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Abstract

In this paper, constraints on the transfer functions from the road disturbance to the vertical acceleration, the suspension

travel, and the tire deflection are derived for a quarter-car active suspension system using the vertical acceleration and/or

the suspension travel measurements for feedback. The derived constraints complement the similar constraints in the

literature. By using the factorization approach to feedback stability, it is shown that tire damping couples the motions of

the sprung and unsprung masses; and eliminates a constraint at the wheel-hop frequency. The influence of tire damping on

the design of an active suspension system for a quarter-car model by a mixture of the LQG methodology and the

interpolation approach is also illustrated.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The suspension system is the main tool to achieve ride comfort and drive safety for a vehicle. Passive
suspension systems have been designed to obtain a good compromise between these objectives, but intrinsic
limitations prevent them from obtaining the best performances for both goals. Compared with passive
suspension systems, active and semi-active suspension systems can achieve a better compromise during various
driving conditions.

Active and semi-active control of vehicle suspensions have been the subject of considerable investigation
since the late 1960s; see, for example Refs. [1–12] and the references therein. Constraints and trade-offs on
achievable performances have been studied in Refs. [13–17]. As put forward in Ref. [16], in a study of
constraints and trade-offs from a control systems point of view, one has to properly address: (i) What can and
cannot be achieved with general dynamic compensation, and (ii) How much freedom is gained by the selection
of measurements for feedback purpose?

In Refs. [13,14], constraints on achievable frequency responses were derived from an invariant point

perspective. A framework using mechanical multi-port networks to study the performance capabilities and
constraints is developed in Ref. [17]. In Ref. [16], for a quarter-car model of an automative suspension a
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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complete set of constraints on several transfer functions of interest from the road and the load disturbances
were determined by making use of the factorization approach to feedback stability and the Youla
parameterization of stabilizing controllers. Roughly speaking, completeness means that from a given set of
constraints, one can identify a quarter-car model within the model class matching the given constraints. Such
an approach reveals the degrees of freedom in shaping the response of the vehicle to disturbances and
determines a minimum set of measurements to exploit this freedom.

In Ref. [16], constraints on the frequency responses of the sprung mass position, the suspension travel, and
the tire deflection were derived for various choices of measurements ranging from the suspension travel to a
full set of state variables. These constraints typically arise in the form of finite and nonzero invariant frequency
points and the growth restrictions on the frequency responses and their derivatives at zero and infinite
frequencies. The quarter-car model studied in Ref. [16] does not include passive suspension elements spring
and damper; and also tire damping is neglected.

In most works, tire damping is set to zero when modeling automotive active suspension systems. This is
partly due to the fact that tire damping is difficult to estimate. It is generally accepted that damping ratio in a
vehicle tire ranges between 0:03 and 0:10 depending on the size, applied pressure, free or rotating, new or
worn, and the tire type, i.e., all season or snow [18–20]. The tire damping by itself has little influence on the
wheel-hop vibration since this mode is mainly damped by the shock absorber.

The ignorance of damping in tire models compelled misleading conclusions that at the wheel-hop
frequency, no matter what forces are exerted between sprung and unsprung masses, their motion
are uncoupled, and the vertical acceleration of the sprung mass will be unaffected [13,14,16]. It is
pointed out in Ref. [21] that by taking tire damping to be small but nonzero, the motions of the sprung
and unsprung masses are coupled at all frequencies, and control forces can be used to reduce the
sprung mass vertical acceleration at the wheel-hop frequency. The effect of introducing tire damping can be
quite large.

The paper is structured as follows. First, the results in Ref. [16] are complemented assuming that (i) the
sprung mass acceleration measurement instead of the sprung mass position measurement is used for the
parametrization of the stabilizing controllers, (ii) the closed-loop sprung mass acceleration is targeted instead
of the closed-loop sprung mass position for the evaluation of ride comfort, (iii) the passive suspension
elements are included in the vehicle model. The differences and the similarities between the derived results and
Ref. [16] are emphasized. For example, it is demonstrated that employment of the sprung mass acceleration as
a measurement and performance objective in a vehicle model that includes passive suspension elements affects
the parameterizability of the stabilizing controllers.

The reader is reminded that a semi-active suspension consists of in series a spring and damper whose
coefficient is changed in a nonlinear fashion. In a semi-active suspension, ride comfort is taken care of by a
nonlinear damper while safety requirements are met by a fixed spring.

Next, the effect of tire damping on the achievable performance is investigated. The results predicate the
conclusions in Refs. [21–23] that tire damping couples the motions of the sprung and unsprung masses, and
control forces can be used to reduce the sprung mass vertical acceleration at the wheel-hop frequency without
sacrificing road holding.

2. The quarter-car model

A two-degree-of-freedom quarter-car model is shown in Fig. 1. In this model, the sprung and unsprung
masses are denoted, respectively, by ms and mu. The suspension system is represented by a linear spring of
stiffness ks and a linear damper with a damping rate cs. The tire is modeled by a linear spring of stiffness kt and
a linear damper with a damping rate ct. The parameter values, except ct, chosen for this study are shown in
Table 1 [24]. They are typical for a lightly damped passenger car. The parameters ms;mu, and kt are fixed
throughout the paper while the parameters ks; cs, ct are freely changed.

Assuming that the tire behaves as a point-contact follower that is in contact with the road at all times, the
equations of motion take the form:

ms €x1 ¼ �ksðx1 � x2Þ � csð _x1 � _x2Þ � u,
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Fig. 1. The quarter-car model of the vehicle.

Table 1

The vehicle system parameters for the quarter-car model

Sprung mass. ms 240kg

Unsprung mass mu 36 kg

Damping coefficient cs 980Nsm�1

Secondary suspension stiffness ks 16; 000Nm�1

Primary suspension stiffness kt 160; 000Nm�1
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mu €x2 ¼ ksðx1 � x2Þ þ csð _x1 � _x2Þ þ u� ktðx2 � wÞ � ctð _x2 � _wÞ, (1)

where x1 and x2 are, respectively, the displacements of the sprung and unsprung masses, and w is the road
unevenness. The variables x1;x2, and w are measured with respect to an inertial frame, and the control input u

is a force.
The objective of this paper is to study the performance limits of an actively controlled vehicle imposed by

the road surface unevenness. The vehicle response variables that need to be examined are the vertical
acceleration of the sprung mass as an indicator of the vibration isolation, the suspension travel as a measure of
the rattling space, and the tire deflection as an indicator of the road-holding characteristic of the vehicle. These
variables, denoted, respectively by z1; z2, and z3, can be written in terms of the state variables x1; x2, their
derivatives, and the exogenous input w as follows:

z1 ¼ €x1, (2)

z2 ¼ x1 � x2, (3)

z3 ¼ x2 � w. (4)

Passenger comfort requires z1 to be as small as possible while compactness of rattle space, good handling
characteristics, and improved road-holding quality require z2 and z3 be kept as small as possible.

