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Abstract

By using the Duffing oscillator as a case study, this paper shows that the harmonic components in the nonlinear system

response to a sinusoidal input calculated using the nonlinear output frequency response functions (NOFRFs) are one of

the solutions obtained using the harmonic balance method (HBM). A comparison of the performances of the two methods

shows that the HBM can capture the well-known jump phenomenon, but is restricted by computational limits for some

strongly nonlinear systems and can fail to provide accurate predictions for some harmonic components. Although the

NOFRFs cannot capture the jump phenomenon, the method has few computational restrictions. For the nonlinear damping

systems, the NOFRFs can give better predictions for all the harmonic components in the system response than the HBM

even when the damping system is strongly nonlinear.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear oscillator models have been widely used in many areas of physics and engineering and are of
significant importance in mechanical and structural dynamics for the comprehensive understanding and
accurate prediction of motion. Various approaches, including the perturbation method [1–6], multiple scale
method [7–12], and the harmonic balance method (HBM) [12–23] have been developed to study the forced
periodic motions of these nonlinear oscillators. Among these methods, the HBM is considered to be one of
powerful methods capable of handling strongly nonlinear behaviours and, it can converge to an accurate
periodic solution for smooth nonlinear systems [13].

The HBM method is based on the assumption that the system time domain response can be expressed in the
form of a Fourier series. Therefore, the HBM is usually used to study nonlinear systems where the output
responses of which are periodic in time. Such nonlinear systems range from models as simple as the Duffing
oscillator [14] to more complex models such as cracked rotors [15]. More applications of the HBM can be
found in the study of the nonlinear response of airfoils [16–17], nonlinear conservative systems [18], hysteretic
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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two-degree-of-freedom systems [19], the third-order (jerk) differential equations [20] and the Jeffcott rotor
[21]. By using the HBM, some interesting phenomena unique to nonlinear systems have been observed, among
which the most well known is jump phenomenon where the response amplitude of a nonlinear
oscillator changes suddenly at some critical value of the frequency of the excitation [13]. Although the
basic idea of the HBM is quite simple (to substitute a Fourier series form solution of the system time domain
response into the governing equations of the system under study, and to equate coefficients of the same
harmonic components), its implementation is actually not easy [14]. First, if many frequency components are
taken into account in the HBM to reach accurate results, it is highly possible for the HBM to fail. Second, for
the Duffing oscillator, the HBM is typically easy to implement but, for models with more complex
nonlinearities, it may be very difficult or impossible to implement. Moreover, it is always necessary to write
specific computation programs for different nonlinear models [14], and that is why improved HBM need to be
developed.

The Volterra series approach [22–24] is another powerful method for the analysis of nonlinear systems,
which extends the well-known concept of the convolution integral for linear systems to a series of
multidimensional convolution integrals. The Fourier transforms of the Volterra kernels, called generalised
frequency response functions (GFRFs) [25], are an extension of the linear frequency response function (FRF)
to the nonlinear case. If a differential equation or discrete-time model is available for a nonlinear system, the
GFRFs can be determined using the algorithm in Refs. [26–28]. However, the GFRFs are multidimensional
functions [29,30], which can be much more complicated than the linear FRF and can be difficult to measure,
display and interpret in practice. Recently, a novel concept known as nonlinear output frequency response
functions (NOFRFs) was proposed by the authors [31]. The concept can be considered to be an alternative
extension of the classical FRF for linear systems to the nonlinear case. NOFRFs are one-dimensional
functions of frequency, which allows the analysis of nonlinear systems to be implemented in a manner similar
to the analysis of linear systems and provides great insight into the mechanisms which dominate many
nonlinear behaviours. For a nonlinear system subjected to a harmonic input, the response could also be
described by a Fourier series using the NOFRFs. The present study is concerned with a comparison study
between the NOFRFs and HBM methods in the analysis of a class of nonlinear systems.
2. Harmonic balance method (HBM)

In the HBMs [14], the solution of a nonlinear system is assumed to be of the form of a truncated Fourier
series:

yðtÞ ¼ d0 þ
XN

n¼1

ðan cosðnotÞ þ bn sinðnotÞÞ, (1)

where d0, an and bn (n ¼ 1; . . . ; N̄) are known as the HB solution Fourier coefficients, and N̄ the number of
harmonic components used in the HB-truncated Fourier series expansion. The principle of the HBM can be
illustrated using the Duffing oscillator:

m €yþ c _yþ k1yþ k3y
3 ¼ A cosðotÞ, (2)

where m, c, k1 and k3 are the parameters of the mass, damping and stiffness of the system respectively. A and o
are the external excitation force amplitude and frequency of the oscillator.

