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Abstract

Tyre/road interaction is recognised as the main source of interior and exterior noise for velocities over the 40 km/h. In
this paper, a three-dimensional (3D) elemental approach has been adopted to predict the stochastic tyre vibration and
hence the interior and exterior noise due to this kind of excitation. The road excitation has been modelled from the spectral
density of a common road profile, supposing the road to be an isotropic surface. A linear Winkler bedding connects the 3D
model of the tyre with the ground. The exterior noise has been evaluated by an elemental calculation of the radiation
matrix of the tyre deformed by the static load on a concrete road. The noise inside the vehicle has also been calculated,
using the transfer functions from the force transmitted to the hub and the noise inside the vehicle, which have been
computed by a FEM model of a common car body. The simple formulation allows much quicker calculation than
traditional nonlinear approaches, and appears to give results consistent with available measurements, although the effects
of tyre rotation and of the nonlinearities in the contact model are yet to be quantified, and the method requires further
experimental validation before practical application.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, because of the development of more silent vehicle power units, an important source of internal
and external car noise is the interaction between tyre and road. For vehicle at normal driving conditions and
speeds above 30-40 km/h the dominating external noise source is the sound generated by the tyre and road
interaction [1]. Measurements on the noise generation mechanism show that there is a strong correlation
between the radiated sound pressure and the vibrations of the tyre structure for frequency below
approximately 1kHz [2,3]. The recent design of lightweight vehicles has also increased the significance of
the road/tyre noise inside the vehicle due to structure-borne vibration and acoustic radiation, affecting
passenger comfort [4,5].
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Fig. 1. Flow charts of nonlinear deterministic model (a) and linear stochastic model (b).

Road surface texture and tyre tread pattern create fluctuating forces that excite the tyre structure, producing
vibrations. The interaction is generally nonlinear because of the time-varying nature of the contact area.
Various models have been used to predict the noise generated by the interaction between a rolling tyre and the
road surface [6]. These models can be classified in three categories: purely statistical models, e.g. Refs. [2,7],
deterministic models, e.g. Refs. [8,9] and hybrids models, e.g. Ref. [10]. While deterministic models try to
model the physical processes involved, statistical models try to find relationship among experimental measured
data. Hybrid models use deterministic model in order to represent the contact mechanism and rely on
statistical analysis in order to find data correlations.

Fig. 1(a) shows the flow chart for a deterministic nonlinear approach. The nonlinearity lies in the contact
since the points of the tyre in contact with the ground change with time. Because of this an iterating
calculation must be performed to find the forces and displacements at each time step. This procedure is
numerically expensive although it does provide very detailed predictions.

In this paper, a three-dimensional (3D) linear model for the random excitation of a tyre’s vibration and its
subsequent sound radiation is presented. Fig. 1(b) shows the flow chart of this new approach illustrated in the
paper. The model may be physically interpreted as assuming that the tyre is smooth and soft enough that the
whole of the tyre surface in the contact patch connects with the road [11]. No iteration is needed in the
calculation process, as shown in Fig. 1(b), reducing the numerical computation, although the major
computational saving comes from being able to calculate the statistical properties of the response directly,
rather than via long time domain simulations. The excitation of the tyre as it runs over a rough road is
modelled as a random displacement distribution with a specified spatial correlation. This model is used to
calculate the forces at a grid of discrete points in the contact patch. The spectral density matrix of radial
velocities is then calculated from the structural mobility matrix for the dynamics of the tyre supported on the
contact patch. The kinetic energy associated with the radial motion of the tyre and the sound power radiated
by the tyre are subsequently calculated. The structure-borne sound inside the vehicle can then be calculated
from the tyre’s mechanical dynamic stiffness, which relates road displacement to hub forces, and from the
vehicle’s acoustic impedance matrix, that gives the relationship from hub forces to internal pressures. Rustighi
and Elliott [12,13] already illustrated this methodology on a simpler two-dimensional (2D) model, and also
investigated the feasibility of actively controlling the tyre vibrations. In this paper the method is extended
using a more representative 3D model employing realistic tyre dynamics, sound radiation and sound
transmission models.

2. The linear stochastic elemental approach

The 3D tyre model is assumed to be divided into Ny discrete elements, as shown in Fig. 2. The vector of
complex radial velocities at the corners of each rectangular element, v, are assumed to be related to the vector
of all the complex forces acting on the elements, f7, via the matrix of structural mobilities for the free tyre
suspended off the ground, Yz, so that

Vr = YFfT. (1)
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Fig. 2. Mesh used for the tyre model. The circles indicate the chosen contact points.

In this paper we assume the contact stiffness is generated only by a set of isolated, locally acting, springs,
which is called a Winkler bedding [14,15]. A model will be used, assuming that all of the contact patch is in
touch with the road at all times. Such an approximation would hold in the limiting case of a smooth soft tyre
travelling over a road which is not too rough, such that the road displacement is small compared with the
static compression of the tyre in the contact patch [11]. In the case where contact nonlinearity is important, it
is possible that such behaviour in the contact patch could be taken into account by a modification of the
excitation matrix. The confirmation of such an approximation and the definition of its range of validity are
presently under investigation.