It is a well-known fact [15] that these objectives cannot be met simultaneously with a passive suspension
system. In a passive suspension system, the only parameter that can be altered in an optimization study is cs

since ks is a priori fixed to obtain stiffness against rolling. The conflicting three goals can be attained up to a
certain level by replacing passive suspension system with an active or semi-active suspension system
[2–4,7,8,16,24].
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3. Factorization approach to feedback stability

In this section, the factorization approach developed in Ref. [16] for the feedback stability of the quarter-car
model is briefly reviewed. The reader is referred to Vidyasagar and Zhou et al. [25,26] for a comprehensive
treatment.

Let ZðsÞ, UðsÞ, and W ðsÞ denote, respectively, the Laplace transforms of the signals zðtÞ ¼ ½z1ðtÞ z2ðtÞ z3ðtÞ�
T,

uðtÞ, and wðtÞ, where for a given vector b, bT denotes the transpose of b. From Eqs. (1)–(4),

ZðsÞ ¼ G11ðsÞW ðsÞ þG12ðsÞUðsÞ, (5)

where

G11ðsÞ ¼
1

DðsÞ

s2ðcssþ ksÞðctsþ ktÞ

�mss
2ðctsþ ktÞ

�s2½msmus2 þ ðms þmuÞcssþ ðms þmuÞks�

264
375, (6)

G12ðsÞ ¼
1

DðsÞ

�s2ðmus2 þ ctsþ ktÞ

�½ðms þmuÞs
2 þ ctsþ kt�

mss
2

264
375 (7)

and

DðsÞ ¼ msmus4 þ ½ðms þmuÞcs þmsct�s
3 þ ½ðms þmuÞks þmskt þ csct�s

2

þ ðcskt þ ctksÞsþ kskt. ð8Þ

A polynomial DðsÞ is said to be Hurwitz if all its zeros lie in the open left-half plane. Note that DðsÞ is Hurwitz
if ks; kt40, and cs40 or ct40.

For the design of a feedback law, consider the measurements:

y1 ¼ €x1,

y2 ¼ x1 � x2. (9)

In the study of the constraints, the cases y ¼ y2 and y ¼ ½y1 y2�
T will be considered. When y ¼ ½y1 y2�

T, from
Eqs. (1)–(4),

YðsÞ ¼ G21ðsÞW ðsÞ þG22ðsÞUðsÞ, (10)

where

G21ðsÞ ¼
1

DðsÞ

s2ðcssþ ksÞðctsþ ktÞ

�mss
2ðctsþ ktÞ

" #
, (11)

G22ðsÞ ¼ �
1

DðsÞ

s2ðmus2 þ ctsþ ktÞ

ðms þmuÞs
2 þ ctsþ kt

" #
. (12)

The other case is obtained by simply selecting the second rows of G21 and G22. Hence, the generalized plant
defined by

(13)

maps the pair of inputs ½w u�T to the pair of outputs ½zT yT�T.
Now, let KðsÞ denote the transfer function of the controller with input y and the output u. The feedback

configuration is shown in Fig. 2. The stabilization problem is to find a proper feedback transfer function K

such that the closed-loop system in Fig. 2 is internally stable. Assuming that G and G22 share the same unstable
poles, it is a well-known fact (see, for example, Lemma 12.2 in Ref. [26]) that K internally stabilizes G if and
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Fig. 2. Standart block diagram.
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only if K internally stabilizes G22. Recall that the unstable poles of G are the roots of DðsÞ in the closed right-
half plane. Assuming that G22 is internally stabilizable, the set of all compensators which stabilize G can be
parametrized in terms of a coprime factorization of G22. This parametrization is called the Youla
parametrization.

The Youla parametrization is obtained as follows. Let RHpq
1 denote the set of stable p by q

real-rational transfer matrices. (In what follows, superscripts p and q will be dropped and they will be
inferred from the underlying context). Given G22, find matrices N; M; eN; eM; X; Y; eX, and eY in RH1

such that

G22 ¼ NM�1 ¼ eM�1eN, (14)

eX �eY
�eN eM
" #

M Y

N X

� �
¼ I, (15)

where I denotes the identity matrix of compatible dimension. The factorization Eq. (14) of G22 satisfying
Eq. (15) is called double coprime factorization over RH1. Then, the Youla parametrization of all stabilizing
controllers takes the form:

K ¼ ðY�MQÞðX�NQÞ�1; Q 2 RH1 detðI� X�1NQÞð1Þa0. (16)

With this parametrization, the transfer matrix from w to z denoted by TzwðsÞ takes a particularly convenient
form which is affine in Q:

Tzw ¼ G11 þG12ðY�MQÞ eMG21. (17)

As Q varies over RH1, Eq. (17) parametrizes all achievable transfer matrices.

4. Achievable performance for quarter car model

In the design of an active suspension system, it is desirable to keep the road response amplitudes
jTzkwðjoÞj; k ¼ 1; 2; 3 as small as possible, at least in the frequency range of interest. The aim of this section is
to investigate the limitations on this goal for the two measurement setups and several assumptions on ks; cs,
and ct. By using the factorization approach, a complete set of constraints on the transfer functions
TzkwðsÞ; k ¼ 1; 2; 3 will be derived.

The first case to be treated in the sequel is the case y ¼ y2 with the assumption that ks; cs, and ct are all
positive. Then, as noted previously, DðsÞ is a Hurwitz polynomial and a pair of coprime factors for

G22 ¼ �D�1½ðms þmuÞs
2 þ ctsþ kt� (18)

is easily found as

N ¼ eN ¼ G22; M ¼ eM ¼ 1. (19)

Furthermore, the choice given by

X ¼ eX ¼ G22 þ 1; Y ¼ eY ¼ 1 (20)
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enforces Eq. (15) as can directly be verified. Now, put bQ ¼ 1�Q where Q 2 RH1. Then, Tzw and K in
Eqs. (17) and (16)) take the following forms:

Tz1w ¼ s2D�1ðctsþ ktÞfcssþ ks þ bQmss
2D�1ðmus2 þ ctsþ ktÞg, (21)

Tz2w ¼ �mss
2D�1ðctsþ ktÞf1� bQD�1½ðms þmuÞs

2 þ ctsþ kt�g, (22)

Tz3w ¼ � s2D�1½msmus2 þ ðms þmuÞcssþ ðms þmuÞks�

� bQm2
s s4D�2ðctsþ ktÞ, ð23Þ

K ¼ bQð1þ G22
bQÞ�1. (24)

The first constraint is obtained by observing that the coefficient of bQ in the expression for Tz1w is Oðs4Þ for
all sufficiently small complex numbers s and every transfer matrix in RH1 has elements uniformly bounded
on the closed right half-plane. Here, the notation aðsÞ ¼ OðsgÞ means that there exist two numbers a;b40
such that

ajsjgpjaðsÞjpbjsjg.