The Fourier expansions of the first and second derivatives of the output of system (2) are:

_yðtÞ ¼
XN̄

n¼1

noð�an sinðnotÞ þ bn cosðnotÞÞ, (3)

€yðtÞ ¼
XN̄

n¼1

�n2o2ðan cosðnotÞ þ bn sinðnotÞÞ. (4)
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The Fourier expansion of the cubic term of the output y(t) in Eq. (2) can be expressed, when retaining N̄

harmonic components, as

ðyðtÞÞ3 ¼ d̄0 þ
XN̄

n¼1

ðān cosðnotÞ þ b̄n sinðnotÞÞ, (5)

where

d̄0 ¼
o
2p

Z 2p=o

0

d0 þ
XN

n¼1

ðan cosðnotÞ þ bn sinðnotÞÞ

 !3

dt, (6)

ān ¼
o
2p

Z 2p=o

0

d0 þ
XN̄

n¼1

ðan cosðnotÞ þ bn sinðnotÞÞ

 !3

cosðnotÞdt, (7)

b̄n ¼
o
2p

Z 2p=o

0

d0 þ
XN̄

n¼1

ðan cosðnotÞ þ bn sinðnotÞÞ

 !3

sinðnotÞdt. (8)

Substituting Eqs. (1) and (3)–(8) into Eq. (2), and equating coefficients associated with each harmonic
components cosðnotÞ and sinðnotÞ(n ¼ 0; 1; . . . ; N̄) yields 2N̄ þ 1 equations:

k1d0 þ k3d̄0 ¼ 0

�mo2a1 þ cob1 þ k1a1 þ k3ā1 ¼ A

�mo2b1 � coa1 þ k1b1 þ k3b̄1 ¼ 0

..

.

�mN2o2aN þ cNobN þ k1aN þ k3āN ¼ 0

�mN2o2bN � cNoaN þ k1bN þ k3b̄N ¼ 0

9>>>>>>>>>>=
>>>>>>>>>>;
. (9)

Solving Eq. (9) requires the analytical expressions for the nonlinear functions d̄0, ān, b̄n(n ¼ 1; . . . ; N̄)
in terms of d0, an and bn (n ¼ 1; . . . ; N̄). When using only the fundamental harmonic component, i.e., N̄ ¼ 1,
the HBM is often referred to as the HB1 method. In the case of HB1, it can be deduced that Eq. (9) can be
written as

�mo2a1 þ cob1 þ k1a1 þ
1
2
k3½3a3

1=2þ 3a1b2
1=2� ¼ A, (10)

�mo2b1 � coa1 þ k1b1 þ
1
2
k3½3b1a2

1=2þ 3b3
1=2� ¼ 0, (11)

The forms of Eqs. (10) and (11) are relatively simple, and solving them will take only a few seconds using
contemporary powerful numerical software routines. However, if the nonlinearity of the Duffing oscillator is
strong, the high-order harmonic components may have a considerable effect and can contribute significantly
to the whole solution, consequently, a truncated Fourier series expansion may make the solution less accurate.
On the other hand, if more harmonic components are considered for the analysis, then Eq. (9) can become
quite complex. For example, when the third-order harmonic component is taken into account, i.e., N̄ ¼ 3,
then Eq. (9) is given by

�mo2a1 þ cob1 þ k1a1 þ
1

2
k3

3a3
1=2þ 3a1b2

1=2þ 3a1a
2
3 þ 3a1b

2
3

3a2
1a3=2þ 3a1b1b3 � 3b2

1a3=2

" #
¼ A, (12)

