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Abstract

A new method is presented for the pole estimation of linear time invariant (LTI) systems. For a single input case, this

method gives estimation of each pole of the system. For a multiple input case, it estimates the repeated system poles with

multiplicity equal to the number of inputs. The new method employs the singular value decomposition technique (SVD),

and is shown to be numerically robust against measurement noises.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

System identification is a process to curve fit a mathematical model of a physical system by using
experimental data. Depending upon the nature and purpose of the identification problem, the mathematical
model to be derived can be of different forms, as well as the experimental data to be used for curve fitting.
A large class of physical systems are described or approximated by linear time invariant (LTI) models,
therefore, the LTI system identification problem is of particular interests and importance, and has been a
subject of extensive research in the past few decades (see, for example, Refs. [1–8] and the references therein).
In such a case, we often seek to derive a transfer function or state space description of the underlying physical
system, by using experimental data such as frequency responses, impulse responses, forced responses or
free decays.

A most important step in a LTI system identification process is to estimate the system poles, which includes
the estimation of system order, or equivalently the number of system modes well excited and observable in the
experimental setup, as well as the complex values of the poles corresponding to these modes. It is a relatively
easy task in the deterministic case. In the stochastic case where measurement noises are presented, it becomes
quite more complex. In this case, different system orders are usually assumed and a series of parameter
estimation is performed, and a stability diagram is generated which reflects the variation of the estimated
parameters with respect to increments of the assumed system orders. However, with existing methods,
sometimes it can be difficult to distinguish between actual system poles and spurious ones on the stability
diagram. To improve the quality of parameter estimation, in this paper we present a new method by
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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employing the singular value decomposition (SVD) technique [9]. The new method estimates each pole for a
single input LTI system. For a multiple input system, it estimates the repeated system poles with multiplicity
equal to the number of inputs. This method utilizes the column vectors of an orthogonal matrix obtained from
SVD for parameter estimation. It gives another form of stability diagram, which reflects the variation of
estimates with respect to the column index. The order of parameter estimation is fixed at every step, and the
system poles are guaranteed to appear when the vector index exceeds the real system order. As shown by
examples, the new method is numerically robust against measurement noises.

The rest of the paper is organized as follows. In Section 2, we review some LTI system theory
related to the pole estimation problem. In Section 3, we give two propositions which characterize the
system poles. On top of these propositions, we propose the new method in Section 4. A couple of examples are
given in Section 5 to illustrate the use and effectiveness of the new method; Finally, conclusions are drawn
in Section 6.
2. Description of LTI systems

A m� n linear time invariant system is described by a minimal state space realization [10]

_x ¼ Axþ Bu;

y ¼ Cx;

(
(1)

where A 2 Rk�k; B 2 Rk�n; C 2 Rm�k, k is the system order, n is the number of inputs, and m is the number
of outputs. The state space identification problem consists of determining the matrix triplet (A, B, C) from
measured data. The transfer function matrix of the system is

PðsÞ ¼ CðsI� AÞ�1B ¼
X1
k¼0

CAkBs�ðkþ1Þ. (2)

The eigenvalues of state matrix A are the poles of the system, and the coefficient matrices CAkB in the above
equation are called the system’s Markov parameters. Let s ¼ jo, then we have an expression of the system’s
frequency response function matrix P(jo). The time domain counterpart of P(jo) is the matrix of impulse
response functions, which in discrete time is expressed as

HðaÞ ¼ CeAaDtB, (3)

where Dt is the sampling period. Let

~A ¼ expðADtÞ, (4)

then Eq. (3) is equivalent to

HðaÞ ¼ C ~A
a
B, (5)

The eigenvalues ljj1pjpk of A are related to the eigenvalues ~ljj1pjpk of ~A as

lj ¼ lnð~ljÞ=Dt, (6)

and both matrices share the same set of eigenvectors. For matrix A, let omax be the maximum of the absolute
values of its eigenvalues’ imaginary parts. If the condition 0pomaxDtpp is satisfied, then there is a one-to-one

correspondence between the eigenvalues of the two matrices ~A and A. This fact is just a reiteration of
Shannon’s sampling theorem. In such a case, the eigenstructure of the system matrix A can be uniquely
recovered from that of ~A. For such a reason, and because the Markov parameters of the system ð ~A;B;CÞ are
the measurable impulse responses of the original system (A, B, C), we can focus on the identification of
ð ~A;B;CÞ and return to the original state space system as needed.
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3. Characteristics of system poles

In this section we give two propositions which characterize the poles of a LTI system. The propositions
relate the system poles to the roots of a polynomial equation formed by a vector in the null space of a Hankel
matrix.