Therefore, a Taylor series expansion of the term s2D�1ðcssþ ksÞðctsþ ktÞ in a neighborhood of zero which is
accurate up to the term Oðs4Þ will be sufficient to determine the behavior of Tz1w there. By long division,

s2D�1ðcssþ ksÞðctsþ ktÞ ¼ s2 þOðs4Þ. (25)

Hence, for all small s,

Tz1w ¼ s2 þOðs4Þ, (26)

which implies,

Tz1wð0Þ ¼ Tð1Þz1wð0Þ ¼ Tð3Þz1wð0Þ ¼ 0; Tð2Þz1wð0Þ ¼ 2. (27)

For all large s, observe that the coefficient of bQ in the expression for Tz1w is Oðs�1Þ. Thus, a Taylor series
expansion of the term s2D�1ðcssþ ksÞðctsþ ktÞ around infinity which is accurate up to a term Oðs�1Þ is
obtained, again by long division, as

s2D�1ðcssþ ksÞðctsþ ktÞ ¼
csct

msmu

þOðs�1Þ. (28)

Hence,

Tz1w ¼
csct

msmu

þOðs�1Þ. (29)

It remains to show that Eqs. (26) and (29) form a complete set of constraints, i.e., no further constraints on
Tz1w, which are valid for all Q 2 RH1, can be derived. This amounts to showing that given an arbitrary
H1 2 RH1 subject to constraints Eqs. (26) and (29), there exists a stabilizing controller such that for somebQ 2 RH1, Eq. (21) holds for H1. In this case, H1 is said admissible. To this end, from Eq. (21)

bQ ¼ ½Tz1w � s2D�1ðcssþ ksÞðctsþ ktÞ�

mss4D�2ðmus2 þ ctsþ ktÞðctsþ ktÞ
.

From Eqs. (28) and (29), the numerator and the denumerator of bQ are Oðs�1Þ. Hence, bQ is a proper rational
function with a singularity at the origin of multiplicity four. However, the singularity at the origin is
removable from Eqs. (25) and (26). Thus, bQ 2 RH1 as desired.

It should be noted that as soon as an admissible H1 is specified, two other admissible functions, be H2

and H3, corresponding to Tz2w and Tz3w are generated via Eqs. (22) and (23). Indeed, elimination of bQ in
Eqs. (21)–(23) results in the following trade-off relations:

H2 ¼ �
ctsþ kt

mus2 þ ctsþ kt

þ
ðms þmuÞs

2 þ ctsþ kt

s2ðmus2 þ ctsþ ktÞ
H1, (30)
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H3 ¼ �
mus2

mus2 þ ctsþ kt

�
ms

mus2 þ ctsþ kt

H1, (31)

H3 ¼ �
ðms þmuÞs

2

ðms þmuÞs2 þ ctsþ kt

�
mss

2

ðms þmuÞs2 þ ctsþ kt

H2. (32)

The constraints onH1 and its derivatives at s ¼ 0 are partially recovered by Eqs. (30) and (31). In fact, given
an admissible H2, analyticity of H2 at s ¼ 0 forces the following function:

H1ðsÞ � s2D�1ðcssþ ksÞðctsþ ktÞ

to have at least two zeros there, which implies H1ð0Þ ¼ H01ð0Þ ¼ 0. No results on further derivatives of H1 at
s ¼ 0 can be deduced from Eqs. (30) and (31).

The above results are captured in the following.

Proposition 4.1. Consider the quarter car model in Eq. (1) with ks; cs; ct40. Assume that y ¼ y2 and let H1 be

any function in RH1. Then, H1 ¼ Tz1w for some stabilizing control law if and only if:
(1)
 H1ðsÞ ¼ csct=msmu þOðs�1Þ,

(2)
 H1ð0Þ ¼ H

ð1Þ
1 ð0Þ ¼ H

ð3Þ
1 ð0Þ ¼ 0; Hð2Þ1 ð0Þ ¼ 2.
A similar derivation to the above can be carried out for H2 andH3 or Proposition 4.1 combined with Eqs. (30)
and (31) yields the following results.

Proposition 4.2. Consider the quarter car model in Eq. (1) with ks; cs; ct40. Assume that y ¼ y2 and let H2 be

any function in RH1. Then, H2 ¼ Tz2w for some stabilizing control law if and only if:
(1)
 H2ðsÞ ¼ �ðct=muÞs
�1 þ ½ðms þmu=muÞðcsct=msmuÞ þ ðc

2
t =m2

uÞ � ðkt=muÞ�s
�2 þOðs�3Þ,
(2)
 H2ð0Þ ¼ H
ð1Þ
2 ð0Þ ¼ 0.
Proposition 4.3. Consider the quarter car model in Eq. (1) with ks; cs; ct40. Assume that y ¼ y2 and let H3 be

any function in RH1. Then, H3 ¼ Tz3w for some stabilizing control law if and only if:
(1)
 H3ðsÞ ¼ �1þ ðct=muÞs
�1 þ ½ðkt=muÞ � ðcs þ ctÞct=m2

u�s
�2 þOðs�3Þ,
(2)
 H3ð0Þ ¼ H
ð1Þ
3 ð0Þ ¼ 0, H

ð2Þ
3 ð0Þ ¼ �2ðms þmuÞ=kt, H

ð3Þ
3 ð0Þ ¼ 6ðms þmuÞct=k2

t .
Now, assume that ct ¼ 0 and ks; cs40. Then, DðsÞ is still a Hurwitz polynomial, and it suffices to let ct ¼ 0 in
Eqs. (21)–(23) and Eqs. (30)–(32). Two new constraints arise at the frequencies:

o1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt

ms þmu

s
; o2 ¼

ffiffiffiffiffiffi
kt

mu

s
(33)

which have already been observed in Refs. [14,16]. The results for this case are summarized in the following.

Proposition 4.4. Consider the quarter car model in Eq. (1) with ks; cs40, and ct ¼ 0. Assume that y ¼ y2 and let

H1 be any function in RH1. Then, H1 ¼ Tz1w for some stabilizing control law if and only if:
(1)
 H1ðsÞ ¼ ðktcs=msmuÞs
�1 þOðs�2Þ,
(2)
 H1ð0Þ ¼ H
ð1Þ
1 ð0Þ ¼ H

ð3Þ
1 ð0Þ ¼ 0; Hð2Þ1 ð0Þ ¼ 2,
(3)
 H1ðjo2Þ ¼ �ðjo2Þ
2
ðmu=msÞ.
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Proposition 4.5. Consider the quarter car model in Eq. (1) with ks; cs40, and ct ¼ 0. Assume that y ¼ y2 and let

H2 be any function in RH1. Then, H2 ¼ Tz2w for some stabilizing control law if and only if:
(1)
 H2ðsÞ ¼ �ðkt=muÞs
�2 þ ððms þmuÞcskt=msm

2
uÞs
�3 þOðs�4Þ,
(2)
 H2ð0Þ ¼ H
ð1Þ
2 ð0Þ ¼ 0,
(3)
 H2ðjo1Þ ¼ �ms þmu=ms.
Proposition 4.6. Consider the quarter car model in Eq. (1) with ks; cs40, and ct ¼ 0. Assume that y ¼ y2 and let