The interaction between the tyre tread and the rough road is modelled here by a bedding of N¢ independent
springs that connect each point on the road, with vertical displacement d, to each point in the contact patch on
the tyre, with vertical tyre displacement w, which are assumed to be equal to the radial tyre displacements since
the contact patch is usually small compared with the circumference. The tangential excitation due to friction
has not been accounted for.

The force at all N points on the tyre is related to the difference between the road and tyre displacements by
the linear equation

fT = KTc(d — W), (2)

where K7¢ i1s an Ny x N ¢ matrix describing the linear contact stiffness. In the case of a Winkler bedding, K7¢
has N diagonal elements equal to the individual contact stiffnesses k;, and the other elements are zero.
The displacement of the tyre in the contact patch caused by these forces is now written as

W = CCTfTa (3)

where Cer is the N¢ x N matrix of tyre compliances at the points in the contact patch. These compliances
can be calculated as a subset of the mobilities in Eq. (1), divided by jow.

The vector of radial velocities for the tyre due to the road roughness can then be calculated from
Eqgs. (1)—(3), as

vy = Td, 4)

where the overall transfer matrix, T, is equal to Yg[I + KTCCCT]flKTC.
The excitation of the tyre as it runs over a rough road is modelled as a random displacement distribution
with a specified spatial correlation. If the contact patch is divided into a fine grid, the force distribution can be
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approximated by a vector of forces acting at the elements defined by the grid. Each force will have a random
time history, which can be assumed to be stationary, with its own autocorrelation function and a set of cross-
correlation functions with the other forces acting in the contact patch.

The individual road displacement spectra are grouped together in an N¢ x 1 vector, d, and the spectral
density matrix of the road displacement is then defined to be [16]

S = E[dd"], )

where E denotes the expectation operator and (-)! denotes the Hermitian, complex conjugate, transpose. The
diagonal elements of S,; correspond to the power spectral densities of each of the displacements, which will be
assumed to be equal in this model, and the off-diagonal terms correspond to cross spectral densities between
the displacement at different points.

Since the model is fully linear, the spectral density matrix of the tyre’s elemental velocities, S,,, due to the
road excitation can be expressed, using Eq. (4), in terms of the spectral density matrix of road displacement,
S. in Eq. (5), as

Sw = TdeTH. (6)

Eq. (6) demonstrates the simplicity of the proposed analysis method, i.e. it is possible to express in just one
equation the relationship between road profile and tyre vibration. As shown in the following sections, the force
transmitted to the hub from the tyre can also be calculated using this approach, as well as the noise radiated by
the tyre and the structure-borne sound inside the vehicle.

3. Modelling of the problem
3.1. The tyre model

The tyre used as an example in this work is an experimental prototype tyre built by Goodyear for the fourth
frame work European research contract Ratin [17]. It is a slick tyre, quite similar in build to the commercial
tyre Goodyear NCTS. Based on the geometry and the properties of the many fabrics and steel layers and the
various rubber compounds, a condensation procedure was used to formulate a conventional finite element
(FE) model. This model employs some 300,000 degrees of freedom for the structure, with additional degrees
for the contained fluid. The side walls and the tyre belt were described by anisotropic deep shell elements while
the rubber layer on top of the belt, the tread, was modelled by isotropic solid elements. The tyre geometry and
the state of pre stress were determined by a nonlinear numerical procedure where the tyre gradually was
inflated to 2 bar.

There are a number of shortcomings with this conventional approach. The standard procedure for fluid
structure interaction in commercial FE software involves a modal superposition technique where the fluid and
structure modes are determined separately. Using such modal procedures, it is difficult to attribute damping at
different locations that also varies depending on what strain degrees are engaged in the deformation. The
viscoelastic characteristics influence the forced response of tyres greatly and therefore a direct approach would
be preferable. To overcome these limitations, a direct solution technique was developed, which is based on a
waveguide FE formulation [18-20].

The waveguide Finite Element Method (FEM) is useful for structures, e.g., smooth car tyres, which have
constant cross sectional material and geometrical properties along one coordinate direction. In fact, for such a
structure, a variable of response, say u, can be described on the following form:

ux, y, ¢) = ¥(x, )V, w), (7

where X,y are coordinates on the cross section, ¢ measures the angle around the structure, ¥ is a vector of
polynomial FE shape functions, each non-zero within one FE only, and the entries of the vector v are the
nodal displacements. A harmonic time dependence on the form e is assumed and suppressed.

The structural elements used in Eq. (7) are described in Ref. [19], while the fluid elements and the
fluid—structure coupling elements are defined in Ref. [18]. The structural elements include the pre-stress and
the anisotropic material data as specified by the original FE model. However, instead of the linear elements,
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quadratic interpolation is used. Three different tyre meshes were originally developed from the original FE
mesh but the elements have been enriched by an additional node along each edge. The medium mesh is a
similar but reduced mesh while the coarse mesh is further reduced. For each element, stiffness and mass
properties, which are different for each element, are defined by the original FE model, suitably averaged for
the coarser meshes.

