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Abstract

The problem of estimation of a structural loss factor for a beam covered with a viscoelastic layer is addressed in the

paper. Two estimation methods based on analytical models for wave propagation in viscoelastic homogenous beams are

tested. The methods use different theoretical solutions for spatial distribution of a wave field in the beam. The solutions

depend on a complex wave number and frequency. At each frequency within an investigated range the wave number, for

which model predictions best approximate experimental response, is found. Structural loss factor is calculated based on the

identified value of wave number. Experimental data are measured in a cantilever beam test. For verification purposes the

obtained values of loss factor are compared with the results of Oberst test. The presented methods enable determination of

loss factor for arbitrary discrete frequencies. They provide an alternative to modal techniques which estimate only values of

the parameter corresponding to resonant frequencies.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of estimation of a structural loss factor for beams with viscoelastic layer is addressed
in the paper. Two methods, developed by Berthaut et al. [1,2] and McDaniel et al. [3,4], are used independently
to identify the structural loss factor for a cantilever beam subjected to flexural vibrations. Oberst [5,6],
who as a first investigated the problem, considered thin metal strips covered with an adhesive viscoelastic
tape. He derived an analytical relation between a loss factor of the composite and of the viscoelastic
layer using kinematic and physical formulas of the classical theory of beams. Analogical expressions,
but for a plate covered with viscoelastic sheet placed under elastic constraining layer were given by Kerwin
et al. [7,8].

Oberst has also developed an experimental procedure for measuring the structural loss factor. Half-value
bandwidth method, as it is referred to in literature, exploits a relation between shape of a resonance peak and a
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.11.026

this work were published in ‘‘Determination of damping properties of layered structures by means of wave-propagation-

Mechanics, vol. 24, AH University of Science and Technology Press, Cracow, 2005, pp. 140–143.

ing author. Tel.: +334 72 18 62 30; fax: +33 4 72 18 91 44.

esses: mrak@ippt.gov.pl (M. Rak), mohamed.ichchou@ec-lyon.fr (M. Ichchou), holnicki@ippt.gov.pl (J. Holnicki-Szulc).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.11.026
mailto:mrak@ippt.gov.pl
mailto:mohamed.ichchou@ec-lyon.fr
mailto:holnicki@ippt.gov.pl


ARTICLE IN PRESS
M. Rak et al. / Journal of Sound and Vibration 310 (2008) 801–811802
value of the loss factor. It still serves as a basic tool for estimation of the loss factor but it suffers all
inherent disadvantages of a modal formulation. Due to a drastic increase of a modal density in higher
frequencies, observed in all structures, the approach is limited to the low band covering first few
modes of vibrations. Only values of the loss factor, corresponding to natural frequencies, can be estimated
by means of the test. Moreover, the method is sensitive to imperfections in experimental boundary
conditions.

The two methods mentioned at the beginning, namely Inhomogeneous Wave Correlation, devised by
Berthaut et al. [1,2], and the one developed by McDaniel et al. [3,4], stem from the need to overcome the
limitations met in the modal description. They are based on the hypothesis that the spatial terms which
contribute to the solution of free vibration problem, correspond not only to natural frequencies but to all
frequencies. Berthaut et al. [2] have successfully applied their method to the identification of dispersion curves
in structurally orthotropic plates. The results presented in Ref. [2] indicate that the identification procedure is
dependent neither on boundary conditions nor on load location. Berthaut [1] has also applied the method to a
numerical model of a beam subjected to bending. However, the simulation has not been supported by
experiment. In this work inhomogeneous wave correlation (IWC) has been employed to estimate complex
wave number for flexural waves propagating in viscoelastic beams. The underlying equations have been used
to derive a relation between the wave number and loss factor.

In both discussed methods Fourier transform is used instead of a classical technique of separation of
variables to obtain an equation describing distribution of a wave field in the beam. However, while McDaniel
et al. employ general solution of the equation, which is composed of four terms, Berthaut [1] postulates
using only one of the terms, related to an incident wave, and discarding others, corresponding to evanescent
waves. The question arises if such a simplification is allowed even if only measurements done away from
boundaries are compared with the theoretical predictions. This issue is addressed in the paper. To validate and
compare the methods experimental investigations have been conducted. The measurements done in spatially
distributed points lying along the axis of a tested beam have been Fourier transformed. Since phase difference
between the responses is crucial for correct identification of the wave field a transfer function has been
calculated.