H3 be any function in RH1. Then, H3 ¼ Tz3w for some stabilizing control law if and only if:
(1)
 H3ðsÞ ¼ �1þ ðkt=muÞs
�2 � ðktcs=m2

uÞs
�3 þOðs�4Þ,
(2)
 H3ð0Þ ¼ H
ð1Þ
3 ð0Þ ¼ H

ð3Þ
3 ð0Þ ¼ 0, H

ð2Þ
3 ð0Þ ¼ �2ðms þmuÞ=kt.
Propositions 4.4–4.6 yield Theorems 1–3 in Ref. [16] when cs ¼ 0. In Ref. [16], Tx1w is constrained instead of
Tz1w. The latter is related to the former by the equation Tz1wðsÞ ¼ s2Tx1wðsÞ. Then, the third formula in
Proposition 4.4 recovers the constraint Tx1wðjo2Þ ¼ �mu=ms derived in Ref. [16].

The appearance of cs in the constraints of Propositions 4.4–4.6 demonstrates that the damper in Fig. 1
cannot be incorporated to u. Otherwise, for a given proper controller K] that stabilizes the quarter-car model
in Fig. 1 with cs ¼ ks ¼ 0, a controller K satisfying Eq. (24) and K] ¼ Kþ scs þ ks would be improper since
both controllers have the same input y2. The same argument also explains absence of ks in the constraints of
Propositions 4.1–4.6. The reader is cautioned that the first conclusion drawn above is valid for the quarter-car
model with a suspension consisting of an actuator in parallel with a spring and a damper as shown in Fig. 1.
There are many possibilities to connect passive elements with an actuator, in which the issue of properness
never arises. In hardware implementation of active or semi-active suspensions, parallel connection (without
damper) is a preferred configuration.

Although ks does not appear in the constraint formulae above, a given set of measurements may not be
sufficient to parametrize all stabilizing proper controllers if the spring in Fig. 1 is missing. Recall the internal
stabilizability condition: G and G22 share the same unstable poles. If cs40 or ct40 and ks40, then this
requirement is satisfied by all elements of G22 in Eq. (12) and one can also use y1 for the parametrization of
the stabilizing controllers. However, in general, different measurements lead to different constraint sets.
If cs ¼ ct ¼ ks ¼ 0, then D and G22 in Eqs. (8) and (12) equal mss

2ðmus2 þ ktÞ and

�
1

ms

�
ðms þmuÞs

2 þ kt

mss2ðmus2 þ ktÞ

26664
37775.

Clearly, y1 cannot give rise to a parametrization of stabilizing controllers. On the other hand, If ks40, then
DðsÞ ¼ msmus4 þ ½ðms þmuÞks þmskt�s

2 þ kskt, and since Dðjo1Þa0 and Dðjo2Þa0, no pole-zero cancellation
can happen between D and any component of G22. Hence, as a measurement, €x1 or x1 � x2 is sufficient for the
parametrization of the stabilizing controllers.

The next case to be studied is y ¼ ½y1 y2�
T. Let bQ ¼ ½bQ1

bQ2� ¼ ðY�MQÞ eM. Since Q 2 RH1 is a
two-dimensional row vector, Tzw in Eq. (17) can be written as

Tzw ¼ G11 þG12G
T
21
bQT

. (34)

Recall that a non-singular matrix is unimodular if its determinant is constant. Now, define a product of
unimodular matrices by

P ¼
1 0

m�1s css 1

" #
1 0

m�1s ks 1

" #
(35)
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which is a unimodular matrix with the inverse:

P�1 ¼
1 0

�m�1s ðcssþ ksÞ 1

" #
.

The chosen matrix P has the property:

GT
21P ¼ �mss

2D�1ðctsþ ktÞ ½0 1�. (36)

It should be clear how to proceed in order to parametrize the stabilizing controllers if more than two
measurements are available for feedback. For example, if y equals ½y1 y2 €x2 x2�

T, a unimodular matrix P is
constructed such that when premultiplied with GT

21, the result is a row vector with the first three elements being
zero, similar to Eq. (36). Therefore, the two factors of P in Eq. (35) are exactly elementary column operators.
The utility of Eq. (36) is to allow a parametrization of Tzw in terms of a scalar transfer function.

Since D is Hurwitz, coprime factors of G22 can be chosen as follows:

N ¼ eN ¼ G22; M ¼ 1; eM ¼ I.

Hence,

Tzw ¼ G11 þ eqG12s2D�1ðctsþ ktÞðcssþ ksÞ,

where

eq ¼ bQ1 �
bQ2msðcssþ ksÞ

�1. (37)

It follows that

Tz1w ¼ s2D�1ðctsþ ktÞðcssþ ksÞ 1� eqs2D�1ðmus2 þ ctsþ ktÞ
� �

, (38)

Tz2w ¼ �s2D�1ðctsþ ktÞ � ms þ eqD�1½ðms þmuÞs
2 þ ctsþ kt�ðcssþ ksÞ

� �
, (39)

Tz3w ¼ � s2D�1½msmus2 þ ðms þmuÞcssþ ðms þmuÞks�

þ eq mss
4D�2ðcssþ ksÞðctsþ ktÞ, ð40Þ

K ¼ bQðIþG22
bQÞ�1. (41)

The range space of eq equals RH1. This means that eq and bQ2 can be used to parametrize the set of the
stabilizing controller. Then, bQ1 is solved from Eq. (37) and plugged in Eq. (41).

The trade-off relations amongH1;H2, andH3 are the same as Eqs. (30)–(32). The constraints on the transfer
functions H1;H2, and H3 are expressed in the following results.

Proposition 4.7. Consider the quarter car model in Eq. (1) with ks; cs; ct40. Assume that y ¼ ½y1 y2�
T and let H1

be any function in RH1. Then, H1 ¼ Tz1w for some stabilizing control law if and only if:

H1ð0Þ ¼ H
ð1Þ
1 ð0Þ ¼ H

ð3Þ
1 ð0Þ ¼ 0; Hð2Þ1 ð0Þ ¼ 2.