Proposition 1. Suppose an m� n system ð ~A;B;CÞ has a transfer function matrix

PðsÞ ¼
Xk

i¼1

Di

s� ~li

, (7)

where the ~li’s are the poles of the system, and the Di’s are the residue matrices. Let

HðaÞ ¼ C ~A
a
B; a ¼ 0; 1; . . . ;1, (8)

be the Markov parameters. Assume that each matrix Dij1pipk is of full column rank, which implies that the order

of the system is nk. Let

X ¼

Hðbþ pÞ Hðbþ p� 1Þ � � � HðbÞ

Hðbþ 1þ pÞ Hðbþ pÞ � � � Hðbþ 1Þ

..

. . .
. . .

. ..
.

Hðbþ aþ pÞ Hðbþ aþ p� 1Þ � � � Hðbþ aÞ

2
666664

3
777775, (9)

be a so-called Hankel matrix [2–6] for some integers b, p, a with p, aXnk. Also, for a n(p+1) dimensional vector

x ¼ ½x1 x2 . . . xnðpþ1Þ �T, (10)

let G ¼ fljg1pjpnðpþ1Þ�1 be the set of roots to the polynomial equation

x1l
nðpþ1Þ�1

þ x2l
nðpþ1Þ�2

þ � � � þ xnðpþ1Þ�1lþ xnðpþ1Þ ¼ 0. (11)

If the vector x is in the null space of the matrix X, or equivalently

Xx ¼ 0, (12)

then ffiffiffiffi
~li

n

q
2 G (13)

for any pole ~li of the system ð ~A; B; CÞ.

In particular, if n ¼ 1, which is the single input case, the proposition states that the system poles themselves
are contained in the set G.

Proof. Suppose the characteristic equation of the matrix ~A takes the form

detð~lI� ~AÞ ¼ ~l
k
þ ak�1

~l
k�1
þ � � � þ a0

¼ 0, ð14Þ

from the Caley–Hamilton theorem we have

~A
k
þ ak�1

~A
k�1
þ � � � þ a0I ¼ 0. (15)
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Furthermore, through consecutively multiplying Eq. (15) by ~A we get

~A
k
þ ak�1

~A
k�1
þ � � � þ a0I ¼ 0

~A
kþ1
þ ak�1

~A
k
þ � � � þ a0

~A ¼ 0

..

.

~A
kþZ
þ ak�1

~A
kþZ�1

þ � � � þ a0
~A
Z
¼ 0

..

.

8>>>>>>>>><
>>>>>>>>>:

(16)

Pre-multiplying Eq. (16) by C and post-multiplying by B, and noting Eq. (8), we obtain

HðkÞ þ ak�1Hðk � 1Þ þ � � � þ a0Hð0Þ ¼ 0

Hðk þ 1Þ þ ak�1HðkÞ þ � � � þ a0Hð1Þ ¼ 0

..

.

Hðk þ ZÞ þ ak�1Hðk þ Z� 1Þ þ � � � þ a0HðZÞ ¼ 0

..

.

8>>>>>>>><
>>>>>>>>:

(17)

or equivalently

HðkÞ Hðk � 1Þ � � � Hð0Þ

Hðk þ 1Þ HðkÞ � � � Hð1Þ

..

. ..
. . .

. ..
.

Hðk þ ZÞ Hðk þ Z� 1Þ � � � HðZÞ

..

. ..
. . .

. ..
.

2
666666664

3
777777775

In�n

ak�1In�n

..

.

a0In�n

2
66664

3
77775 ¼ 0. (18)

Define

H ¼

In�n 0 � � � 0

ak�1In�n In�n � � � 0

..

.
ak�1In�n � � �

..

.

a0In�n � � � 0

0 a0In�n � � � In�n

0 0 � � � ak�1In�n

..

. ..
.

� � � ..
.