The results presented below show that the solution assumed in IWC does not allow for a proper description
of the wave field observed in the experiment. It has been investigated if the complex wave number determined
by IWC could be used as a starting value in the identification algorithm employed by McDaniel et al. Due to a
poor performance of the former method the idea was abandoned. Influence of measurement noise on the
obtained results has been taken into account by calculation of coherence function and its introduction into the
identification procedure. As the theoretical description of the wave field proposed in IWC lacks terms
corresponding to a nearfield, it is investigated how neglecting of the measurements done in the vicinity of
boundaries affects estimates of the wave number. The paper presents values of wave number and loss factor,
identified from the test conducted on a steel sample covered with a layer of a viscoelastic material, subjected to
random loading. Middle and high-frequency range is of interest to the authors. For comparative reasons
values of the loss factor determined in Oberst test are also demonstrated.

This work was motivated by the need to overcome problems encountered in finite element modelling of
multilayer structures including viscoelastic sheets. Dynamic analysis of such systems is troublesome, mainly
due to damping effects, which have to be taken into account. Defining each layer separately complicates the
problem. It requires knowledge of viscoelastic parameters, which vary depending on an applied model of the
material. Moreover, some additional assumptions have to be made about properties of adhesive films so they
could be neglected. Using loss factor formulation presented below enables one to avoid these difficulties. From
viewpoint of a damping characteristics the structure is then modelled as a homogeneous body. However, it
needs to be remembered that this approach is valid only for the cases when the finite element model undergoes
the mode of deformation identical with that induced in an experiment. It means that if FE model of the beam
tested in the discussed study was created and a numerical analysis was performed, the reliable results would be
obtained only if the model was subjected exclusively to bending.

Section 2 shows theoretical bases of IWC and McDaniel method. A notion of loss factor is introduced.
Experimental procedure is described in Section 3. The paper concludes with the discussion of results and final
remarks.
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2. Theoretical background

Either Berthaut and McDaniel use linear viscoelastic model of material, derived from Boltzmann
superposition principle

rðtÞ ¼
Z t

�1

wðt� tÞ
qeðtÞ
qt

dt. (1)

The term linear refers to a property of the constitutive equation understood as a relation between stress r,
strain e and time t. Relaxation function, denoted by w, describes how stress changes under constant strain. If,
for the mathematical simplicity, a harmonic variation of strain is assumed1

eðtÞ ¼ e0e
iot, (2)

then on substitution of Eq. (2) into Eq. (1) and taking s ¼ t� t, one gets

rðtÞ ¼ ioe0e
iot

Z 1
0

wðsÞe�ios ds. (3)

Please, note that the integral in Eq. (3) expresses Laplace transform of function wðsÞ,

WðioÞ ¼LfwðsÞg ¼
Z 1
0

wðsÞe�ios ds. (4)

Now, if Eq. (2) is taken into account and time variable is omitted, Eq. (3) becomes

r ¼ EðioÞe, (5)

where E, defined by the relation

EðioÞ ¼ ioWðioÞ, (6)

is called either complex elastic modulus [9] or complex modulus of elasticity [10,11], thanks to the resemblance
between Eq. (5) and the mathematical formula expressing Hook’s law for the uniaxial case [12]. Some authors
refer to it simply as complex modulus [13–15]. In the literature the complex modulus is often decomposed into
real and imaginary part,

E ¼ E� þ iE�, (7)

that are named storage and loss modulus of elasticity, respectively [11]. Another popular notation includes loss
factor2 Z,

E ¼ E�ð1� iZÞ, (8)

where

Z ¼ �
E�

E�
. (9)

To express the loss factor in terms of the material function W it is enough to compare Eqs. (6) and (8)

Z ¼
ReðWðioÞÞ
ImðWðioÞÞ

. (10)
1Eq. (2) has no physical meaning. It merely expresses the fact that all the solutions obtained hereinafter are valid for both real and

imaginary part of Eq. (2). It is true since the following analysis operates only on linear equations. Limitation of allowed strain functions

only to these represented by Eq. (2) does not affect the generality of the derivation because arbitrary variations of strain that occur over a

finite duration can be approximated by Fourier series, which components are identical with already mentioned real and imaginary part of

Eq. (2).
2It is also called loss tangent.
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Solving a parameter identification problem of an experimentally tested object requires using an adequate
theoretical model. Thus the governing equation for transverse motion of a viscoelastic beam

J

Z t

�1

cðt� tÞ
q
qt

q4w
qx4

� �
dtþ rA

q2w
qt2
¼ 0 (11)

is employed in the presented methods. The beam is characterised by cross-section A, moment of inertia J and
density r. No distributed force is assumed. Eq. (11) has been obtained with the use of Boltzmann
superposition principle expressed by Eq. (1). It needs to be stressed that the derivation of Eq. (11) is not trivial.
It is based on the assumption that the simple elongation of a viscoelastic fibre can be described by Eq. (1). To
prove it one needs to write Eq. (1) in a scalar form, dependent on a chosen coordinate system, and rearrange
the obtained equation, remembering that some components of stress vanish.