�mo2b1 � coa1 þ k1b1 þ
1

2
k3

3b1a2
1=2þ 3b3

1=2þ 3b1a2
3 þ 3b1b

2
3

�3b1a1a3 � 3b2
1b3=2þ 3a2

1b3=2

" #
¼ 0, (13)
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�9mo2a3 þ 3cob3 þ k1a3 þ
1

2
k3

a3
1=2� 3a1b

2
1=2þ 3a2

1a3 þ 3b2
1a3

3a3
3=2þ 3a3b

2
3=2

" #
¼ 0, (14)

�9mo2b3 � 3coa3 þ k1b3 þ
1

2
k3

�b3
1=2þ 3b1a

2
1=2þ 3b2

1b3 þ 3a2
1b3

3a2
3b3=2þ 3b3

3=2

" #
¼ 0, (15)

which is obviously much more complicated than the case of N̄ ¼ 1. In the case of N̄ ¼ 3, the HBM is referred
to as the HB3. In most cases, the software cannot find solutions for Eqs. (12)–(15) because of the complex
forms. To obtain a solution, therefore, many terms have to be ignored, for example, 3a3

3=2 and 3a3b2
3=2 in (14)

and 3a2
3b3=2 and 3b3

3=2 in (15). This is a common practice when using HBMs to conduct nonlinear system
analysis. Usually, more than one solution, some of which might involve complex values, can be found for the
HBMs. Only the real valued solutions are physically meaningful for the underlying problem.

3. Nonlinear output frequency response functions (NOFRFs)

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems. Consider the class of
nonlinear systems which are stable at zero equilibrium and which can be described in the neighbourhood of
the equilibrium by the Volterra series [32,33]:

yðtÞ ¼
XN

n¼1

Z 1
�1

� � �

Z 1
�1

hnðt1; . . . ; tnÞ
Yn

i¼1

uðt� tiÞdti, (16)

where y(t) and u(t) are the output and input of the system, hnðt1; . . . ; tnÞ is the nth-order Volterra kernel, and N

denotes the maximum order of the system nonlinearity. Lang and Billings [25] derived an expression for the
output frequency response of this class of nonlinear systems to a general input. The result is

Y ðjoÞ ¼
PN
n¼1

Y nðjoÞ for 8o;

Y nðjoÞ ¼
1=
ffiffi
n
p

ð2pÞn�1
R
o1þ;...;þon¼o

Hnðjo1; . . . ; jonÞ
Qn
i¼1

UðjoiÞdsno:

8>>><
>>>: (17)

In (2), Y ðjoÞ is the spectrum of the system output, Y nðjoÞ represents the nth-order output frequency
response of the system:

Hnðjo1; . . . ; jonÞ ¼

Z 1
�1

. . .

Z 1
�1

hnðt1; . . . ; tnÞe
�ðo1t1þ;...;þontnÞjdt1 . . . dtn (18)

is the nth-order GFRF [25], andZ
o1þ;...;þon¼o

Hnðjo1; . . . ; jonÞ
Yn

i¼1

UðjoiÞdsno

denotes the integration of Hnðjo1; . . . ; jonÞ
Qn

i¼1UðjoiÞ over the n-dimensional hyper-plane o1 þ � � � þ on ¼ o.
The new concept of the NOFRFs recently proposed by Lang and Billings [31] is defined as

GnðjoÞ ¼

R
o1þ;...;þon¼o

Hnðjo1; . . . ; jonÞ
Qn

i¼1UðjoiÞdsnoR
o1þ;...;þon¼o

Qn
i¼1UðjoiÞdsno

(19)

under the condition that

UnðjoÞ ¼
1=

ffiffiffi
n
p

ð2pÞn�1

Z
o1þ;...;þon¼o

Yn

i¼1

UðjoiÞdsnoa0. (20)

Notice that GnðjoÞ is valid over the frequency range of UnðjoÞ, which can be determined using the algorithm
in Refs. [25,34].
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By introducing the NOFRFs GnðjoÞ, n ¼ 1; . . .N, Eq. (17) can be written as

Y ðjoÞ ¼
XN

n¼1

Y nðjoÞ ¼
XN

n¼1

GnðjoÞUnðjoÞ, (21)

which is similar to the description of the output frequency response for linear systems. The NOFRFs reflect a
combined contribution of the system and the input to the system output frequency response behaviour.