0 0 � � � a0In�n

2
66666666666666664

3
77777777777777775

nðpþ1Þ�nðpþ1�kÞ

. (19)

It is straightforward to verify that

XH ¼ 0. (20)

Because the rank of the matrix X is equal to the system order nk, and the n(p+1�k) columns of H are
linearly independent, so the columns of H span the null space of X. Therefore, if

Xx ¼ 0, (21)
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is assumed, let q ¼ p+1�k, we have

x ¼

In�n 0 � � � 0

ak�1In�n In�n � � � 0

..

.
ak�1In�n � � �

..

.

a0In�n � � � 0

0 a0In�n � � � In�n

0 0 � � � ak�1In�n

..

. ..
.

� � � ..
.

0 0 � � � a0In�n

2
66666666666666666664

3
77777777777777777775

g1;1

..

.

g1;n

g2;1

..

.

g2;n

..

.

gq;1

..

.

gq;n

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼

g1;1

..

.

g1;n

ak�1g1;1

..

.

ak�1g1;n

..

.

a0g1;1

..

.

a0g1;n

0

..

.

..

.

..

.

..

.

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

þ

0

..

.

0

g2;1

..

.

g2;n

ak�1g2;1

..

.

ak�1g2;n

..

.

a0g2;1

..

.

a0g2;n

0

..

.

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

þ � � � þ

0

..

.

..

.

..

.

..

.

0

gq;1

..

.

gq;n

ak�1gq;1

..

.

ak�1gq;n

..

.

a0gq;1

..

.

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

. ð22Þ
0
: ; 0 a0gq;n

>: >;
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Furthermore, let r ¼ n(p+1)�1, we have

x1l
r
þ x2l

r�1
þ � � � þ xrlþ xrþ1

¼ g1;1ðl
r
þ ak�1lr�n

þ � � � þ a0lr�kn
Þ þ � � � þ g1;nðl

r�nþ1
þ ak�1lr�2nþ1

þ � � � þ a0lr�ðkþ1Þnþ1
Þ

þ g2;1ðl
r�n
þ ak�1l

r�2n
þ � � � þ a0l

r�ðkþ1Þn
Þ þ � � � þ g2;nðl

r�2nþ1
þ ak�1l

r�3nþ1
þ � � � þ a0l

r�ðkþ2Þnþ1
Þ

þ � � � þ gq;1ðl
r�ðq�1Þn

þ ak�1l
r�qn
þ � � � þ a0l

r�ðqþk�1Þn
Þ þ � � � þ gq;nðl

r�qnþ1
þ ak�1l

r�ðqþ1Þnþ1
þ � � � þ a0l

r�ðqþkÞnþ1
Þ

¼
Xq

m¼1

Xn

n¼1

gm;nðl
r�nðm�1Þ�ðn�1Þ

þ ak�1l
r�nm�ðn�1Þ

þ � � � þ a0l
r�nðmþk�1Þ�ðn�1Þ

Þ

¼ ðlnk
þ ak�1l

nðk�1Þ
þ � � � þ a0Þ

Xq

m¼1

Xn

n¼1

gm;nl
r�nðmþk�1Þ�ðn�1Þ. ð23Þ

Therefore, the roots of the equation

lnk
þ ak�1l

nðk�1Þ
þ � � � þ a0 ¼ 0, (24)

belongs to G ¼ fljg1pjpr, which is the set of roots to Eq. (11). Because the roots of Eq. (24) are just the nth
complex roots of poles of the system ð ~A; B; CÞ, we conclude thatffiffiffiffi

~li
n

q
2 G, (25)

for every pole of the system ~li, where 1pipk. &

The above proposition requires that the residue matrix corresponding to each pole of the system has full
column rank. This condition is relaxed in the following proposition, which characterizes only those system
poles with full column ranked residue matrices.

Proposition 2. For the m� n system ð ~A;B;CÞ, with X, X, and G as defined in Proposition 1, if

Xx ¼ 0, (26)

then for any pole ~li of the system with the corresponding residue matrix Di being of full column rank,ffiffiffiffi
~li

n

q
2 G. (27)

Proof. Partition the transfer function matrix P(s) as

PðsÞ ¼ ½P1ðsÞ P2ðsÞ . . . PnðsÞ �, (28)

where

P�ðsÞj1p�pn ¼
Xk

i¼1

Di;�

s� ~li

, (29)

in which Di,e is the eth column of Di. Each Pe(s) is a vector of transfer functions with respect to eth the input.
We denote the Markov parameters of the single input system Pe as he.