Proposition 4.8. Consider the quarter car model in Eq. (1) with ks; cs; ct40. Assume that y ¼ y2 and let H2 be

any function in RH1. Then, H2 ¼ Tz2w for some stabilizing control law if and only if:
(1)
 H2ðsÞ ¼ ð�ct=muÞs
�1 þOðs�2Þ,
(2)
 H2ð0Þ ¼ H
ð1Þ
2 ð0Þ ¼ 0.
Proposition 4.9. Consider the quarter car model in Eq. (1) with ks; cs; ct40. Assume that y ¼ ½y1 y2�
T and let H3

be any function in RH1. Then, H3 ¼ Tz3w for some stabilizing control law if and only if:
(1)
 H3ðsÞ ¼ �1þ ðct=muÞs
�1 þOðs�2Þ,
(2)
 H3ð0Þ ¼ H
ð1Þ
3 ð0Þ ¼ 0, H

ð2Þ
3 ð0Þ ¼ �2ðms þmuÞ=kt, H

ð3Þ
3 ð0Þ ¼ 6ðms þmuÞct=k2

t .
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Based on Propositions 4.1–4.3 and Propositions 4.7–4.9, the following conclusions can be drawn. First,
extra measurement, i.e., y1 affects only the Taylor series coefficients of H1;H2, and H3 at infinity. Second, cs

does not show up in the formulae of Propositions 4.7–4.9 in contrast to those of Propositions 4.1–4.3. Finally,
the trade-off relations are the same for both cases. This implies that a point in theH2 versus H1 trade-off curve
determined uniquely by the controller in Eq. (24) corresponds to an infinite number of controllers in Eq. (41).
This information can be useful in constraining the controller dynamics. For example, constraining the ‘1 norm
of K, which is defined as the absolute integral of the impulse response of K, constrains the magnitude of the
input to persistent measurements.

The last case to be studied in this paper is the case ks; cs40, ct ¼ 0, and y ¼ ½y1 y2�
T. As noted before, D is

Hurwitz, and it suffices to let ct ¼ 0 in Eqs. (38)–(40). The trade-off relations are the same as Eqs. (30)–(32)
with ct ¼ 0 substituted. The constraints on H1, H2, and H3 are captured in the following results.

Proposition 4.10. Consider the quarter car model in Eq. (1) with ks; cs40, ct ¼ 0. Assume that y ¼ ½y1 y2�
T and

let H1 be any function in RH1. Then, H1 ¼ Tz1w for some stabilizing control law if and only if:
(1)
 H1ðsÞ ¼ Oðs�1Þ,

(2)
 H1ð0Þ ¼ H

ð1Þ
1 ð0Þ ¼ H

ð3Þ
1 ð0Þ ¼ 0; Hð2Þ1 ð0Þ ¼ 2,
(3)
 H1ðjo2Þ ¼ �ðjo2Þ
2mu=ms.
Proposition 4.11. Consider the quarter car model in Eq. (1) with ks; cs40, and ct ¼ 0. Assume that y ¼ ½y1 y2�
T

and let H2 be any function in RH1. Then, H2 ¼ Tz2w for some stabilizing control law if and only if:
(1)
 H2ðsÞ ¼ �ðkt=muÞs
�2 þOðs�3Þ,
(2)
 H2ð0Þ ¼ H
ð1Þ
2 ð0Þ ¼ 0,
(3)
 H2ðjo1Þ ¼ �ms þmu=ms.
Proposition 4.12. Consider the quarter car model in Eq. (1) with ks; cs40, ct ¼ 0. Assume that y ¼ ½y1 y2�
T and

let H3 be any function in RH1. Then, H3 ¼ Tz3w for some stabilizing control law if and only if:
(1)
 H3ðsÞ ¼ �1þ ðkt=muÞs
�2 þOðs�3Þ,
(2)
 H3ð0Þ ¼ H
ð1Þ
3 ð0Þ ¼ H

ð3Þ
3 ð0Þ ¼ 0, H

ð2Þ
3 ð0Þ ¼ �2ðms þmuÞ=kt.
As in Propositions 4.7–4.9,, cs does not show up in the above formulae. Thus, whenever y ¼ ½y1 y2�
T, the

damper can be modeled as part of the actuator without affecting the interpolation conditions. The last result is
in contrast with the single measurement case of Propositions 4.1–4.6. When cs ¼ ct ¼ 0, D needs not be
Hurwitz; but a slightly more complicated coprime factorization can be performed easily. The reader is referred
to Ref. [16] for more details on this.

The question of controller approximation is in order. More specifically, let K and K̄ be two stabilizing
controllers obtained for the quarter-car model with the measurements y2 and ½y1 y2�

T and Hk and H̄k for
k ¼ 1; 2; 3 denote the corresponding closed-loop transfer functions, respectively. In Ref. [16], when
ks; cs, and ct are all zero, it is shown that the closed-loop transfer functions obtained with a stabilizing
controller that uses the measurements y2; _x1; z3, and _x2 can be approximated within a specified tolerance
by the closed-loop transfer functions of a stabilizing controller that uses only the suspension travel
measurement.

From Eqs. (21) and (38),

H1 � H̄1 ¼ ðctsþ ktÞs
4D�2ðmus2 þ ctsþ ktÞ ½ms

bQþ eqðcssþ ksÞ�. (42)

Hence,

H1ð1Þ � H̄1ð1Þ ¼
csct

m2
s mu

eqð1Þ.
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If eqð1Þa0 and ct40, there is no way of arbitrarily well approximating K̄ by a stabilizing compensator K for
the entire range of frequencies. However, if eqð1Þ ¼ 0, i.e., when eqðsÞ is a strictly proper transfer function, by
setting bQ ¼ �eqðscs þ ksÞm

�1
s , we get H1ðsÞ � H̄1ðsÞ whether ct equals zero or not. Note from Eq. (37) thateqð1Þ ¼ 0 if and only if bQ1ð1Þ ¼ 0. The latter equality does not require K̄ to be strictly proper.

Now, consider the case ct ¼ 0. Let

bQ ¼ � eqðscs þ ksÞ

msð1þ esÞ
ðe40Þ.

As e! 0, ms
bQþ eqðscs þ ksÞ ! 0 uniformly on every internal ½0; jlÞ, l40 though outside this interval it

diverges as OðsÞ. However, outside the internal the growth is controlled by the factor kts
4ðmus2 þ ktÞD�2 ¼

Oðs�2Þ. Picking l sufficiently large and e sufficiently small, the left-hand side of Eq. (42) can be made as small
as desired. The convergencesH2! H̄2 andH3! H̄3 as e! 0 follow from the fact thatH2 andH3 are continuous
functions of H1 on the closed right half-plane. The controller approximation result is captured in the following.

Proposition 4.13. Let H̄k, k ¼ 1; 2; 3 be the closed-loop transfer functions obtained for the quarter car model in

Eq. (1) with ks; cs40, the measurements y1; y2, and some stabilizing controller K̄. If ct ¼ 0 or eqð1Þ ¼ 0, then for

each e40 a stabilizing controller K that uses only y2 can be found with the corresponding transfer functions Hk

satisfying jH̄kðjoÞ �HkðjoÞjoe for all o and k ¼ 1; 2; 3.

When ct ¼ 0, from Propositions 4.6 and 4.12 we have Tz3wðsÞ ¼ �1þOðs�2Þ for all large s, and in this case
Theorem 4 in Ref. [16] reads out Z 1

0

ln jTz3wðjoÞjdo ¼ p
Xn

k¼1

sk,

where sk, k ¼ 1; . . . ; n denote the real parts of the zeros of Tz3w in the open right half-plane. This is not a
quantitative but a qualitative statement expressing the difficulty of controlling the tire deflection on a broad
band of frequencies due to the presence of nonminimum phase zeros.