IWC and McDaniel methods enable determination of dispersion curves in the structures under flexure.
Since IWC method was originally applied to identification of a wave field in plates, plane waves

wðx; y; tÞ ¼ w0e
iðot�k�xÞ (12)

were of interest to Berthaut et al. The foregoing equation3 describes propagation of a wave of frequency o in a
two-dimensional medium. Scalar product k � x represents location of the wave front in a moment t. It can be
expanded to the form

k � x ¼ kn � x, (13)

where k is a wave number, n is a vector normal to the plane of propagation and x is a position vector. The
vectors have the following representation in the basis feig of a rectangular Cartesian coordinate system:

n ¼ cosffðn; e1Þe1 þ cosffðn; e2Þe2, (14)

x ¼ xe1 þ ye2. (15)

If a one-directional propagation is considered, which is a common assumption in the case of beams, Eq. (12)
describing the wave field stays unaltered except that one spatial variable is used instead of two. Hence, for a
definite frequency o transverse deflection of the beam is described by equation

W ðxÞ ¼ ~w0e
�ikx. (16)

It should be emphasised that from viewpoint of the classical theory of beams, Eq. (16), which underlies IWC
method, is incomplete since it lacks the term representing an evanescent wave. This fact is taken into account
in an identification procedure, where the measurements of lateral displacements, done in points lying close to
the boundaries of a sample are discarded. It is assumed in the method that propagation occurs in a dissipative
medium. Thus, complex values of wave number are obtained in frequency domain. If the problem of bending
waves is investigated, which is the case, a relation between wave number k and loss factor Z is given by ratio of
phase and group velocity, denoted by cj and cg, respectively:

ImðkÞ

ReðkÞ
¼ Z

cj

2cg

. (17)

Berthaut et al. have borrowed this equation from other work devoted to modelling of vibrating systems [16].
Since for bending waves the group velocity is twice the phase velocity, the loss factor may be expressed directly
in terms of the wave number:

Z ¼ 4
ImðkÞ

ReðkÞ
. (18)
3Eq. (12) may lead to confusion. It should be replaced with either wðx; y; tÞ ¼ Reðw0e
iðot�k�xÞÞ or wðx; y; tÞ ¼ Imðw0e

iðot�k�xÞÞ. Both forms

are correct and satisfy equations of motion derived within a linear theory of plates. However, for the sake of simplicity one maintains

notation used in Eq. (12) throughout the rest of the text.
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This formula is approximate. To obtain an exact expression for the loss factor it is enough to substitute
Eq. (16) into Eq. (11), take s ¼ t� t and apply Eqs. (4), (6) and (8). Then one gets

Z ¼
Imðk4

Þ

Reðk4
Þ
. (19)

However, as one wanted to keep the original formulation of the method, Eq. (18) has been used to calculate
the loss factor. It is justified for small values of the parameter. The error caused by using Eq. (18) instead of
Eq. (19) does not exceed 7 per cent for the values of loss factor smaller than 0.5 and it converges to zero as the
loss factor approaches zero.

Correlation between the wave field observed in an experiment and the one found from Eq. (16) for a given
value of the wave number and frequency, is calculated by means of the formula:

IWCðkÞ ¼
j
Pn

i¼1W ðxi; kÞ eW ðxiÞrðxiÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1jW ðxi; kÞj

2
Pn

i¼1j
eW ðxiÞj

2rðxiÞ

q , (20)

where eW ðxiÞ, rðxiÞ stand for transfer function and coherence, respectively, computed for the response
captured at xi, W denotes the complex conjugate of W , and xi is a location of ith measurement point. The
value of k, which maximises the ratio in Eq. (20), is a solution of the identification problem for a specified
frequency. To find the solution, the space of physically allowed values of ReðkÞ and ImðkÞ is searched through.
In the implemented algorithm a unit value of amplitude ~w0 has been taken. In general, ~w0 can be arbitrary,
because it does not contribute to Eq. (20),4 thus it does not affect the results of the identification. Further
comments concerning this method can be found in Ref. [1].

