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Abstract

Ongoing development of magnetic resonance imaging (MRI) technology leads to high magnetic field strength (up to

7–9T) and high-speed switching current in gradient coils for the purpose of improving MRI image quality. These two

factors among others contribute largely to the high levels of structure-borne noise that surrounds current MRI scanners. In

this paper, the forcing function and distribution acting on gradient coils are described (gradient coils x, y and z). Single

point forces and vibration responses of harmonic, transient and impulsive excitations are investigated. Modal expansion

method is used to predict the whole cylinder vibration of a thin-walled model under these excitations. Experimental testing

of a thin-walled model and a single-layered gradient coil is done by using National Instruments PXI. The measured whole-

body radial vibration modes show an agreement with the analytical results. This agreement indicates that modal expansion

method could be used to predict the whole-body vibration modes of gradient coils in the low-frequency range.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetic resonance imaging (MRI) scanners are powerful tools and are used extensively in medical field.
However, high levels of structure-borne noise make the diagnostic process extremely uncomfortable. Previous
studies by Huwitz et al. [1], Shellock et al. [2], Hedeen et al. [3], have shown that vibration of gradient coils
mainly causes the acoustic noise. The gradient coil cylinder in scanning will be acted upon by powerful
alternating Lorentz forces, and these dynamic loadings will make the whole-cylinder structure vibrated.
Recent studies by Edelstein et al. [4] indicated that the structural vibration will be transformed in complicated
manner to other MRI components through mechanical contact. More and more fundamental research has
been done by Mechefske et al. [5,6], Yao et al. [7] and Wang et al. [8] in order to uncover the vibration modes
of gradient coils and the vibro-acoustic mechanism.

A circular cylinder has long been used as the basic shape of the gradient coil mainly due to the reason that
the cylindrical shape is easier to concentrate the uniform magnetic field than others. Physically, a gradient
coil is a multiple-layered and thick-walled cylinder structure with different materials, such as the x-coil,
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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y-coil, z-coil, imbedded in a plastic cylinder base. Owing to the fact that no theoretical approaches are
available to solve thick-walled cylinder dynamics analytically, numerical approaches (finite element methods),
as used by Singhal et al. [9] and Yao et al. [10], were utilized in predicting the cylinder complex vibration
characteristics. These numerical studies have shown that a large number of complex vibration modes existed in
the cylinder dynamic behavior. On the other hand, these numerical results and our experimental studies [8]
indicate that the vibration of gradient coil cylinders (thick-walled cylinders) in the low frequency is basically
determined by the reference surface, shell thickness, boundary supports, and material properties. Of these
features, the reference surface plays a leading role in determining the vibration behavior of the gradient coil
cylinder in the low-frequency range (which was demonstrated in our experimental testing). Vibration analyses
of the gradient coil based on the thin-walled reference cylinder model are much useful to predict the
complicated vibration modes in the low-frequency range and to contribute to the fundamental understanding
of the thick-walled gradient coil behavior.

In this paper, vibration of a thin-walled reference cylinder model is analyzed and validated experimentally.
Modal participation factors and the mode combination principle are used to investigate the vibration
responses of the thin-walled model under different forcing functions. Vibration responses under a point force
excitation are described, and the radial vibration modes with corresponding frequencies along the axial length
are calculated. The thin-walled reference model and a single-layered gradient coil are further tested by a
hammer-exciting system and processed by the ME’scope software. The measured results validate the vibration
analysis and prediction.
2. Lorentz forcing function

A schematic of a gradient coil reference cylinder, the isocenter O, and Cartesian/cylindrical coordinate
systems are shown in Fig. 1a. In the figure, the gradient winding, carrying the alternating current I(t) on the
reference cylinder in a static magnetic field, will be acted on by a point Lorentz force:

d~F ðt; y; zÞ ¼ IðtÞða
*

P � B0 k
*
Þdl, (1)

where a
*

P is an unit tangential vector at point P of the gradient winding, dl is a small arc length along the
gradient winding curve, d~F ðt; y; zÞ is the point Lorentz force acting on the small arc length, B0 is the magnitude
of the static magnet strength in axial direction (the radial strength can be completely neglected).