Convergence studies show that the results from the medium mesh close matches those of the full mesh for
the frequency range where the belt can be described as a deep shell, which is approximately up to 1.5kHz
[21-23]. The coarse mesh performs well up to approximately 400 Hz. Here, the focus is on a lower frequency
range and the prime concern is not on tyre modelling but to demonstrate a full calculation scheme for tyre
noise prediction; therefore the coarse mesh has been adopted. This mesh is shown in Fig. 3. Each cross section
has 15 deep shell elements, for the side wall and belt, 5 solid elements, for the tread, and 47 fluid elements for a
total of 353 degrees and thus, for a conventional FE model with 64 cross sections, there would be 22,592
degrees in total.

To determine appropriate losses an experimental modal analysis was used and the dynamic shear modulus
of a tread sample was measured. The observed losses were then distributed in the structure and for the
different components of strain, based on an ad hoc optimisation procedure [21]. Based on this procedure, the
tread has a frequency independent loss factor of 0.25, which is the value measured at 250 Hz, while the loss
factor for the air contained in the tyre was only 0.0025. The deep shell elements have different loss factors for
different kinds of strain, which varies in between 0.2 for crosswise bending to 0.01 for circumferential in-plane
strain.

The element formulations are built upon a variant of Hamilton’s principle, which is valid for dissipative
motion [19,20,24,25]. Displacement fields of the form in Eq. (7) are assumed. Then, standard FE procedures
for element evaluation and assembling are applied and the following Lagrange-Euler equation for the tyre
follows:

2

K> ;2 + K, % + Ko — joG — 0®M|v($, ») = f(¢, w), (8)

where f is the corresponding generalised force vector, the matrices K;, K, Ky and M describe the elastic and

inertia forces of the structure and the fluid while the matrix G describes the fluid—structure coupling. Non-
proportional damping is attributed by the imaginary parts of the matrices K, K; and K.

In the absence of external forces, Eq. (8) is a wave equation, describing propagation around the tyre. Such

equation is a set of coupled ordinary differential equations with constant coefficients and hence the solutions
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Fig. 3. Mesh used in the waveguide FE model of the car tyre. Circles indicate node locations.
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Fig. 4. Dispersion relations where each dot corresponds to a natural mode.

are exponential functions of the form
V(¢ ) = Ow)e . )

Using this assumption, the wave equation becomes a polynomial eigenvalue problem, relating the eigenvalue,
the wavenumber k, to a given frequency , or vice versa. Each of these eigensolutions describe a wave that
either propagates or decays around the tyre and to each solution there is a corresponding wave form
[18,20,21].

Fig. 4 shows the dispersion relations for the tyre, that is the number of wavelengths around it as function of
frequency. In the dispersion curve each dot corresponds to a natural mode. The first two branches from the
left correspond to the symmetric and anti-symmetric belt modes while the third and fourth branches are the
symmetric and anti-symmetric belt bending modes. The two isolated dots at about 225 and 450 Hz are the first
two fluid modes.

The tyre is a circular structure and therefore the forced response solutions are periodic functions of ¢.
Hence, they can be expressed by an exponential Fourier series,

(g, 0) =D (@) (10)

and similarly for the force vector. It follows that v is given by the solutions to

D, (@)¥u(@) = fiu(w), (11)

where D,(w) is given by the matrices on the left-hand side of Eq. (8).

Fig. 5 shows the predicted response of a freely suspended tyre, to a radial point excitation at the middle of
the cross section. This is in good agreement with measurements [21,22]. The visible peaks between 70 and
250 Hz are modes where the belt move rigidly above the side wall. The first peak involves also an anti-
symmetric rigid belt mode that is excited because the rim is not symmetric about the middle of the tyre cross
section. This peak is somewhat broader than the others and, in the measurement, the following anti-resonance
is less pronounced. The acoustic mode around 225 Hz is just about visible in the sixth peak. The broad peak
around 350 Hz consists of the first eight, or so, belt symmetric bending modes.

3.2. The road excitation

The road roughness is a random variable whose properties vary with the type of road surface, as described
by Robson [26]. The time varying road displacement d(¢) is derived from traversing, at velocity v, a rigid road
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Fig. 5. Real part of point mobility of a freely hung tyre. Solid black line, measured [18]; dashed red line predicted.

profile. The excitation spectral density Sy;(f) at a contact point can be modelled for any particular vehicle

velocity as
-2
san=2(4) . (12
v\v

where fis the excitation frequency and c¢ is a constant given in Ref. [26]. The ISO 8608 standard [27] also
suggests using a similar description of the road profile. Moreover, Robson [26] discusses experimental evidence
for the roughness being approximately homogenecous and isotropic and he proposes a two-dimension
Gaussian model to represent a road surface.

By assuming the road roughness possesses the property of isotropy [26,28] it is possible to base a 2D spectral
surface on the previously established single-profile spectrum. In fact the cross correlation R, between two
parallel profiles ¢ and b can be found simply adopting the isotropy property, i.e. all profiles, irrespective of
orientation and location, have the same spectral density. It follows:

Rp(3) = E[z4(x)zp(x + 9)]
= E[z,(x)z4(x + V' + &2)] = Ruu(V 07 + €2), (13)

where ¢ is the distance between the two profiles. Eq. (13) gives the relationship between the cross-correlation of
two parallel profiles and the auto-correlation of the profile.