Eq. (26) is equivalent to

h1ðbþ pÞ h1ðbþ p� 1Þ � � � h1ðbÞ

h1ðbþ 1þ pÞ h1ðbþ pÞ � � � h1ðbþ 1Þ

..

. . .
. . .

. ..
.

h1ðbþ aþ pÞ h1ðbþ aþ p� 1Þ � � � h1ðbþ aÞ

2
6666664

3
7777775

x1

x1þn

..

.

x1þpn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
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þ

h2ðbþ pÞ h2ðbþ p� 1Þ � � � h2ðbÞ

h2ðbþ 1þ pÞ h2ðbþ pÞ � � � h2ðbþ 1Þ

..

. . .
. . .

. ..
.

h2ðbþ aþ pÞ h2ðbþ aþ p� 1Þ � � � h2ðbþ aÞ

2
6666664

3
7777775

x2

x2þn

..

.

x2þpn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ � � � þ

hnðbþ pÞ hnðbþ p� 1Þ � � � hnðbÞ

hnðbþ 1þ pÞ hnðbþ pÞ � � � hnðbþ 1Þ

..

. . .
. . .

. ..
.

hnðbþ aþ pÞ hnðbþ aþ p� 1Þ � � � hnðbþ aÞ

2
6666664

3
7777775

xn

xnþn

..

.

xnþpn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ 0. ð30Þ

Let Ve be the vector space spanned by the columns of the matrix

h�ðbþ pÞ h�ðbþ p� 1Þ � � � h�ðbÞ

h�ðbþ 1þ pÞ h�ðbþ pÞ � � � h�ðbþ 1Þ

..

. . .
. . .

. ..
.

h�ðbþ aþ pÞ h�ðbþ aþ p� 1Þ � � � h�ðbþ aÞ

2
666664

3
777775 (31)

for 1pepn. If there exists a system pole ~li such that the corresponding residue matrix Di is of full column
rank, then

V� \ VZ
��
1p�;Zpn
�aZ
¼ 0. (32)

Therefore from Eq. (30) we obtain

h�ðbþ pÞ h�ðbþ p� 1Þ � � � h�ðbÞ

h�ðbþ 1þ pÞ h�ðbþ pÞ � � � h�ðbþ 1Þ

..

. . .
. . .

. ..
.

h�ðbþ aþ pÞ h�ðbþ aþ p� 1Þ � � � h�ðbþ aÞ

2
666664

3
777775

x�

x�þn

..

.

x�þpn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ 0 (33)

for 1pepn. Also, because such a ~li is a pole of every single input system P�ðsÞj1p�pn, by using Proposition 1,
we can conclude that

x� ~l
p

i þ x�þn
~l

p�1

i þ � � � þ x�þðp�1Þn ~li þ x�þpn ¼ 0 (34)

for 1pepn. Since

f ðlÞ ¼ x1l
nðpþ1Þ�1

þ x2l
nðpþ1Þ�2

þ � � � þ xnðpþ1Þ�1lþ xnðpþ1Þ

¼ ðx1l
np
þ x1þnl

nðp�1Þ
þ � � � þ x1þðp�1Þnl

n
þ x1þpnÞl

n�1

þ ðx2l
np
þ x2þnl

nðp�1Þ
þ � � � þ x2þðp�1Þnl

n
þ x2þpnÞl

n�2

þ � � � þ ðxn�1l
np
þ xðn�1Þþnl

nðp�1Þ
þ � � � þ xðn�1Þþðp�1Þnl

n
þ xðn�1ÞþpnÞl

þ ðxnl
np
þ x2nl

nðp�1Þ
þ � � � þ xpnl

n
þ xðpþ1ÞnÞ. ð35Þ

Noting Eq. (34), we can conclude that

f ð

ffiffiffiffi
~li

n

q
Þ ¼ 0, (36)



ARTICLE IN PRESS
X. Liu / Journal of Sound and Vibration 310 (2008) 998–1013 1005
or equivalently, ffiffiffiffi
~li

n

q
2 G: & (37)