From Propositions 4.1–4.13, the following conclusions can be drawn:
�
 When tire damping is present, utilizing the sprung mass acceleration measurement in addition to the
suspension travel measurement in the feedback law affects only the curvatures of Tz2w and Tz3w at infinity,
and Tz1wð1Þ. If tire damping is neglected, one degree higher order terms of the Taylor series expansions of
Tzkw; k ¼ 1; 2; 3 at infinity are affected by the additional measurement.

�
 Closed-loop performance of any stabilizing feedback law which uses the sprung mass acceleration and the

suspension travel measurements can be obtained within an arbitrary precision by a stabilizing feedback law
relying only on the suspension travel measurement provided that either tire damping is neglected or the
actuator transfer function satisfies a mild condition in the steady state.

�
 No matter how small, tire damping couples the wheel-hop and the heave modes. This coupling eliminates

the constraints of the conventional quarter-car model, which neglects tire damping at the so-called invariant
frequencies o1 and o2. As will be seen in the next section, tire damping improves ride comfort without
sacrificing road holding.

�
 When the suspension travel is the only available measurement, cs influences Tz1wð1Þ, and the second-order

terms of the Taylor series expansions of Tz2w and Tz3w at infinity if ct40. If tire damping is neglected, one
degree higher-order terms of the Taylor series expansions of Tzkw; k ¼ 1; 2; 3 at infinity are affected by cs.

�
 If the measurements y1 and y2 are both used in the parametrization of the stabilizing controllers, then there

is no need to consider cs separately since it can be included in the feedback law.

The analysis of this paper and the results in Ref. [16] show that the constraints on the closed-loop transfer
functions depend on the system parameters as well as the measurements. In the present work, €x1 is taken as a
measured signal instead of x1 and _x1 since in practice, the acceleration is measured, and the velocity and the
position are constructed from the former by integration. The sprung mass acceleration measurement rather
than velocity or position was also considered in Refs. [30, Section 4.5.2]. However, the parameterizability for
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the stabilizing controllers and the constraints on the closed-loop transfer function, in general, depend on
which signal is being used. If x1 or x2 is used for the controller parameterization, then one also has to take into
the filtering constraints and trade-offs [29], which are beyond the scope of the current work.

The constraints derived in this paper can be used for the purpose of comparing closed-loop performance of a
proposed controller with benchmark values at specific frequencies. They do not give much information about the
design of an actual controller, which is an involved process, and besides the road disturbance responses many
other factors such as the load disturbance responses and the robustness issues have also to be taken into account.
In Ref. [16], the constraints on the load response functions are derived. Further applications of the controller
parameterization to vehicle active suspension design are reported in Refs. [31,32].

In passing, the constraints in Propositions 4.1 and 4.7 can be viewed as the interpolation constraints. Then,
the problem of finding all stabilizing controller can be cast into a partial realization problem. Many variants of
this formulation, i.e., interpolation with metric and minimal complexity constraints have been considered in
the literature on rational interpolation [27].

5. Active control of the quarter-car model

The purpose of this section is to illustrate the effect of tire damping on the controller design for the quarter-
car model in Fig. 1. The vehicle is assumed to traverse a random road profile with a constant forward velocity
v. Then, the derivative of wðtÞ is a random process denoted by V iðtÞ.

It will be more convenient to define a new set of state variables in terms of the old state variables in Eq. (1)
as follows:

~x1 ¼ x1 � x2; ~x2 ¼ x2 � w; ~x3 ¼ x3; ex4 ¼ x4. (43)

Thus, _~x1 ¼ x3 � x4, _~x2 ¼ x4 � Vi, and from 1, (2)–(4), (9), (43),

_~x ¼ Aexþ B1Vi þ B2u,

z ¼ C1exþD12u,

y ¼ C2exþD22uþ y,

where

A ¼

0 0 1 �1

0 0 0 1

�
ks

ms

0 �
cs

ms

cs

ms

ks

mu

�
kt

mu

cs

mu

�
cs þ ct

mu

266666664

377777775; B1 ¼

0

�1

0
ct

mu

2666664

3777775; B2 ¼

0

0

�
1

ms

1

mu

266666664

377777775,

C1 ¼

�
ks

ms

0 �
cs

ms

cs

ms

1 0 0 0

0 1 0 0

2664
3775; D12 ¼

�
1

ms

0

0

2664
3775,

C2 ¼
�

ks

ms

0 �
cs

ms

cs

ms

1 0 0 0

24 35; D22 ¼
�

1

ms

0

24 35
and y is an artificially introduced zero-mean white sensor noise uncorrelated with Vi. Its covariance function
denoted by Ry satisfies

RyðtÞ ¼ mIdðtÞ.

Here, m40 is a design variable and dðtÞ is the unit impulse function.
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For simplicity, the random process V i is modeled as

Vi ¼ 2pn0

ffiffiffiffiffi
kv
p

ZðtÞ, (44)

where ZðtÞ is a zero-mean white noise process satisfying RZðtÞ ¼ dðtÞ; and k, n0 are the road roughness
parameters [28]. In that work, more general road profile models than the integrated white-noise model defined
in Eq. (44) are discussed; and the consequences of the road profile modeling on the random vibration
characterics of the quarter-car model are studied in detail. The roughness parameters in the current study are
set from Ref. [28] as n0 ¼ 0:15708 cycles per meter and k ¼ 0:76� 10�5. Note the relation TzVi

¼ s�1Tzw.
Thus, the Q-parametrization of TzVi

can be deduced from the Q-parametrization of Tzw. In particular, they
share the same invariant frequencies o1 and o2.

The controller will be designed using the linear-quadratic-Gaussian (LQG) design methodology.
Accordingly, uðtÞ is computed by minimizing

JLQG ¼ lim
tf!1

E

Z tf

0

X3
k¼1

r�2k z2k þ ruu2

 !
dt

( )
, (45)

where EðcÞ denotes the expected value of a given random variable c, and rk, ru are nonnegative weights to be
chosen by the designer. In the simulation, ru and rk were set, respectively, equal to zero and the root-mean-
square (RMS) values of the open-loop zk denoted by RMSzk

. Note that even if ru were set zero, the control
effort is still penalized in Eq. (45) through the term r�21 z21.

In Figs. 3–5, the frequency response magnitudes of the passive and the active suspensions using either y2
only or y1 and y2 both as measurements are plotted for the parameter values in Table 1, m ¼ 10�8, and ct ¼ 0.
The RMS values of z1; z2; z3 were computed, respectively, as follows: 0.5424, 0.0046, 0.0017 (the passive
suspension); 0.5240, 0.0034, 0.0016 (the active suspension with y2 measured); 0.5234, 0.0034, 0.0016 (the active
suspension with y1 and y2 measured). The frequency responses of the active suspensions for the two
measurement cases are almost identical; and thus, confirming the results in Proposition 4.13 and [16,13].