When the input is a sinusoidal force:

uðtÞ ¼ A cosðoF tþ bÞ. (22)

Peng et al. [35] have showed that the frequency components of the nth-order output Y nðjoÞ of the nonlinear
system can be determined as

On ¼ fð�nþ 2kÞoF ; k ¼ 0; 1; . . . ; ng (23)

and the frequency components of the system output Y ðjoÞ can be determined as

O ¼
[N
n¼1

On ¼ fkoF ; k ¼ �N ; . . . ;�1; 0; 1; . . . ;Ng (24)

and the kth superharmonic component of the system output can be expressed as

Y ðjkoF Þ ¼
XðN�kþ1Þ=2½ �

n¼1

GH
kþ2ðn�1ÞðjkoF ÞAkþ2ðn�1ÞðjkoF Þ ðk ¼ 0; 1; . . . ;NÞ, (25)

where ½:� means to take the integer part, and

Anðjð�nþ 2kÞoF Þ ¼
1

2n

n!

k!ðn� kÞ!
jAjnejð�nþ2kÞb, (26)

GH
n ðjð�nþ 2kÞoF Þ ¼ HnðjoF ; . . . ; joF

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{k

;�joF ; . . . ;�joF

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{n�k

Þ. (27)

Notice Hnðjo1; . . . ; jonÞ is a symmetric function, thus, for the case of sinusoidal inputs, GH
n ðjoÞ over the nth-

order output frequency range On ¼ fð�nþ 2kÞoF ; k ¼ 0; 1; . . . ; ng is equal to the Hnðjo1; . . . ; jonÞ evaluated
at o1 ¼ � � � ¼ ok ¼ oF ;okþ1 ¼ � � � ¼ on ¼ �oF , (k ¼ 0; . . . ; n).

Using the algorithm by Billings and Peyton Jones [27,28] and Eq. (27), the NOFRFs of the Duffing
oscillator under a harmonic input can be obtained. The results show that all even order NOFRFs are zero; for
the first and third harmonic components in the output, the NOFRFs up to the seventh-order are as follows:

GH
1 ðjoF Þ ¼

1

�mo2
F þ jcoF þ k1

, (28)

GH
3 ðjoF Þ ¼ �k3G

H
1 ð�joF ÞG

H
1 ðjoF ÞG

H
1 ðjoF ÞG

H
1 ðjoF Þ, (29)

GH
3 ðj3oF Þ ¼ �k3GH

1 ðjoF ÞG
H
1 ðjoF ÞG

H
1 ðjoF ÞG

H
1 ðj3oF Þ, (30)

GH
5 ðjoF Þ ¼ �

3

10
k3G

H
1 ðjoF Þ

3GH
3 ð�joF ÞG

H
1 ðjoF ÞG

H
1 ðjoF Þ

þ6GH
3 ðjoF ÞG

H
1 ð�joF ÞG

H
1 ðjoF Þ

þGH
3 ðj3oF ÞG

H
1 ð�joF ÞG

H
1 ð�joF Þ

2
64

3
75, (31)

GH
5 ðj3oF Þ ¼ �

3

10
k3GH

1 ðj3oF Þ
6GH

3 ðjoF ÞG
H
1 ðjoF ÞG

H
1 ðjoF Þ

þ4GH
3 ðj3oF ÞG

H
1 ð�joF ÞG

H
1 ðjoF Þ

" #
, (32)
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GH
7 ðjoF Þ ¼ �k3GH

1 ðjoF Þ

1

7

12GH
5 ðjoF ÞG

H
1 ð�joF ÞG

H
1 ðjoF Þ

þ3GH
5 ðj3oF ÞG

H
1 ð�joF ÞG

H
1 ð�joF Þ

þ6GH
5 ð�joF ÞG

H
1 ðjoF ÞG

H
1 ðjoF Þ

2
64

3
75

þ
3

70

24GH
3 ðj3oF ÞG

H
3 ð�joF ÞG

H
1 ð�joF Þ

þ8GH
3 ðj3oF ÞG

H
3 ð�j3oF ÞG

H
1 ðjoF Þ

þ36GH
3 ðjoF ÞG

H
3 ðjoF ÞG

H
1 ð�joF Þ

þ72GH
3 ðjoF ÞG

H
3 ð�joF ÞG

H
1 ðjoF Þ

2
66664

3
77775

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

, (33)