A unit tangential vector at the point P on the winding curve can be derived from the differential geometry

a
*

P ¼
d r
*

P

ds
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ _z2ðyÞ

p ½Rð� sin y i
*
þ cos y j

*
Þ þ _zðyÞ k

*
�, (2)

where~rP is the vector from isocenter to the point P, s is the arc length of the coil curve, R is the radius of the
reference cylinder, _zðyÞ is the coil spatial distribution.
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Fig. 1. The schematic of a coordinate setup for the gradient coil system: (a) the gradient coil system; (b) point Lorentz force and response.
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Substituting Eq. (2) into Eq. (1) and rewriting the unit tangential vector, the discrete point Lorentz force on
the small length of dl can be expressed as

dF
*

rðz; y; tÞ ¼ IðtÞ
RB0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ _z2ðyÞ
p dl~r, (3)

where ~r is an unit vector in radial direction on the reference cylinder.
Eq. (3) shows that the discrete point Lorentz force on the reference cylinder is only in radial direction. Its

magnitude is proportional to the alternating current I(t) and the static magnet strength B0. The point force is
also affected by the winding spatial distribution _zðyÞ. Two typical distributions of the point Lorentz forces
on gradient coils are shown in Fig. 2. From the figure it can be seen that the forcing function on the gradient
x- or y-coil is more complicated than that on the gradient z-coil. So, the structural mobility of the gradient
x- or y-coil is more complex than that of the z-coil.

Generally, there are two types of time–frequency forcing functions on gradient coils. One is called ‘‘the
steady-state excitation’’, in which the input sequences are steady signals, such as sinusoid signals, trapezoidal
signals, and even echo planar imaging (EPI) signals. The vibration response of the steady-state excitation can
be described by harmonic analysis. The other type is ‘‘the transient-state excitation’’, in which the inputs are
time–frequency signals, such as the impulse excitation and the swept sinusoidal scanning. The transient state
vibration responses depend both on time and on the frequency range.

With the development of modern gradient field techniques, a distributed form called ‘‘the fingerprint
gradient coil’’ is becoming popular in the gradient winding design. The unwrapped picture of a symmetric
Fig. 2. Lorentz force distributions of the x, y, and z gradient winding.

Fig. 3. The equivalent loading of the fingerprint windings.



ARTICLE IN PRESS
F. Wang, C.K. Mechefske / Journal of Sound and Vibration 311 (2008) 554–566 557
gradient x ‘‘fingerprint’’ winding is shown in Fig. 3. From this figure it can be seen that the currents flow along
spatial curves on the reference cylinder. The winding spatial distribution _zðyÞ plays an important role in
determining the distribution of point Lorentz forces. Applying the principle of Eq. (1) to the winding
distribution, two zero-force circles will be formed symmetrically on the coil cylinder and a couple of equivalent
bending moments will be formed to bend the cylinder structure.

3. Modal expansion approach

Vibration of a thin-walled reference cylinder can be predicted by using the modal expansion method Soedel
[11]. The cylinder displacements can be determined by the sum of a series of orthogonal vectors or modes that
satisfy the boundary conditions of the cylinder fixation. As shown in Fig. 1b, the displacements of the thin-
walled reference cylinder can be written as:

uðz; y; tÞ ¼
X1
k¼1

ZkðtÞUkðz; yÞ, (4)

vðz; y; tÞ ¼
X1
k¼1

ZkðtÞV kðz; yÞ, (5)

wðz; y; tÞ ¼
X1
k¼1

ZkðtÞW kðz; yÞ, (6)

where ZkðtÞ are modal participation factors in the three displacement directions, Ukðz; yÞ, V kðz; yÞ and W kðz; yÞ
are the natural mode components in the three displacement directions.