In the spatial domain, the relationship between the single-sided spectral density G(n) and the
autocorrelation function R(J), reminding they are real function, are given by [29,30]

Gn)=4 /0 h R(0) cos(2nnd) do (14)
and

R(%) = /000 G(n) cos(2nnd) dn, (15)
where 0 is distance and 7 is the wavenumber expressed in cycles per unit length.

In order to evaluate these integrals, G(n) must be specified at all wavenumbers |r| < oo, whatever the range
of interest. These only converge, however, for profile descriptions G(n) which satisfy admissibility criteria
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Fig. 6. Road auto-spectral density S; and cross-spectral densities at distances of &, 2¢, 3¢ and 4¢ for a road velocity of 80 km/h, with
e=2.15cm.

given in [28]. The most convenient acceptable profile description is

en; >, 0<|n|<ng,
G(n) = en™*>,  ng<|n|<np, (16)
0, np<|nl,

where n, and n, are constants and ¢ has the value suggested in Ref. [26]. The results presented here refers to
ng = 2 and np, = 70cyclesm™!. The wavenumber 7, = 70cyclesm™! has been chosen in order to excite all the
frequencies in the range of interest. In fact ny, is related to a frequency of 400 Hz for the lower tyre speed of
20 km/h. On the contrary, n, has been chosen so that the lower excitation frequency was smaller then the first
natural frequency of the tyre. In the frequency range of interest, i.e. 10-400Hz, and considering a range of
velocities between 20 and 100 km/h, a road roughness valid for wavelength between 14 and 3m is ideally
required. However, the tyre elements in the contact area have a width of 31 mm in the circumferential direction,
so the model can be considered reliable only down to excitation wavelength of about 62mm (n, = 17cyclesm™")
in order to avoid geometric aliasing. As a consequence, because of the geometrical aliasing, the maximum
frequency of the excitation is limited to 100 Hz for the lower tyre speed of 20 km/h. Although the roughness road
spectral description using Eq. (12) was originally proposed in Ref. [26] for a wavelength range up to two order of
magnitude, the model has been extended to cover the wavelengths range of interest here [31,32].

Fig. 6 shows the auto-spectral density S; of the road-profile at a velocity of 80 km/h for a value of the
constant ¢ of 50 x 107, This road spectrum has been used for all the numerical calculation presented in the
paper. In the same figure the magnitude of the cross-spectral density between parallel profiles are shown for
the same velocity and at distances between the profiles of ¢, 2¢, 3¢ and 4¢. The distance ¢ between two profiles
has been set to ¢ = 2.15cm, that is the axial distance between tyre nodes in the contact patch. A global
property, that gives an indication of the road roughness, is the rms value of the road profile. Such a quantity

can be calculated from Eq. (16) as
rms(G) = \/c<§n;1~5 — %n;‘j). (17)

The road profile used in the simulations has an rms value of 0.5 mm.
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4. Numerical results

In order to carry out the numerical simulation some further parameters of the model have to be set. The
value of the spring stiffness in the contact area, k;, has been found by assuming a value of the bedding global
stiffness of 160 KN'm~! as suggested by Lasson [15] and confirmed experimentally by Gibel and Kroger [33].
It is difficult to define the stiffness of the individual spring in order to give a realistic description of the elastic
properties of the tread surface, and moreover, the contact stiffness depends on the specific tyre being modelled
and the roughness of the road surface [15]. However, as will be shown below, the overall model gives
reasonable predictions of tread velocity and force transmission. The contact patch has been fixed so that
N. =15, with 3 radial and 5 axial elements. The contact patch length is then 10 cm, which is congruent with
the experimental value measured in Ref. [34]. Such results have been confirmed also by an analysis of the static
deformation of the tyre model using contact penalty functions [32] subjected to the weight of a car quarter.

Moreover, a full tyre mesh (see Fig. 2) has been obtained from the tyre section mesh (see Fig. 3) taking into
account only the 31 external nodes and copying such a section into 64 circumferential sections, for a total of
Nr = 1984,

4.1. FEvaluation of the tyre vibration

The spectral density matrix of the tyre’s velocities can be calculated using Eq. (6), in which the diagonal
terms represent the auto-spectral densities of each elements velocity. Using these auto-spectral densities, it is
then possible to evaluate the rms velocity of each elements. Fig. 7 shows the rms velocity of each of the
elements of the tyre when the road is travelling under the tyre at a velocity of 80 km/h. The assumed road
roughness spectrum at this velocity is shown in Fig. 6. In order to represent the results most clearly, the tyre
has been flattened, keeping the contact area at the centre of the figure. The circles show the contact points, that
is the points where the road excitation has been applied. The boundary between tread and sidewall occurs at
about +0.1 m from the wheel centre. As expected, the tyre velocity in the contact patch is much larger than for
the rest of the tyre, and the velocity falls off rapidly away from the contact patch, because of the high damping
of the rubber material. A main contribution to the rms tyre velocity is given by tyre’s first mode, i.e. the rigid
movement of the belt over the sidewall. The rms velocity of the sidewall is limited because it is constrained on
one side by the hub.

