* = |p,|?

Lo ! G3plP ¥l Zpl | x| yz el
—Ip, .V 4 Zi i Yizi
R P 'p'+ WV T e T e T s vy T 2 oye
Zixiaz|P| ) 2005 | 50T, 50 oJ.  dJ,
3 dzaw = 2P0V = 2pgckei - d — pyor | xEF Tyt 2 |
oJ, oJ. 3. oJ,
+ylzl<a o > + zix; <6x_+ 62)]' (B.6)

To constitute a linear system of dimension 16 by 16 that can be inverted, it is necessary to neglect the terms
corresponding to derivative of the components of the active and reactive intensities (lines 5-8 of Eq. (B.5)) and
last line of Eq. (B.6)). All these terms can be considered as error terms, which depend on the amplitude of the
spatial fluctuation of the energy fields, but also on the configuration of the microphones for the probe,
knowing that the derivatives of the sound intensities are the terms composing their divergences and rotational
components [7].

Appendix C. Example of approximation formulations of other energy quantities

The other energy quantities can be obtained as easily as the active intensity and the energy densities. The
reactive intensity is the imaginary part of the complex intensity and is interpreted as the gradient of the
quadratic pressure field [16]. To understand the role that this quantity can play in the sound field, one just
needs to consider the acoustic impedance in the direction r, Z, = p/u, = pu’* / lu,|>, which can be written by
using Eq. (1) in the following form:

Zr _ 1r+jJr

— = . C.1
PoC 2¢T . (C.1)
The reactive intensity is obtained from the approximations of the field matrix
jx =Im{F12}, jy =lm{F13}, ]Z=Im{F14}. (C2)
For the 4-microphone probe of the type I (4MI), the expression (C.2) become
~ 1
J(w) = ———[G11 + Gy —2G33 — 2Cy; — C31 — C3p + C4y + Cp — 2C
x(®) 4«/§pockd[ 1 2 33 21 31 32+ Cq ) 43]
5 1
Jy(w) = 4pgc kd[G” G+ Cyp — Cyp + C31 — C32]
~ 1
JA(0) =———[3G44 — G11 —Gn — G33—2(Cy1 + C31 + C3p — C4yy — Cyp — C C3
(w) 4\/5p0ckd[ 44— G — Gn — G33 — 2(Cy 31+ Cs2 — Cq1 — Cyp — Cy3)] (C.3)
and for the conventional probe with 6 microphones (6M3A), Egs. (C.2) are written by
. Gu—Gn 5 Gy — G 5 Gss — Ges
(@) 2pgckd /(@) 2p9ckd () 2pockd (€4

In the same way, the curl of the active intensity vector Q = V x I is obtained by the use of Egs. (3) and (4)

Q= 2kIm{Fy}, Q,=2%Im{Fp}, Q.=2kIm{Fx}, (C.5)
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for the 4MI probe

~ 6
Q(w) = W«/;dz[zQzl + O3 — Q3 — 304 +304],
Ve

Qy(w) = W[Qm + Q4 — 2043 — 031 + O3],

M 1
QZ )= —— —_ _ N C.6
(w) 3puckd® [Q31 — O3 — Qa1 (C.6)
and for the 6M3A probe

~ 2
Qu(w) = W[Qﬁ — Oss + Ogs — Oesl,
~ 2
Qy(w) = W[Qsz = Os1 + Qg1 — Oeal

~ 2
Q.(w) = W[Qm — O3+ 041 — Oyl (C.7)

It is these formulations that have been used in Ref. [7] for the measurement of component €. in the near field
of two loudspeakers.
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