Considering the structurally light damping, which is the same values in the three displacement directions,
the Love’s equations [11] can be written as:

Lufu; v;wg � c
quðz; y; tÞ

qt
� rh

q2uðz; y; tÞ
qt2

¼ �qzðz; y; tÞ, (7)

Lvfu; v;wg � c
qvðz; y; tÞ

qt
� rh

q2vðz; y; tÞ
qt2

¼ �qyðz; y; tÞ, (8)

Lwfu; v;wg � c
qwðz; y; tÞ

qt
� rh

q2wðz; y; tÞ
qt2

¼ �qRðz; y; tÞ, (9)

where Lu, Lv and Lw are Love’s operators, qz, qy and qR are the force distributions.
Substituting Eqs. (4)–(6) into Eqs. (7)–(9) and integrating the orthogonal series over the thin-walled cylinder

[11] give:

d2ZkðtÞ

dt2
þ

c

rh

dZkðtÞ

dt
þ o2

kZkðtÞ ¼ F kðtÞ, (10)

where F kðtÞ is the modal force, which can be calculated by

F kðtÞ ¼
1

rhDk

Z
z

Z
y
½qzðz; y; tÞUk þ qyðz; y; tÞV k þ qRðz; y; tÞW k�Rdzdy, (11)

Dk ¼

Z
z

Z
y
ðU2

k þ V2
k þW 2

kÞRdzdy. (12)
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4. Vibrations of the thin-walled model

4.1. Steady-state harmonic response

A single-pointed radial force is the basic loading characteristic of the gradient coil cylinder. According to
Saint-venant’s principle, although the deformation near the force point is violated, the deformations outside
the point or on the whole coil cylinder would be valid. For the point Lorentz force at the point P, the force
distributions are:

qzðz; y; tÞ ¼ 0, (13)

qyðz; y; tÞ ¼ 0, (14)

qRðz; y; tÞ ¼
dFrðz; y; tÞ

R
dðz� zjÞdðy� yj

Þ, (15)

where zj and yj are the coordinates of the point force dF rðz; yÞ, dð�Þis the Dirac delta function and is defined as:

dðz� zjÞ ¼ 0 ðif zazjÞ and

Z t¼1

t¼�1

dðz� zjÞdt ¼ 1 ðif z ¼ zjÞ,

dðy� yj
Þ ¼ 0 ðif yayj

Þ and

Z t¼1

t¼�1

dðy� yj
Þdt ¼ 1 ðif yayj

Þ.

For the simply supported boundary condition and a harmonic current IðtÞ ¼ sinðotÞ, the modal force F
j
kðtÞ is

F
j
kðtÞ ¼

dFrðz
j ; yj
Þ sinðotÞ

rhDmni

sin
mpzj

L

� �
cos½nðy� yj

Þ�, (16)

where

Dmni ¼

Umni

W mni

� �2

þ
Vmni

W mni

� �2

þ 1

" #
LRp
2

if na0;

Umni

W mni

� �2

þ 1

" #
LRp if n ¼ 0:

8>>>>><
>>>>>:

The cylinder harmonic displacements under the point force dFrðz
j ; yj
Þ excitation are:

uzj ;yj ðz; y; tÞ ¼
Xz;y;R

i

X1
m¼1

X1
n¼0

Umni

W mni

dF rðz
j ; yj
Þ sinðmpzj=LÞ cos½nðy� yj

Þ� cosðmpz=LÞ

rhDmnio2
mni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� ðo=omniÞ

2
�2 þ 4z2mniðo=omniÞ

2
q sinðot� fmniÞ, (17)

vzj ;yj ðz; y; tÞ ¼
Xz;y;R

i

X1
m¼1

X1
n¼0

V mni

W mni

dF rðz
j ; yj
Þ sinðmpzj=LÞ sin½nðy� yj

Þ� sinðmpz=LÞ

rhDmnio2
mni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� ðo=omniÞ

2
�2 þ 4z2mniðo=omniÞ

2
q sinðot� fmniÞ, (18)

wzj ;yj ðz; y; tÞ ¼
Xz;y;R

i

X1
m¼1

X1
n¼0

dF rðz
j ; yj
Þ sinðmpzj=LÞ cos½nðy� yj

Þ� sinðmpz=LÞ

rhDmnio2
mni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� ðo=omniÞ

2
�2 þ 4z2mniðo=omniÞ

2
q sinðot� fmniÞ, (19)

where

zmni ¼
c

2rhok

; fmni ¼ tan�1
2zmniðo=omniÞ

1� ðo=omniÞ
2
.
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4.2. Transient-state vibration responses