In their method McDaniel et al. use solution [3,4]5

W ðx;oÞ ¼ c1ðoÞeikx þ c2ðoÞe�ikx þ c3ðoÞekx þ c4ðoÞe�kx (21)

of Fourier transformed equation (11)

E�ðoÞð1� iZðoÞÞJ
q4W ðx;oÞ

qx4
� o2rA W ðx;oÞ ¼ 0 (22)

as a model of a wave field. Eq. (22) is obtained from Eq. (11) by virtue of convolution theorem and Eqs. (6)6

and (8). In mathematical terms, the Fourier transform is correct if duration of vibration t tends to infinity.
This condition is always violated in an experiment. However, it can be accepted for practical applications if the
results of Fourier analysis for the frequencies lower than the reciprocal of measurement time are discarded.
The complex wave number, that appears in Eq. (21), is expressed by the formula:

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA

E�ðoÞð1� iZðoÞÞJ
o24

s
. (23)

If the theoretical model is correct, Eq. (21) should be satisfied for every measured response. Thus, a set of
equations written in a matrix form for a given frequency o

W ðx1Þ

� � �

W ðxiÞ

� � �

W ðxnÞ

26666664

37777775 ¼
eikx1 e�ikx1 ekx1 e�kx1

� � � � � � � � � � � �

eikxi e�ikxi ekxi e�kxi

� � � � � � � � � � � �

eikxn e�ikxn ekxn e�kxn

26666664

37777775
c1

c2

c3

c4

26664
37775 (24)

ought hold, where xi, i ¼ 1; . . . ; n denotes a location of ith measurement point and W ðxi;oÞ is a response
obtained at xi. Unknown constants cj, j ¼ 1; . . . ; 4 are determined by means of the least-squares method for
4One can easily check it inserting Eq. (16) in Eq. (20).
5In Ref. [3] terms e�ikx, ekx are replaced with eikðL�xÞ, e�kðL�xÞ, respectively. It is motivated by numerical issues.
6Symboll WðioÞ, which appears in Eq. (6), denotes in this case Fourier not Laplace transform of function cðtÞ.
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each complex value k assumed in consecutive loops of an optimisation procedure. The original objective
function, proposed by McDaniel et al., has been modified. Now it contains the coherence function r:

�ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1jW ðxi; kÞ � eW ðxiÞj

2rðxiÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1j
eW ðxiÞj

2rðxiÞ

q , (25)

where eW ðxiÞ denotes an experimentally obtained response. Nelder-Mead simplex algorithm [17] has been
employed to speed up a search of minimum. The loss factor is calculated from Eq. (23):

Z ¼
Imðk4

Þ

Reðk4
Þ
, (26)

where k minimising Eq. (25) is used. Please note that Eq. (26) is identical with Eq. (19). It is obvious since both
relations are derived from Eq. (11).

3. Experimental validation

The experimental set-up for estimation of loss factor is shown in Fig. 1. Steel sample of dimensions
0:27m� 0:02m� 0:001m covered with viscoelastic material manufactured by RIETER France was tested.
Clamping was realised by means of a massive vice. An excitation was applied at the free end of the beam.
Gearing&Watson V4 shaker with Bruel&Kjaer 8200 force charge mounted on its head, was used to provide
random loading of the sample. The shaker was driven by a white noise generator. Polytec OFV 350 laser
vibrometer measured velocity in 26 points spaced 0.01m apart along length of the beam. Data was acquired
using Bruel&Kjaer Pulse multi-analyser system. Signal coming from the force charge was used as a reference
one in FFT analysis.

Frequency dependence of real and imaginary part of wave number obtained for both presented methods is
shown in Figs. 2 and 3, respectively. Frequencies from 40 to 6400Hz are displayed in the plot. The upper
frequency is a compromise between limitations of FFT analysis and the requirement of not exceeding Nyquist
frequency. The last condition has to be satisfied if measurement points are evenly spaced, which is the case.
However, as it has been demonstrated by McDaniel et al. [4], violation of the requirement is possible for
irregular arrangement of the points. Very high level of noise, recorded below 40Hz, reflected in low values of
laser

vibrometer

elastic suspension

force charge

shaker

vice

Power

amplifier

multi−analyzer

PULSE software

vibrometer

controller

sample

Fig. 1. Experimental set-up for identification of the complex wave number on the basis of bending wave propagation tests.
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Fig. 3. Imaginary part of wave number versus frequency. Values estimated by —, IWC method; � � � � �, McDaniel method.
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coherence, leads to erroneous results in the range, namely real part of wave number becomes negative and loss
factor takes values lying outside an interval h0; 1i. Envelope of coherence calculated for all measurement
points is shown in Fig. 4. Shape of the curves plotted in Fig. 2, representing real part of wave number, agrees
very well with the one predicted theoretically for either conservative system and system with hysteretic model
of damping applied, within the whole frequency range. Both methods produce almost identical results.
However, evident differences, particularly in lower frequencies, are observed in imaginary part of wave
number, as it is shown in Fig. 3.