The natural frequency and the damping ratio of the heave mode are computed as wh
n ¼ 1:2507Hz and

zh
1 ¼ 0:2178 for the passive suspension. For the wheel-hop mode, they are computed as wwh

n ¼ 11:0247Hz and
zwh
1 ¼ 0:2013. The invariant frequencies are calculated from Eq. (33) as o1 ¼ 3:832Hz and o2 ¼ 10:610Hz.
Since o2 � wwh

n , it is difficult to control the wheel-hop mode as clearly seen from Figs. 3 to 5. The 3:5% drop in
the RMS vertical acceleration comes from the suppression of the heave mode vibration. This is possible
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Fig. 3. The acceleration frequency response magnitude: (—) passive suspension; ð:::Þ active suspension using the suspension travel

measurement without tire damping; (–.) active suspension using the acceleration and the suspension travel measurements without tire

damping.
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Fig. 4. The suspension travel frequency response magnitude: (—) passive suspension; ð:::Þ active suspension using the suspension travel

measurement without tire damping; (—) active suspension using the acceleration and the suspension travel measurements without tire

damping.
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Fig. 5. The tire deflection frequency response magnitude: (—) passive suspension; ð:::Þ active suspension using the suspension travel

measurement without tire damping; (–.) active suspension using the acceleration and the suspension travel measurements without tire

damping.
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since the natural frequency of the heave mode given approximately by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks=ðms þmuÞ

p
is well separated

from o1.
Now, let ct ¼ 2cs. This value is unrealistic for tire damping because it yields wh

n ¼ 1:2463Hz, zh
1 ¼ 0:2211;

wwh
n ¼ 11:0628Hz, and zwh

1 ¼ 0:5919. If ct is set to 0:1cs, then wh
n ¼ 1:2504Hz, zh

1 ¼ 0:2180; wwh
n ¼ 11:0267Hz,

and zwh
1 ¼ 0:2209. Hence, the latter seems to be a realistic assumption. In Figs. 6–8, the counter parts of

Figs. 3–5 for the same values of the vehicle and the control design parameters but ct ¼ 2cs are plotted. Clearly,
all the three responses have been improved due to the removal of the invariant frequency at o2. For the RMS
values of z1; z2; z3, the following were, respectively, computed: 0.4513, 0.0043, 0.0011 (the passive suspension);
0.2834, 0.0036, 0.0010 (the active suspension with y2 measured); 0.2724, 0.0037, 0.0010 (the active suspension
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Fig. 6. The acceleration frequency response magnitude: (—) passive suspension; ð:::Þ active suspension using the suspension travel

measurement with tire damping ct ¼ 2cs: (–.) active suspension using the acceleration and the suspension travel measurements with tire

damping ct ¼ 2cs.
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Fig. 7. The suspension travel frequency response magnitude: (—) passive suspension; ð:::Þ active suspension using the suspension travel

measurement with tire damping ct ¼ 2cs; (–.) active suspension using the acceleration and the suspension travel measurements with tire

damping ct ¼ 2cs.
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with y1 and y2 measured). Comparison of Figs. 6–8 with Figs. 3–5, and the modal natural frequencies and the
damping ratios shows that the improved responses are achieved by suppressing the wheel-hop vibration.

In Fig. 9, the vertical acceleration frequency response magnitude is plotted for the case ct ¼ 0:1cs. The
suspension travel and the tire deflection responses are similar to those in Figs. 4 and 5. The RMS values for
this case are, respectively, 0.5259, 0.0045, 0.0017 (the passive suspension); 0.4895, 0.0034, 0.0016 (the active
suspension with y2 measured); 0.4900, 0.0034, 0.0016 (the active suspension with y1 and y2 measured). The
RMS vertical acceleration is reduced by 6:83% which is about twice of the reduction computed for the case
ct ¼ 0. Though as not impressive as the overdamped tire case, the last result shows that the influence of tire
damping certainly needs to be taken into account in the design of active suspensions to improve ride quality.
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Fig. 8. The tire deflection frequency response magnitude: (—) passive suspension; ð:::Þ active suspension using the suspension travel

measurement with tire damping ct ¼ 2cs; (–.) active suspension using the acceleration and the suspension travel measurements with tire

damping ct ¼ 2cs.
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Fig. 9. The acceleration frequency response magnitude: (—) passive suspension; ð:::Þ active suspension using the suspension travel

measurement with tire damping ct ¼ 0:1cs; (–.) active suspension using the acceleration and the suspension travel measurements with tire

damping ct ¼ 0:1cs.
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The rest of this section will be devoted to further enhancement of the closed-loop performance by means of the
interpolation approach of this paper.

In light of the controller approximation result, it is enough to consider the case y ¼ y2. Recall that TzV i
¼

s�1Tzw which implies from Eq. (21) that

Tz1V i
¼ sD�1ðctsþ ktÞfcssþ ks þ bQmss

2D�1ðmus2 þ ctsþ ktÞg. (46)

Put ct ¼ acs ða40Þ andHkðs; a; bQÞ ¼ TzkVi
; k ¼ 1; 2; 3, where we have made the dependence on the parameters

ct and bQ explicit. Let a1 ¼ 0:1; a2 ¼ 2, and Qy and Q] denote the bQ parameters of the compensators designed
by the above LQG method with ct ¼ a1cs and ct ¼ a2cs, respectively. As far as the closed-loop responses are
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concerned, Hkðs; a2;Q]Þ; k ¼ 1; 2; 3 are satisfactory while Hkðs; a1;QyÞ are not. Thus, the interpolation
problem to be studied is formulated as follows:

Does there exist a bQ 2 RH1 such that H1ðs; a1; bQÞ ¼ H1ðs; a2;Q]Þ ?
If there exists a solution to this problem denoted by bQ, then the quarter-car model in Fig. 1 with ct ¼ 0:1cs

will have the closed-loop responses Hkðs; a2;Q]Þ; k ¼ 1; 2; 3 using the unique controller K corresponding to
this bQ. Unfortunately, the formulated problem has no solution. To see this, first obtain the complete
interpolation conditions for Tz1Vi

from Eq. (46) as follows:
(i)
 H1ðsÞ ¼ ðcsct=msmuÞs
�1 þOðs�2Þ,
(ii)
 H1ð0Þ ¼ H001ð0Þ ¼ 0; H01ð0Þ ¼ 1.
Then, from the requirement formulated above and (i):

sH1ðs; a1; bQÞjs¼1 ¼ sH1ðs; a2Q]Þj1,

which forces a1 equal to a2. Hence, there does not exist any solution.
Having seen the infeasibility of this interpolation problem, consider now the following variant:
Does there exist any bQ 2 RH1 such that H1ðs; a1; bQÞ ¼ H1ðs; a2;Q]ÞCðsÞ for some C 2 RH1?
Fortunately, there exists a solution to the latter problem. In fact, from the interpolation conditions for Tz1Vi

,
it suffices to pick any C 2 RH1 satisfying
(iv)
 Cð0Þ ¼ 1,

(v)
 C0ð0Þ ¼ 0,

(vi)
 Cð1Þ ¼ a1=a2.
It is easy to see that the following transfer function:

CðsÞ ¼
ss2 þ asþ b

s2 þ asþ b
; a; b40,

where s ¼ a1=a2 has the aforementioned properties. Furthermore, for a given O which is sufficiently larger
than the wheel-hop frequency owh

n , if a and b are chosen so thatCðjoÞ is a good approximation to the low-pass
filter:

LOðoÞ ¼
1; 0popO;

s; o4O

(
on the frequency band ½0;O�, then a good match to the vertical acceleration response plotted in Fig. 6 by the
solid line is obtained. From the continuity of the trade-off curves, it follows that the other two responses are
satisfactory as well.