4.2.1. Swept sinusoidal excitation

A swept sinusoidal signal or a chirp signal contains both time and frequency information, and has been a
typical signal used in structure modal testing. In order to get the accurate frequency response function (FRF),
the swept progress through the interested frequency band has to be slow enough to allow the gradient coil
response to persist for measurements to be taken [12]. Among different time–frequency swept processes, a
linear chirp signal with constant amplitude and linearly increasing frequency with respect to time gives the best
signal-to-noise ratio excitation. The linear chirp signal can be expressed as

SjðtÞ ¼ S0 sin yS ¼ S0 sin o0tþ
1

2
bt2

� �
¼ S0 sin 2pf 0 þ p

f 1 � f 0

tS

� �
t2

� �
, (20)

where S0 is the constant amplitude, yS is the total angular rotation, o0 is the starting angular velocity with
starting frequency f0, tS is the swept time interval, b is the constant value of angular acceleration.

For a point loading SjðtÞ of the linear chirp excitation, Eq. (15) becomes:

qRðz; y; tÞ ¼
SjðtÞ

R
dðz� zjÞdðy� yj

Þ. (21)

Under zero-initial condition, the modal force can be expressed as

S
j
kðtÞ ¼

SjðtÞ

rhDmni

sin
mpzj

L

� �
cos½nðy� yj

Þ�. (22)

The cylinder vibration responses are:

uzj ;yj ðz; y; tÞ ¼
Xz;y;R

i

X1
m¼1

X1
n¼0

Umni

W mni

sinðmpzj=LÞ cos½nðy� yj
Þ� cosðmpz=LÞ

rhDmniomni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mn

q
Z t

0

SjðtÞe�zmnomniðt�tÞ sin omni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mn

q
ðt� tÞ

� �
dt, ð23Þ

vzj ;yj ðz; y; tÞ ¼
Xz;y;R

i

X1
m¼1

X1
n¼0

V mni

W mni

sinðmpzj=LÞ sin½nðy� yj
Þ�sinðmpz=LÞ

rhDmniomni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mn

q
Z t

0

SjðtÞ e�zmnomniðt�tÞ sin omni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mn

q
ðt� tÞ

� �
dt, ð24Þ

wzj ;yj ðz; y; tÞ ¼
Xz;y;R

i

X1
m¼1

X1
n¼0

sinðmpzj=LÞ cos½nðy� yj
Þ� sinðmpz=LÞ

rhDmniomni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mn

q
Z t

0

SjðtÞe�zmnomniðt�tÞ sin omni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mn

q
ðt� tÞ

� �
dt. ð25Þ

4.2.2. Hammer excitation

An impulse loading is also used in modal testing experiments and the impulse magnitude P is concentrated
in a very short period of time. Eq. (15) can be expressed as

qRðz; y; tÞ ¼
Pdðt� t1Þ

R
dðz� zjÞdðy� yj

Þ. (26)

Under the zero-initial condition, the modal force becomes

P
j
kðtÞ ¼

P

rhDmni

sin
mpzj

L

� �
cos½nðy� yj

Þ�. (27)
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Cylinder displacements under the impulse point excitation can be written as:

uzj ;yj ðz; y; tÞ ¼
Xz;y;R
i¼1

X1
m¼1

X1
n¼0

Umni

W mni

P sinðmpzj=LÞ cos½nðy� yj
Þ� cosðmpz=LÞ

rhDmniomni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mni

q
e�zmnomniðt�t1Þ sin omni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mni

q
ðt� t1Þ

� �
dt, ð28Þ

vzj ;yj ðz; y; tÞ ¼
Xz;y;R

i

X1
m¼1

X1
n¼0

V mni

W mni

P sinðmpzj=LÞ sin½nðy� yj
Þ� sinðmpz=LÞ

rhDmniomni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mni

q
e�zmnomniðt�t1Þ sin omni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mni