4. Estimation of system poles

From the conclusions obtained in the previous section, for an m� n LTI system ð ~A; B; CÞ, given any vector
in the null space of the Hankel matrix, we can solve for the complex roots of a polynomial equation formed by
this vector as in Eq. (11), and take the nth power of the roots to form a set of estimates, the poles of the system
will be contained in this set. Suppose a series of estimates have been obtained from different vectors in the null
space of the Hankel matrix, then the variation of these estimates with respect to the vector indices will
constitute a form of stability diagram, on which the poles of the system will appear stable and can thus be
differentiated out. However, a problem remains to be solved should this approach be used for the estimation
of the system poles: in real situations the measured Hankel matrix is always contaminated by measurement
noises, so it is not possible to precisely determine vectors in its null space. To fix this problem, we now
introduce a robust numerical method to obtain optimum approximations of the desired vectors. This method
employs the singular value decomposition (SVD) technique.

Starting with the Hankel matrix X as in Eq. (9), we can perform singular value decomposition [9]

XTX ¼ URUT, (38)

in which U is an orthogonal matrix of dimension n(p+1)� n(p+1), and R is a diagonal matrix

R ¼

s1
s2

. .
.

snðpþ1Þ

2
666664

3
777775, (39)

where s1Xs2X � � �Xsnðpþ1ÞX0. If a sjj1pjpnðpþ1Þ is non-zero, it is called a singular value. The number of
singular values is the same as the rank of the matrix X. Only when there is no measurement noise, this number
is equal to the order of the underlying LTI system, and in such a case we can obtain the null space of X as
spanned by the columns of U corresponding to the zero diagonal entries of R. If measurement noises are
presented, X is often full ranked and we cannot determine a vector orthogonal to its rows. However, we can
find vectors which approximately satisfy the orthogonality condition. Let uij1pipnðpþ1Þ be the ith column of U,
it is easy to verify that

jXuij
2 ¼ si, (40)

thus si is a measure of orthogonality between ui and the row space of X. If for a vectors ui, the corresponding
si is small enough, then this vector is approximately orthogonal to the rows of X and can be used for pole
estimation. In practice, we can do a parameter estimation using each column vector of the matrix U, and
construct a stability diagram to reflect the variation of the estimated parameters with respect to the vector
index. When the vector index increases passing through the real order of the underlying system, the
corresponding singular value becomes small, and the system poles are expected to come into view and can thus
be differentiated out.

In summary, we propose the following steps to estimate the poles of the m� n LTI system (A, B, C):
(1)
 Form the Hankel matrix X as in Eq. (9), and perform SVD as in Eq. (38) to obtain matrix U.

(2)
 For each column vector uij1pipnðpþ1Þ of U, let x ¼ ui and find Gi ¼ fli;jg1pjpnðpþ1Þ�1 which is the set of roots

of Eq. (11).

(3)
 Form G0i ¼ flnðl

n
i;jÞ=Dtg1pjpnðpþ1Þ�1 for 1pipnðpþ 1Þ.
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(4)
Fig.
Construct a stability diagram to reflect the variation of G0i with respect to the vector index i.
Identify system poles as those stable parameters as the vector index increases passing through the system
order.
1. Frequency response function magnitudes. (a) P1;1ðj2pf Þ, (b) P1;2ðj2pf Þ, (c) P2;1ðj2pf Þ, (d) P2;2ðj2pf Þ, (e) P3;1ðj2pf Þ, (f) P3;2ðj2pf Þ.

Fig. 2. Impulse response functions. (a) h1,1(t), (b) h1,2(t), (c) h2,1(t), (d) h2,2(t), (e) h3,1(t), (f) h3,2(t).
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by examples in the next section, this method gives robust estimates of system poles against measurement
noises.
Note that in this new approach, the order of parameter estimation is fixed at every step. As shown
Fig. 3. Measurement noises. (a) w1,1(t), (b) w1,2(t), (c) w2,1(t), (d) w2,2(t), (e) w3,1(t), (f) w3,2(t).