Curves representing complex wave number determined by means of IWC method, have been obtained by
use of measurement data acquired in 20 points with exclusion of 6 others, lying closest to the ends of the
sample. The incomplete set of data has been used on account of the fact that theoretical solution assumed in
the method well describes the wave field existing away from boundaries. Numerical tests conducted for one-
dimensional wave field [1] show that IWC method returns better estimates of imaginary part of wave number
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Fig. 5. Real and imaginary part of the wave number versus frequency. Values estimated by, IWC method: —, data from all measurement

points taken into account, � � � � �, data from measurement points lying in the vicinity of boundaries neglected.
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if responses measured in the vicinity of boundaries are discarded. However, this effect is observed only in the
case when modal solution of Eq. (11) is used to generate the wave field and it disappears if a wave solution is
employed. No relevant differences in values of a real part of the wave number obtained for all mentioned cases
are reported. Results of the numerical tests have been verified experimentally. Curves depicting frequency
variation of real and imaginary part of the wave number determined by use of IWC method, presented in Figs.
2 and 3, are set together in a common graph marked as Fig. 5 and overlapped by respective curves obtained
for complete set of measurements.

The error functions defined in both methods depend on coherence. The main reason for introducing this
parameter is to eliminate the influence of measurement noise on the results of the identification procedure.
Figs. 6 and 7 show differences in the returned values of real and imaginary part of wave number between the
cases when coherence is taken into account and when it is neglected. Absolute differences, expressed in
percents of values of the respective parameters obtained with the use of coherence, are plotted. Logarithmic
scale is used for ordinate axis. Gaps in the curves depicting differences in real and imaginary part of the wave
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objective function and when it is neglected. Imaginary part of the wave number estimated with the use of the coherence was taken as a

reference value. The difference was calculated for —, IWC method; � � � � �, McDaniel method.
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number returned by IWC method correspond to the frequencies at which no difference exists. It results in zero
value, having no finite representation in logarithmic scale. From Figs. 6 and 7 it is clearly seen that unlike
IWC method, McDaniel method is almost insensitive to measurement noise. It should be underlined that
differences in imaginary part of wave number are on average two orders of magnitude bigger than those
observed for real part.

Loss factor calculated with the aid of Eqs. (18) and (26) for IWC and McDaniel method, respectively, is
plotted in Fig. 8. The graph covers frequencies from 220 to 6400Hz. It is based on the data presented in Figs. 2
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Fig. 9. Objective function versus frequency. Values obtained for —, IWC method; � � � � �, McDaniel method.
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and 3. The lower limit of the frequency range corresponds to a third resonant frequency of the tested sample.
It has been discovered that precision of McDaniel method drastically decreases below that frequency in the
presented case. Exceptionally high variation of imaginary part of wave number, observed in lower frequencies,
confronted with a high coherence in the range and a low value of an objective function, displayed in Fig. 8,
indicating good fit of the postulated solution to an experimental response, proves that the failure of the
method is due to its inherent limitations. More profound theoretical analysis of the problem has been already
given by McDaniel et al. [4].

Performance of IWC method needs some further comment. Objective function employed in the method
takes unit value if the theoretically predicted wave field fits ideally to the real one. The function tends to zero
as the fit fails. Since IWC method searches through discretised set of admissible values of the parameters,
probability of not finding global optimum is minimised provided that the discretisation is dense enough. From
the last remarks and from the fact that very low values of the objective function are obtained, as is shown in
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Fig. 9, it is inferred that the model proposed in IWC does not describe correctly the wave field observed in the
tests. This conclusion is supported by the fact that the loss factor found by the method takes negative values
for lower frequencies.

Values of the loss factor obtained with the use of McDaniel method coincide with these determined in a
standard Oberst test. The latter ones are depicted in Fig. 8 by black dots. The Oberst test was conducted in
compliance with the standard DIN 53440. Good correlation of the results confirms the thesis that the loss
factor returned by McDaniel method is correct. Fact that average value of the loss factor estimated by means
of McDaniel method does not vary with frequency indicates that hysteretic model of damping applies.

4. Conclusions

In the presented paper the problem of estimation of the structural loss factor for the case of a cantilever
elastic beam with an attached viscoelastic layer has been addressed. Two methods based on an analysis of a
wave field generated in the structure have been investigated. Experimental tests have proved that the model of
the wave field used in IWC method is incorrect. Thus the values of the identified parameters are not reliable. It
has been shown that McDaniel method enables correct estimation of the loss factor within wide frequency
range. Moreover, thanks to the introduction of the loss factor notation, it allows for identification of a model
of damping which occurs in the beam.
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