q
ðt� t1Þ

� �
dt, ð29Þ

wzj ;yj ðz; y; tÞ ¼
Xz;y;R

i

X1
m¼1

X1
n¼0

P sinðmpzj=LÞ cos½nðy� yj
Þ� sinðmpz=LÞ

rhDmniomni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mni

q
e�zmnomniðt�t1Þ sin omni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mni

q
ðt� t1Þ

� �
dt. ð30Þ

4.3. Calculation results

Vibration mode calculation of a thin-walled cylinder is carried out based on the geometrical parameters and
material properties listed in Table 1. In the calculation, three types of cylindrical modes-bending modes,
torsional modes, and axial modes are added to contribute their modal participation factors to the
displacement responses. The structural damping ratio is chosen as a constant of 0.018 as we measured before.
The impulse excitation force is applied to the middle of the thin-walled cylinder with the simply supported
boundary condition. This intending location will excite the odd beam-vibration patterns of the thin-walled
cylinder and will make a comparison with experimental measurement results.

The displacement responses of the cylinder model at the low frequencies of 243, 391, 610, 735, 882, and
1105Hz are shown in Fig. 4. In the calculation the modal expansion order of 16 was used. From the Figure it
can be seen that the fundamental odd simply supported beam modes are the main deformation shapes. Upon
the beam vibration patterns, ring vibration patterns are superimposed in regular linear combinations. The
vibration modes presented are similar to the bending modes but with different modal participation factors.

The amplitude–frequency analysis of the thin-walled cylinder for a wide-frequency range is calculated as
well to reveal the modal density along the cylinder length. A modal expansion order of 20 is used to predict the
displacement responses along the length of the cylinder. The frequency ranges are from 500 to 2500Hz and the
displacement responses as shown in Fig. 5 are virtually ‘‘measured’’ along the axial length. From the figures it
can be seen that in the low-frequency range the beam-patterns up to the third mode are the main modal
components. But in the high-frequency range there exist a high modal density of beam-patterns up to the fifth
order, which make the dynamic responses of the thin-walled cylinder complex.
Table 1

Parameters of the thin-walled reference cylinder model

Length (L) 590mm

Radius (R) 187.75mm

Thickness (h) 11.5mm

Geometric ratio (R/h) 16.3

Young’s modulus (E) 2.8� 109 Pa

Poisson’s ratio (n) 0.39

Mass density (r) 1200kgm�3
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Fig. 4. The vibration responses of the thin-walled model at the low frequencies.
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5. Experimental verification and testing

The vibration testing system for gradient coil models was designed by using the National Instruments (NI)
PXI 1020 together with a series of micro-accelerometers, signal conditioners and an impact hammer. In the
system, a digital spectrum analyzer was programmed in LabVIEW system. To get the vibration modes of
whole cylinder models, hundreds of measuring points were evenly distributed on the testing cylinder surface.
Two gradient coil cylinders were tested: one is the thin-walled reference cylinder as shown in Fig. 6a and the
other is a single-layered gradient x-coil as shown in Fig. 6b. For the thin-walled cylinder, both ends were
fastened to thin-wall aluminum plates supported by two steel columns. This kind of installation is meant to
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Fig. 6. Experimental setup for the thin-walled model and a gradient coil.

F. Wang, C.K. Mechefske / Journal of Sound and Vibration 311 (2008) 554–566562
simulate the installation condition of gradient coils in a 4T MRI scanner. This installing condition can be
considered as the simply supported boundary condition. For a single-layered gradient coil, both ends were
fixed to wooden plates by 6 evenly distributed screws, which can be regarded as the clamp-clamp boundary
condition or close to the simply supported boundary condition. The geometrical parameters and material
properties of the single-layered gradient coil are listed in Table 2.

In order to compare with the simulated vibration modes, the impact hammer was used to excite a point in
the middle of the gradient coil models, and the odd-numbered axial modes were excited. At each measuring
point, FRF was measured by using the digital spectrum analyzer. The FRFs of these measuring points were
collected and processed by ME’scope software. The vibration modes and the corresponding frequencies of the
two cylinders are extracted and shown in Figs. 7 and 8, respectively. In Fig. 7, it can be seen that the
comparison between the measured vibration modes and the vibration responses predictions in Fig. 4 matches
quite well.