Previous measurements of the accelerations of an element on the tyre surface, during its rotation
against the ground, can be found in the literature [9,34]. It is shown that the acceleration of a point inside
the contact patch can easily be very large. However, the average velocity perpendicular to the tyre surface,
of an element outside the contact area was found to be about 1 mms~', which is consistent with these
predictions.

0.15
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0.05

-0.05
-0.1
-0.15

Section flattened [m]
o

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
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I T T T T
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rms velocity [ms™]

Fig. 7. rms Velocity of the tyre elements at 80 km/h. Note that distances 0.1 m in the radial direction correspond to the tread section of
the tyre and from £0.1 to £0.2m to the sidewalls.
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Fig. 8. Expected value of the tyre kinetic energy (a) due to the road excitation (b) at 20 (continuous line), 40 (dotted line) and 80 (dashed
line) km/h.

The kinetic energy associated with the radial motion of the tyre is proportional to the inner product of the
vector of velocities weighted by the mass matrix M. The expectation of tyre’s radial kinetic energy Ej can be
expressed as

Ej = trace[IMS,, ], (18)

where the trace and expectation operators can be swapped since Ej is a scalar. To obtain Eq. (18) has been
used the fact that the inner product of a generic vector y by himself is equal to the trace of the outer product of
the same vector [16], yiy = trace(yyH).

Fig. 8(a) shows the calculated kinetic energy of the tyre evaluated at a car speed of 20, 40 and 80 km/h. The
behaviour up to the circled point is due to the flat curve of the road profile spectral density, introduced in Eq.
(16) and shown in Fig. 8(b). The kinetic energy does not rise monotonically with speed at all frequencies,
particularly above 300 Hz. The resonant frequencies of the tyre from 80 Hz up to about 250 Hz stand clearly
out. The peaks fall off with a 20 dB/decade slope at 80 km/h. At about 350 Hz we note the first bending mode
across the tyre section, as shown in the dispersion curve in Fig. 4.

4.2. Evaluation of the tyre radiated sound

Once the radial velocities at each element have been specified, the complex sound pressure at any point on
the surface of the tyre can be calculated using a set of acoustic radiation impedances. It is assumed that these
acoustic pressures at the surface of the tyre generate a far lower response than the force vector, f7, and so the
sound radiation can be calculated from a weakly coupled analysis. The power spectral matrix of the radiated
sound pressure S,, is then given by

Sy = ZASUL‘ZH9 (19)
rp A

where Z 4 is the square specific acoustic radiation resistance matrix which relates v and the vector of surface
pressures p. The intensity of sound radiated by a structure divided into elements, each vibrating with a velocity
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given by an element of vy, is given by
I, = IRe(ViZ  vr). (20)

Taking the expectation of Eq. (20) and using the properties of the trace operator, the radiated sound intensity
can be expressed in terms of the velocity spectral density matrix as

I, = trace[JR4S,,]. (21)

where R4 is Re(Z ).

This acoustic matrix Z,4 can, in principle, be measured as discussed by Koopman and Farelane [35] or
calculated for a given geometry of structure, radiating into a particular environment. In this case, such a
matrix has been obtained using a boundary element method (BEM) model.

The radiation model includes the tyre, the hub and the road. The same mesh used for the mechanical tyre
model has been used. As a general guideline, the maximal element dimension is about 1/6 of the smallest
wavelength of the radiated sound then the actual mesh is detailed enough for calculation up to 1800 Hz.
Moreover, 466 nodes have been added to the tyre mesh in order to model the hub. The hub model consists of
two flat rigid circles that close the hole in the tyre mesh. The tyre has been modelled in the deformed shape,
due to the static load of a quarter of the car, computed using the FEM tyre model with contact penalty
functions [32]. However, the spectral density matrix S,, has been computed ignoring the changes in the tyre
symmetry due to the flattening. The road has been modelled as a partial reflective plane using the mirror
source method, i.e. the mesh was mirrored to the plane of the ground positioned below the tyre with a certain
gap. For numerical convergence and stability reasons the solution near close parts of distinct domains gets
more uncertain if the gap between the parts gets comparable with the dimensions of the elements near the gap.
Therefore a minimum gap of 1 cm has been chosen. The acoustic impedance of a dense pavement has been
calculated using the microstructural model, proposed by Bérengier et al. [36] for porous pavement, and
modifying the model parameters in order to get an absorption coefficient between 0 and 0.06, that are the
common values for dense road pavement [37,38]. The radiation impedance matrix was calculated from 1 Hz up
to 300 Hz.

Fig. 9 shows the sound pressure level (SPL) at the surface of each tyre element at 80 km/h. The pressure is
greatly enhanced by the reflective plane and the parts of the tyre closest to the plane have the highest pressures.

Fig. 10 shows the overall power spectrum of the radiated sound intensity of the tyre at 20, 40 and 80 km/h.
These intensity levels are reasonably consistent with measured near-field pressure levels, such as Ref. [7]. The
same peaks and a similar shape is seen in this spectrum and that for the kinetic energy (Fig. 8(a)). This method
of analysing the radiated sound intensity would permit the relationship between the road characteristics and
the tyre acoustic emission to be further explored.