It remains to calculate bQ. To this end, from Eq. (46),

bQ ¼ H1ðs; a2;Q]ÞCðsÞDðs; a1Þ � sða1cssþ ktÞðcssþ ksÞ

mss3ða1cssþ ktÞðmus2 þ a1cssþ ktÞ
Dðs : a1Þ, (47)

where Dðs : a1Þ is calculated from Eq. (8) with ct ¼ a1cs. Since the degree ofH1ðs; a2;Q]Þ is 8, the degree of bQðsÞ
is bounded above by 13. The numerator polynomial of bQ before cancellations has order 18. Recall how Cð1Þ
was selected. This drops the order of the numerator polynomial by two. Three more degrees are canceled by
the denumerator factor s3. The end result is a proper transfer function bQ. Finally, K is calculated from Eq. (24)
with bQ in Eq. (47).

It may seem difficult to keep track of pole-zero cancellations. An easy way to circumvent this numerically
ill-conditioned procedure is to evaluate bQðsÞ and/or its derivatives by computing the right-hand side of
Eq. (47) and/or its-derivatives at a set of sufficiently many and arbitrarily selected frequencies sk; and from
these evaluations, obtain directly a minimal state-space realization of bQðsÞ. For this purpose, numerically
efficient robust algorithms developed in Refs. [33,34], which deal with multi-variable data as well, can be used.
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Fig. 10. The acceleration frequency response magnitude: (—) active suspension using the suspension travel measurement with the

(fictitious) tire damping ct ¼ 2cs; (–.) active suspension designed by a mixture of the LQG methodology and the interpolation approach

using the suspension travel measurement with the (actual) tire damping ct ¼ 0:1cs.
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In Fig. 10, the acceleration frequency response magnitude of the active suspension designed by using the
suspension travel measurement with the (fictitious) tire damping ct ¼ 2cs plotted in Fig. 6 is reproduced along
with the acceleration frequency response magnitude of the active suspension designed by the hybrid algorithm
outlined above. The purpose of plotting them together was to show that the approximation H1ðs; a1; bQÞ �
H1ðs; a2;Q]Þ is very accurate in the bandwidth of interest. This, in turn, implies that the approximations
H2ðs; a1; bQÞ � H2ðs; a2;Q]Þ and H3ðs; a1; bQÞ � H3ðs; a2;Q]Þ are also very accurate in the same band of the
frequencies. A comparison of Fig. 9 with Fig. 10 reveals impressive closed-loop performance enhancement by
the interpolation approach. In the simulation, cðsÞ was chosen as

cðsÞ ¼
0:05s2 þ 500sþ 10

s2 þ 500sþ 10
.

In Fig. 11, the actuator frequency response magnitudes of the active suspensions designed by the LOG
methodology with tire dampings ct ¼ 0:1cs and ct ¼ 2cs, and the hybrid algorithm with tire damping ct ¼

0:1 cs using the suspension travel measurement are plotted. Fig. 11 shows that the closed-loop performance
enhancement by the interpolation approach is achieved at a reasonable price. Actually, the increase in the
actuator gain is less than 30 decibels for all frequencies. Simulations for the values of tire damping at the
equally spaced 101 points between and including 0:001 cs and 0:1 cs were also carried out. The numerical
results plotted in Fig. 12 indicate that the actuator frequency response magnitudes of the active suspensions
designed by either the LOG methodology or the hybrid algorithm using the suspension travel measurement
are insentive to changes in tire damping; hence confirming the predication about the efficacy of coupling
between the motions of the sprung and unsprung masses.

Moreover, in Fig. 11, the actuator gain is seen to peak at the heave and the wheel-hop frequencies, which
indicates that a stable inversion of the vehicle transfer function is taking place by canceling these modes. This
feature is reminiscent of the loop-transfer-recovery (LTR) synthesis [35] that applies to square and minimum-
phase plants. Therefore, the hybrid algorithm can be viewed as a loop-shaping method realized in two-stages.
The stages are the minimization of the quadratic criterion in Eq. (45) and the interpolation procedure.
Although, in principle, it is possible to obtain a desired solution in one step by the LQG methodology, it is not
clear how to accomplish this task since the quadratic criterion in Eq. (45) involves nine free weights in its most
general form. Due to the coupling between the modes, it is a non-trivial matter to steer these weights towards a
desired solution. The hybrid algorithm, on the other hand, ignores the interactions among the variables
zk; k ¼ 1; 2; 3 and u in the first stage. Then, the effect of the interactions is taken care of in the interpolation
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Fig. 11. The actuator frequency response magnitude using the suspension travel measurement: (—) the LQG design with tire damping

ct ¼ 2cs; (– –) the LQG design with tire damping ct ¼ 0:1cs; (–.) the hybrid algorithm with tire damping ct ¼ 0:1cs.
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Fig. 12. The actuator frequency response magnitude using the suspension travel measurement: (—) the LQG design with tire damping

ct ¼ 2cs; (– –) the LQG design with tire damping ct at the equally spaced 101 points between and including 0:001cs and 0:1cs; (–.) the hybrid

algorithm with tire damping ct at the same 101 points.
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stage. The reader is cautioned not to draw broad conclusions based on this example solely since hardware
limitations and uncertainties, in particular uncertainty in the tire model, may degrade actuator performance.

6. Conclusions

In this paper, the flexibility of shaping the closed-loop road frequency responses of a quarter-car model by
feedback control was investigated. The constraints on the achievable responses of the quarter-car active
suspension systems were derived for a wide range of the suspension parameters. The derived constraints
complement the existing results in the literature on vehicle dynamics and control. Also, using the factorization
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approach of the feedback stability, it was shown that tire damping by coupling the motions of the sprung and
unsprung masses eliminates a constraint on the wheel-hop mode. The influence of tire damping on the design
of an active suspension for a lightly damped quarter-car model by a mixture of the LQG methodology and the
interpolation approach was also illustrated.

The study of the constraints on the achievable performance has remained largely restricted to pointwise
constraints on the frequency responses while ride comfort and safety criteria are mostly expressed in terms of
the RMS values of the related transfer functions. Hence, a study of the constraints on the achievable RMS
responses warrants future research.
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