Fig. 4. Measured impulse response functions. (a) ĥ1;1ðtÞ, (b) ĥ1;2ðtÞ, (c)ĥ2;1ðtÞ, (d) ĥ2;2ðtÞ, (e) ĥ3;1ðtÞ, (f) ĥ3;2ðtÞ.
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5. Examples
Example 1. A 3� 2 LTI system is described by the following transfer function matrix:

PðsÞ ¼

10

ðs� l1Þðs� l2Þ
þ

20

ðs� l3Þðs� l4Þ
25138:164ðsþ 1Þ

ðs� l1Þðs� l2Þðs� l5Þðs� l6Þ
10

ðs� l1Þðs� l2Þ
þ

15715:698ðsþ 1Þ

ðs� l3Þðs� l4Þðs� l5Þðs� l6Þ
10

ðs� l1Þðs� l2Þ
þ

20

ðs� l3Þðs� l4Þ
þ

30

ðs� l5Þðs� l6Þ
25138:164ðsþ 1Þ

ðs� l1Þðs� l2Þðs� l5Þðs� l6Þ
15715:698ðsþ 1Þ

ðs� l3Þðs� l4Þðs� l5Þðs� l6Þ

2
66666664

3
77777775
,

(41)

where

l1 ¼ � 1þ j100p; l2 ¼ ln1,

l3 ¼ � 1þ j200p; l4 ¼ ln3,

l5 ¼ � 1þ j300p; l6 ¼ ln5. ð42Þ

Each lij1pip6 is a pole of the system, and the residue matrices can be evaluated as

Di ¼ ðs� liÞPðsÞjs¼li
(43)

for i ¼ 1, 2, y, 6. It is easy to verify that each residue matrix has full column rank. Every pole lij1pip6 is
repeated and has a multiplicity of two, and the system is of order 12. The frequency response functions of the
system are shown in Fig. 1, and the impulse responses in the time interval of 0–3 s are shown in Fig. 2. Suppose
we have measured the impulse response functions, we now use the proposed method to estimate the system
poles. If the impulse responses contain no measurement noises, the poles can be identified precisely. Here we
simulate a general case in which measurement noises are presented. The noise signals and the measured
impulse responses are shown in Figs. 3 and 4, respectively. In the simulation, we pick the sampling frequency
to be fs ¼ 1000Hz, and the sampling period is Dt ¼ 1/fs. To proceed, we choose p ¼ 34, a ¼ 2500, and
Fig. 5. Stability diagram. Frequency location of poles as a function of vector index. Unchanging frequency locations as index increases

indicates a stable estimate of pole position.
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construct an Hankel matrix as

X ¼

HðpÞ � � � Hð1Þ Hð0Þ

Hðpþ 1Þ � � � Hð2Þ Hð1Þ

..

. . .
. . .

. ..
.

Hðaþ pÞ � � � Hðaþ 1Þ HðaÞ

2
666664

3
777775. (44)

The Hankel matrix has full column rank because of measurement noise. Perform singular value
decomposition

XTX ¼ URUT, (45)

where U is a 70� 70 orthogonal matrix, and R is a 70� 70 diagonal matrix with positive diagonal entries. For
each column uij1pip70 ¼ ½ u1;i u2;i � � � u70;i �T of U, we find the set of roots Gi ¼ fli;jg1pjp69 of the
Table 1