These results refer to a tyre shape deformed by the static weight of a quarter car and to a surface with the
sound absorption properties of a dense pavement. It has been seen that considering the undeformed shape of
the tyre and a fully reflective surface do not change significantly the sound radiation results. In fact the sound
absorption coefficient of a dense pavement is very low and it can be neglected. Instead, in the case of porous
pavements, the sound absorption coefficient needs to be accounted for.

Section
flattened [m]

-08 -06 -04 -02 0 02 04 06 038
Circumference flattened [m]

B ; : ! ]
75 80 85 90 95 100 105 110 115
SPL 80km/h [dB re 2x10°5 Pa]

Fig. 9. The sound pressure level (SPL) calculated at the surface of the tyre elements at 80 km/h.
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Fig. 10. Radiated sound intensity at 20 (continuous line), 40 (dotted line) and 80 (dashed line) km/h.

4.3. Evaluation of the generated interior noise

The internal sound field in the vehicle is assumed to be entirely structure-borne, and to be excited by the
vibration of the tyre hub, which seems reasonable in the low-frequency range where the model has to be
applied [4]. The hub has been considered as a rigid body to which five force components are applied from
the tyre and through the tyre. These components correspond to three linear forces and two moments. In fact,
the moment around the tyre axis can be neglected since due only to the bearing’s friction. These complex
forces can be represented as the elements of the vector f, and are assumed to be generated by the vibration of
the road, d. The linear transformation from the road excitation to the hub forces, which is governed by the
tyre’s dynamics, is represented by

fr =ZurZrcd, (22)

where Z g represents the transfer function between the force applied at the tyre f7 and the force at the hub fy,
while Z7¢ represents the transfer function between the road excitation d and f7. The matrix Z g7 has been
obtained from the tyre waveguide FEM model while the matrix Z7¢ can be found from Egs. (2) and (3) to be

Zrc =14+ KzrcCer] 'Kre. (23)

The acoustic pressures at a set of points inside the vehicle are represented as the complex elements of the vector
p;- These are assumed to be generated by the hub forces, fy, by a matrix of complex impedances, Z?H, that
represent both the structural response of the vehicle and the acoustic response of its interior. The internal
pressures are thus given by

where & = 1,2,3,4 is the index of the four hubs in the car.

The impedance matrices Zﬁ'H have been computed by means of a numerical trimmed model of a small class
car. Both the solid structure and the fluid cavity have been modelled. The vehicle trimmed body FE model (see
Fig. 11(a)) consisted of the complete vehicle without powertrain and exhaust system. The structural metal
parts of the vehicle have been modelled with shell elements with an average size to correctly simulate the mode
shapes of the whole vehicle up to 200 Hz. As a result, the number of shell elements is usually larger than 3
million degrees of freedom. The structure also includes an FEM model of the suspensions. Typical
characteristics of bushings and dampers have been linearised about the standard static configuration assuming
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Fig. 11. Structural (a) and internal cavity (b) models.
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Fig. 12. Pressure at the driver’s left ear (in a left-hand drive car) when the left front wheel is excited with forces Fy, F, and F., of I N,
(above) or moments M, and M., of 1 Nm, (below) applied on different directions.

that, for all the loads on the car, the dynamic forces are within the range of linearisation. With this
approximation is possible to estimate the correct behaviour of the dynamic stiffness of the bushing up to
90 km/h. The internal cavity has been modelled with brick elements as shown in Fig. 11(b). The model includes
the seats and the trunk compartment. The two sub-models have been connected by means of a fluid structure
interaction (FSI) technique [39,40]. The model has also been validated up to 200 Hz, and so the results above
this frequency are not reliable.
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Fig. 12 shows the predicted pressure at the driver’s left ear (in a left-hand drive car) when the left front wheel
is excited with unitary forces and moments on different directions. The curves show that the y direction, as
indicated in Fig. 11(a), is the most sensitive to the forces applied to the hub only in the frequency range
100-200 Hz even though the suspension is stiff in that direction since it has to counteract the external forces
during cornering.

The response of the tyre in Eq. (22) can be combined with the response of the vehicle in Eq. (24) to give the
internal pressures as a function of the road displacement

p; = Zrd, (25)
where
4
2,7 = ZZ?H Zyrlrc (26)
=1

and each tyre has been supposed to be excited by the same road displacement d.

The matrix Z,;r could incorporate the effects of a compliant connection from the vehicles suspension system
at the wheel hub, but for simplicity this connection is assumed here to be rigid. This simplification is supported
by the fact that the car impedance at the hub is much greater than the tyre impedance so that car and tyre
systems can been considered separately. In particular the tyre has been considered grounded at the hub while
the car has been considered free at the hubs when the excitation has been applied.