Fig. 8 shows the tested vibration modes of the single-layered gradient coil. Compared to Fig. 7, the
measured natural frequencies are much higher than those of the thin-walled cylinder. This may be due to
the fact that its Young’s modulus, its geometric ratio of length over radius, and cylinder boundary conditions
are much different from those of the thin-walled cylinder. However, it can be seen that there is a good
agreement in the vibration modes between the single-layered gradient coil and the thin-walled reference
cylinder. Most vibration modes of the single-layered gradient coil are very similar to the counter parts of the
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Fig. 7. The vibration modes of the thin-walled model under the impact excitation: (a) vibration response at 257Hz; (b)vibration response

at 422Hz; (c) vibration response at 658Hz; (d) vibration response at 742Hz; (e) vibration response at 942Hz; and (f) vibration response at

1167Hz.

Table 2

Parameters of a single-layered gradient coil

Length (L) 700mm

Radius (R) 165mm

Thickness (h) 20mm

Geometric ratio (R/h) 8.25

Young’s modulus (E) 31,030� 106 Pa

Poisson’s ratio (n) 0.32

Mass density (r) 2241.4 kgm�3

F. Wang, C.K. Mechefske / Journal of Sound and Vibration 311 (2008) 554–566 563
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Fig. 8. The vibration modes of a single-layered gradient coil under impact excitations: (a) vibration response at 673Hz; (b) vibration

response at 933Hz; (c) vibration response at 1244Hz; (d) vibration response at 1497Hz; (e) vibration response at 1934Hz; and

(f) vibration response at 2124Hz.
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thin-walled model except for the 993Hz mode in the thin-walled model and the 422Hz mode in the single-
layered gradient coil. The probable reason might be the different material properties and geometric shapes.
The experimental vibration results sufficiently verify the thin-walled cylinder model could be used to predict
the vibration modes of the non-thin-walled gradient coil in the low-frequency range although there are errors
in the natural frequency prediction.

6. Conclusions

It has long been known that MRI acoustic problems mainly come from the vibration of gradient coils in
scanning. Owing to the structural complexity and the thick-walled cylinder with multi-layered different
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materials, analytical analysis and prediction of the gradient coil vibration in scanning become very difficult.
Based on our experimental testing, the dynamic behavior of gradient coils is basically determined by the
cylinder reference surface, the cylinder thickness, the cylinder supports, and the cylinder materials. In the low-
frequency range the cylinder reference surface is the most significant. In the paper, a thin-walled cylinder
model and its vibration prediction under different excitation cases are investigated. Some conclusions on the
dynamic analysis of gradient coils can be drawn as follows:
(1)
 The forcing functions of gradient coils are characterized by the discrete point Lorentz forces distributed
on a reference cylinder. These point forces are only in the radial directions changing with the
different time–frequency features which are determined by the scanning current waveforms. The structural
mobility of gradient x or y-coil is higher than that of gradient z-coil. The magnitude of forcing functions
are not only determined by the current and the magnetic strength, but also affected by the coil spatial
distribution;
(2)
 In the low-frequency range, the vibration modes of the gradient coil cylinder might be predicted by using a
thin-walled cylinder model with the point force excitation. Modal expansion methods can be applied to
analytically simulate the vibration responses to various types of point Lorentz forces including the
harmonic, swept sinusoidal and impulse excitations;
(3)
 Experimental validation of a thin-walled cylinder vibration modes and testing of a single-layered gradient
coil were performed by using a modal testing system, which is extremely important for future study and
testing of multi-layered gradient coil system;
(4)
 In the low frequency, finding a thin-walled cylinder model matching to the vibration behavior of a real
single-layered gradient coil is our next research. The measured vibration modes of the single-layered
gradient coil are basically composed of the beam-vibration patterns with corresponding boundary
condition linearly superimposed by the ring vibration patterns.
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