Results of pole estimation by using the last 15 column vectors of U

Vector index Estimated poles

70 �1.19647j314.0345 �1.01667j628.3304 �0.99827j942.4672

�1.08687j314.0972 �1.07587j628.7170 �0.96517j942.4692

69 �1.00297j313.9789 �1.24787j626.8193 �0.95987j942.4711

�1.01677j314.0516 �1.08217j627.9977 �0.99357j942.5752

68 �1.08307j313.9560 �1.0051 7j628.1814 �1.00127j942.4106

�0.87587j314.0170 �0.84007j628.2651 �0.99947j942.4668

67 �1.11227j314.1464 �0.88507j628.1957 �1.01907j942.4241

�0.92387j314.1751 �0.93237j628.2329 �1.01147j942.4417

66 �0.99877j314.1254 �1.04027j628.2734 �0.97767j942.3683

�1.04157j314.1408 �1.00207j628.3541 �1.05457j942.4326

65 �0.95237j314.0542 �0.52707j627.5201 �1.08497j942.3777

�1.03847j314.0928 �1.12127j628.1005 �0.94257j942.4426

64 �1.12307j314.1294 �1.03807j628.1152 �0.94947j942.4487

�0.76047j315.4042 �1.03537j628.4873 �0.91407j942.5306

63 �0.87087j313.9145 �1.02497j628.2390 �1.20867j942.2728

�1.02547j313.9493 �1.01117j628.2754 �0.98567j942.4449

62 �1.21607j314.1277 �1.00947j628.2301 �0.82347j942.2723

�1.18907j314.2177 �0.83907j628.4039 �0.93707j942.4120

61 �1.00427j314.1444 �0.99287j628.1636 �0.75897j942.2541

�0.81027j314.5570 �0.70027j628.5356 �0.91047j942.4181

60 �1.04907j314.0133 �0.90577j628.3118 �0.92797j942.2791

�1.12327j314.5206 �1.03037j628.3187 �0.96667j942.4099

59 �1.05117j314.0598 �0.95257j628.2578 �0.97587j942.2372

�1.10027j314.1890 �0.99127j628.3033 �0.97137j942.4070

58 �0.76307j313.8828 �0.87107j628.2306 �1.01917j942.3993

�1.17307j314.0065 �1.28277j628.4673 �0.97837j942.4357

57 �0.99297j314.1404 �0.98797j628.2307 �0.95867j942.3126

�0.82307j314.3440 �0.93207j628.4295 �0.96167j942.4220

56 �0.96697j314.0413 �1.43897j628.3003 �0.95357j942.3795

�0.99997j314.1162 �0.97967j628.4822 �0.80477j942.5550



ARTICLE IN PRESS
X. Liu / Journal of Sound and Vibration 310 (2008) 998–10131010
polynomial equation

u1;il
69
i þ u2;il

68
i þ � � � þ u69;ili þ u70;i ¼ 0, (46)

and form a set G0i ¼ flnðl
2
i;jÞ=Dtg1pjp69. Fig. 5 is a stability diagram which shows the variations of the 1/2p

scaled imaginary parts of the parameters in G0i, with respect to the column index of the vector ui in matrix U in
the parameter range (0, fs/2]. It is clear that the true frequencies at 50, 100 and 150Hz appear very stable on
this diagram, when the column index is greater than the real system order 12. Thus the system poles can be
Fig. 6. Measured frequency response function magnitude.

Fig. 7. Impulse response function h(t).
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differentiated out from the stability diagram. The poles estimated using the last 15 columns of U are listed in
Table 1. It is shown that the proposed method gives robust estimates of system poles.
Example 2. A measured frequency response function is shown in Fig. 6. By using the inverse FFT, the impulse
response function h(t) is obtained and is shown in Fig. 7.

We now use the proposed method to estimate the system poles. To proceed, we choose p ¼ 49, a ¼ 3500,
and construct a Hankel matrix as

X ¼

hðpÞ � � � hð1Þ hð0Þ

hðpþ 1Þ � � � hð2Þ hð1Þ

..

. . .
. . .

. ..
.

hðaþ pÞ � � � hðaþ 1Þ hðaÞ

2
666664

3
777775. (47)

Perform singular value decomposition

XTX ¼ URUT, (48)

where U is a 50� 50 orthogonal matrix, and R is a 50� 50 diagonal matrix. For each column uij1pip50 ¼

½ u1;i u2;i � � � u50;i �T of U, we find the set of roots Gi ¼ fli;jg1pjp49 of the polynomial equation

u1;il
49
i þ u2;il

48
i þ � � � þ u49;ili þ u50;i ¼ 0 (49)

and form a set G0i ¼ flnðli;jÞ=Dtg1pjp49. Fig. 8 is a stability diagram which shows the variations of the 1/2p
scaled imaginary parts of the parameters in G0i, with respect to the column index of the vector ui in matrix U.
Fifteen system poles are identified from this stability diagram. The poles are also listed in Table 2. It is shown
that the proposed method gives robust estimates of system poles.
Fig. 8. Stability diagram. Frequency location of poles as a function of vector index. Unchanging frequency locations as index increases

indicates a stable estimate of pole position.
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Table 2

Results of pole estimation by using the last 10 column vectors of U

Vector index Estimated poles (� 103)

50 �0.00917j5.8358, �0.00727j5.5873, �0.00477j5.3012, �0.00787j4.9934, �0.01077j4.6783