A useful representation of the average acoustic pressure inside the vehicle is the sum of the squared
pressures at a set of points. A set of eight points inside the car cavity has been considered. The points have
been placed at the average position of the passengers and driver ears. The main point of application of forces
are the four wheel hubs. Using Eq. (25) and the properties of the trace operation, the sum of square pressures
can be represented as a function of the spectral density matrix of the road excitation, Sy, as

P; = trace[Z ;7S ZM . (27)

Fig. 13 shows the predicted sum of the squared pressures P; as A-weighted SPL at the eight earing points
inside the car cavity when the car is travelling at a velocity of 20, 40 and 80 km/h. The peaks at 58.7 and
98.1 Hz correspond to the first two internal air cavity resonance of the car. The evident peak at about 225 Hz
could be related to the first tyre fluid mode which is shown in Fig. 4. Integrating the sound pressure spectrum
over the full frequency range a SPL of 63, 77 and 86 dB(A) has been obtained for the road velocity of 20, 40

Sound pressure level P; [dB(A)]

0 50 100 150 200 250 300 350 400
Frequency [Hz]

Fig. 13. Sound pressure level at the 8 passenger ears at 20 (continuous line), 40 (dotted line) and 80 (dashed line) km/h.
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and 80 km/h. Such results are sufficiently in good approximation to the structure borne noise measured
by Jha [4].

5. Conclusions

In this paper, a full linear model has been applied to a 3D tyre model and its road excitation. The contact of
the tyre with the ground has been modelled by a Winkler model and the road excitation has been expressed by
the spectral distribution of a common road surface. The tyre has been modelled by a waveguide FEM and a
BEM calculation has been used to find the radiation tyre matrix. Hence the tyre vibratory level and its
radiated sound have been computed. Moreover, a FEM model of a commercial car has been considered in
order to compute the noise level inside the car.

The linear model introduced to describe the tyre excitation due to the road interaction has resulted in a
computationally efficient method of predicting the tyre vibration level, much quicker than traditional
nonlinear approaches. Moreover such model permits to calculate the noise radiated by the tyre and the car
interior noise in a straightforward way. It thus appears to be a useful tool for the rapid evaluation of the noise
generation into a vehicle and then suitable to industrial design applications.

An examination of the effects of the nonlinearity in the contact patch and the tyre tread pattern, and their
potential incorporation into the stochastic road excitation model remain as further work, as does a more
complete experimental validation of the method.

Acknowledgements

This work is supported by the EU under the integrated project “Integrated materials for active noise
reduction”, InMAR. The car frame data have been used by courtesy of FIAT Auto.

References

[1] U. Sandberg, Tyre/road noise—myths and realities, Proceeding of Inter-Noise 2001, 2001, pp. 35-56.

[2] U. Sandberg, G. Descornet, Road surface influence on tyre/road noise—part 1, Proceeding of Inter-Noise 80, Vol. 1, 1980,
pp- 259-266.

[3] F. Anfosso-Lédée, M.-T. Do, Geometric descriptors of road surface texture in relation to tire-road noise, Transportation Research
Record 1806 (02-2958) (2002) 160-167.

[4] S. Jha, Identification of road/tyre induced noise transmission paths in a vehicle, International Journal of Vehicle Design 5 (1/2) (1984)
143-158.

[5] G.J. Kim, K.R. Holland, N. Lalor, Identification of the airborne component of tyre-induced vehicle interior noise, Applied Acoustics
51 (2) (1997) 141-156.

[6] A. Kuijpers, G. van Blokland, Tyre/road noise models in the last two decades: a critical evaluation, Internoise 2001, The Hague, The
Netherlands, 2001, pp. 2593-2598.

[7] J. Haberl, J. Litzka, Near-field noise emissions on austrian road surface courses, Euronoise 2006, Tampere, Finland, 2006, Paper 19.

[8] W. Kropp, F.-X. Bécot, S. Barrelet, On the sound radiation from tyres, Acustica 86 (2000) 760-779.

[9] F. Wullens, W. Kropp, A three-dimensional contact model for tyre/road interaction in rolling conditions, Acta Acustica united with
Acustica 90 (2004) 702-711.

[10] S. Fong, Tyre induced predictions from computed road surface texture induced contact pressure, Internoise 98, Christchurch, New
Zealand, 1998.

[11] E. Rustighi, S.J. Elliott, M.A. Sek, Stochastic analysis of the non-linear road/tyre excitation, Euronoise 2006 6th European Conference
on Noise Control, Vol. Supplement 1 of Acta Acustica United With Acustica, European Acoustic Association (EAA), S. Hirzel,
Tampere, Finland, 2006, p. S 74, not Refereed.

[12] E. Rustighi, S. J. Elliott, A model of tyre vibration with stochastic excitation, ICSV12 Twelfth International Congress on Sound and
Vibration, Lisbon Portugal, 2005, cDRom.

[13] E. Rustighi, S.J. Elliott, Stochastic road excitation and control feasibility in a 2d linear tyre model, Journal of Sound and Vibration 300
(3-5) (2007) 490-501.

[14] K. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.

[15] K. Larsson, Modelling of Dynamic Contact—Exemplified on the Tyre/Road Interaction, PhD Thesis, Department of Applied
Acoustics, Chalmers University of Technology, Goteborg, Sweden, 2002.

[16] S. Elliott, Signal Processing for Active Control, Academic Press, New York, 2001.



E. Rustighi et al. | Journal of Sound and Vibration 310 (2008) 1112-1127 1127

[17] A. Pietrzyk, Prediction of the dynamic response of a tire, in: R. Boone (Ed.), Proceedings of Inter-noise 2001, Vol. 5, The Hague, The
Netherlands, 2001, pp. 2547-2550.