�0.00727j3.9479, �0.00907j3.5858, �0.00727j3.4450, �0.00597j2.9342, �0.00697j2.7102

�0.01147j2.0681, �0.01357j1.8365, �0.00587j0.8526, �0.00297j0.2261, �0.00507j0.0575

49 �0.00877j5.8363, �0.00737j5.5874, �0.00647j5.3017, �0.00807j4.9928, �0.01247j4.6815

�0.00707j3.9479, �0.00907j3.5862, �0.00717j3.4450, �0.00597j2.9342, �0.00697j2.7102

�0.01207j2.0669, �0.01377j1.8358, �0.00567j0.8522, �0.00407j0.2256, �0.00017j0.0364

48 �0.00877j5.8363, �0.00727j5.5874, �0.00547j5.3040, �0.00617j4.9920, �0.01067j4.6825

�0.00717j3.9477, �0.00827j3.5859, �0.00717j3.4448, �0.00617j2.9343, �0.00707j2.7102

�0.01757j2.0639, �0.01787j1.8341, �0.00587j0.8522, �0.00387j0.2247, �0.00027j0.0362

47 �0.00877j5.8363, �0.00737j5.5875, �0.00977j5.3044, �0.00737j4.9936, �0.01177j4.6835

�0.00697j3.9476, �0.00817j3.5864, �0.00717j3.4448, �0.00617j2.9343, �0.00707j2.7102

�0.02007j2.0644, �0.02197j1.8363, �0.00537j0.8535, �0.00367j0.2176, �0.00997j0.0354

46 �0.00877j5.8363, �0.00737j5.5874, �0.00637j5.3022, �0.00807j4.9935, �0.01217j4.6822

�0.00617j3.9483, �0.01057j3.5875, �0.00657j3.4452, �0.00627j2.9344, �0.00707j2.7102

�0.01717j2.0608, �0.01827j1.8295, �0.00527j0.8528, �0.00417j0.2190, �0.00627j0.0363

45 �0.00887j5.8363, �0.00747j5.5874, �0.00677j5.3008, �0.00827j4.9937, �0.01267j4.6822

�0.00587j3.9482, �0.01017j3.5880, �0.00667j3.4451, �0.00627j2.9344, �0.00707j2.7102

�0.01527j2.0613, �0.01497j1.8315, �0.00547j0.8527, �0.00327j0.2215, �0.00167j0.0362

44 �0.00877j5.8363, �0.00737j5.5874, �0.00537j5.3018, �0.00767j4.9936, �0.01387j4.6706

�0.00667j3.9476, �0.00857j3.5869, �0.00707j3.4449, �0.00617j2.9342, �0.00707j2.7102

�0.01147j2.0639, �0.01267j1.8346, �0.00547j0.8528, �0.00307j0.2211, �0.00197j0.0361

43 �0.00877j5.8363, �0.00727j5.5874, �0.00587j5.3020, �0.00807j4.9933, �0.01227j4.6827

�0.00797j3.9469, �0.00937j3.5951, �0.00577j3.4445, �0.00647j2.9346, �0.00707j2.7102

�0.00777j2.0616, �0.00987j1.8356, �0.00567j0.8526, �0.00627j0.2273, �0.00147j0.0723

42 �0.00877j5.8363, �0.00737j5.5874, �0.00587j5.3010, �0.00797j4.9932, �0.01067j4.6839

�0.00737j3.9478, �0.00857j3.5870, �0.00717j3.4449, �0.00607j2.9342, �0.00707j2.7102

�0.01037j2.0646, �0.01247j1.8364, �0.00507j0.8527, �0.00327j0.2186, �0.00187j0.0358

41 �0.00887j5.8362, �0.00747j5.5872, �0.00547j5.3002, �0.00777j4.9932, �0.00937j4.6854

�0.00737j3.9478, �0.00877j3.5871, �0.00717j3.4450, �0.00607j2.9342, �0.00707j2.7102

�0.00977j2.0647, �0.01207j1.8368, �0.00417j0.8525, �0.00217j0.2273, �0.00977j0.0575
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6. Conclusions

We have presented a new method for the pole estimation of linear time invariant systems. This method
employs the singular value decomposition technique, it is easy to be implemented and is robust against
measurement noises. We have illustrated its use and effectiveness through examples.
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