[18] C.-M. Nilsson, Waveguide Finite Elements Applied on a car Tyre, Doctoral Thesis, KTH Royal Institute of Technology, Depart-
ment of Aeronautical and Vehicle Technology, Stockholm, 2004. Available: (http://www.diva-portal.org/kth/theses/abstract.
xsql?dbid =3812). [Accessed 27 June 2007].

[19] S. Finnveden, Waveguide Finite Elements for Curved Structures, TRITA-AVE 2006:38, Journal of Sound and Vibration, (2006),
submitted. Available: (http://www.ave.kth.se/staff/mwl/Svante_Finnveden.html) [Accessed 27 June 2007].

[20] C.-M. Nilsson, S. Finnveden, Input power to waveguides calculated by a finite element method, Journal of Sound and Vibration (2007)
doi:10.1016/j.jsv.2007.04.025.

[21] M. Fraggstedt, Power Dissipation in Car Tyres, Licentiate Thesis TRITA-AVE 2006:26, MWL/KTH, 2006. Available: (http://
www.diva-portal.org/kth/abstract.xsql?dbid = 3994) [Accessed 27 June 2007].

[22] S. Finnveden, C.-M. Nilsson, M. Fraggstedt, Waveguide fea of the vibration of rolling car tyres, Novem, Saint Raphael, 2005.

[23] M. Fraggstedt, S. Finnveden, Rolling resistance of car tyres, Euronoise 2006, Tampere, Finland, 2006, Paper 185.

[24] P.M. Morse, H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953 Chapter 3.

[25] S. Finnveden, Exact spectral finite element analysis of stationary vibrations in a rail way car structure, Acta Acustica 2 (6) (1994)
461-482.

[26] J.D. Robson, Road surface description and vehicle response, International Journal of Vehicle Design 1 (1) (1979) 25-35.

[27] Mechanical Vibration—Road Surface Profiles—Reporting of Measured Data, ISO 8608, 1995.

[28] K.M.A. Kamash, J.D. Robson, The application of isotropy on road surface modelling, Journal of Sound and Vibration 57 (1) (1978)
89-100.

[29] B.R. Davis, A.G. Thompson, Power spectral density of road profile, Vehicle System Dynamics 35 (6) (2001) 409—415.

[30] D.E. Newland, An Introduction to Random Vibrations, Spectral and Wavelet Analysis, third ed., Dover, 2005.

[31] U. Sandberg, Road traffic noise—the influence of the road surface and its characterization, Applied Acoustics 21 (1987) 97-118.

[32] P. Andersson, Modelling Interfacial Details in Tyre/Road Contact—Adhesion Forces and Non-linear Contact Stiffness, PhD Thesis,
KTH, Chalmers University of Technology, Géteborg, Sweden, 2005.

[33] G. Gibel, M. Kroger, Non-linear contact stiffness in tyre-road interaction, Euronoise 2006, Tampere, Finland, 2006, Paper 118.

[34] J. Périsse, A study of radial vibrations of a rolling tyre for tyre-road noise characterisation, Mechanical Systems and Signal Processing
16 (6) (2002) 1043—-1058.

[35] G. Koopman, J. Farelane, Designing Quiet Structures, Academic Press, New York, 1997.

[36] M.C. Bérengier, M.R. Stinson, G.A. Daigle, J.F. Hamet, Porous road pavements: acoustical characterization and propagation
effects, Journal of the Acoustical Society of America 101 (1) (1997) 155-162.

[37] M.J. Crocker, D. Hanson, Z. Li, R. Karjatkar, K.S. Vissamraju, Measurement of acoustical and mechanical properties of porous
road surfaces and tire and road noise, Transportation Research Record: Journal of the Transportation Research Board 1891 (2004)
16-22.

[38] M.J. Crocker, Z. Li, J.P. Arenas, Measurements of tyre/road noise and of acoustical properties of porous road surfaces, International
Journal of Acoustics and Vibration 10 (2) (2005) 52-60.

[39] D.J. Nefske, S.H. Sung, Sound in small enclosures, Noise and Vibration Control, Wiley, New York, 1992, pp. 145-174 (chapter 6).

[40] O.C. Zienkiewicz, R.L. Taylor, Coupled systems, The Finite element method, Vol. 2, Solid and Fluid Mechanics Dynamics and Non-
Linearity, fourth ed., McGraw-Hill International, 1991, pp. 404-437 (chapter 9).


http://www.diva-portal.org/kth/theses/abstract.xsql?dbid=3812
http://www.diva-portal.org/kth/theses/abstract.xsql?dbid=3812
http://www.ave.kth.se/staff/mwl/Svante_Finnveden.html
dx.doi.org/10.1016/j.jsv.2007.04.025
http://www.diva-portal.org/kth/abstract.xsql?dbid=3994
http://www.diva-portal.org/kth/abstract.xsql?dbid=3994

	Linear stochastic evaluation of tyre vibration �due to tyre/road excitation
	Introduction
	The linear stochastic elemental approach
	Modelling of the problem
	The tyre model
	The road excitation

	Numerical results
	Evaluation of the tyre vibration
	Evaluation of the tyre radiated sound
	Evaluation of the generated interior noise

	Conclusions
	Acknowledgements
	References