GH
7 ðj3oF Þ ¼ �k3GH

1 ðj3oF Þ

1

7

10GH
5 ðjoF ÞG

H
1 ðjoF ÞG

H
1 ðjoF Þ

þGH
5 ðj5oF ÞG

H
1 ð�joF ÞG

H
1 ð�joF Þ

þ10GH
5 ðj3oF ÞG

H
1 ð�joF ÞG

H
1 ðjoF Þ

2
64

3
75

þ
3

70

60GH
3 ðjoF ÞG

H
3 ðjoF ÞG

H
1 ðjoF Þ

þ40GH
3 ðj3oF ÞG

H
3 ð�joF ÞG

H
1 ðjoF Þ

þ40GH
3 ðj3oF ÞG

H
3 ðjoF ÞG

H
1 ð�joF Þ

2
64

3
75

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
. (34)

Based on equations (25), (28)–(34), the harmonic components up to third order in the output of the Duffing
oscillator can be determined when the oscillator’s output response to a harmonic input can be approximated
by a Volterra series expansion up to seventh order.

Eq. (25) provides a straightforward way to express the response of nonlinear systems subjected to a
harmonic input using the NOFRFs. The focus of the present study is dedicated to a comparison study between
the NOFRFs and the HBM in the analysis of a class of nonlinear systems. First, the Duffing oscillator is used
as a case study to reveal the relationships between the NOFRFs and the HBM, and then numerical examples
will be used to compare the performances of the methods in nonlinear system analysis.

4. Relationships between the HBM and NOFRFs

Theoretically, the output spectrum of a nonlinear system such as the Duffing oscillator has to be expressed
using an infinite Volterra series. Therefore, ideally, equation (25) should be expressed as

Y ðjkoF Þ ¼
X1
n¼1

GH
kþ2ðn�1ÞðjkoF ÞAkþ2ðn�1ÞðjkoF Þ ðk ¼ 0; 1; . . . ;1Þ. (35)

However, in practice a truncated series can be used provided the number of terms included can give an
accurate approximation to the response of the system. For the Duffing oscillator, without loss of generality, it
is assumed in the following analysis that, in Eq. (21), the first three terms are sufficient to approximate the
system response and the effect of the higher-order terms on the response is negligible. Under this assumption,
it is known from (26) that

Y ðj0Þ ¼ GH
2 ðj0ÞA2ðj0Þ þ GH

4 ðj0ÞA4ðj0Þ þ � � � ¼ 0,

Y ðjoF Þ ¼
X1
n¼1

GH
2n�1ðjoF ÞAnðjoF Þ � GH

1 ðjoF ÞA1ðjoF Þ þ GH
3 ðjoF ÞA3ðjoF Þ,

Y ðj2oF Þ ¼ GH
2 ðj2oF ÞA2ðj2oF Þ þ GH

4 ðj2oF ÞA4ðj2oF Þ þ � � � ¼ 0,

Y ðj3oF Þ ¼
X1
n¼2

GH
2n�1ðj3oF ÞAnðj3oF Þ � GH

3 ðj3oF ÞA3ðj3oF Þ,

Y ð�joF Þ � GH
1 ð�joF ÞA1ð�joF Þ þ GH

3 ð�joF ÞA3ð�joF Þ,

Y ð�j2oF Þ ¼ 0,

Y ð�j3oF Þ � GH
3 ð�j3oF ÞA3ð�j3oF Þ. ð36Þ
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Proposition. For nonlinear systems subjected to a sinusoidal input, the harmonic components in the output
response determined using the NOFRFs from Eq. (35) are one of the solutions obtained using the HBM.
For simplicity of explanation, the proof of this proposition is demonstrated using the Duffing oscillator as
follows. From (36), the response of the Duffing oscillator to a harmonic input can be written as

yðtÞ ¼ Y ðjoF Þ expðjoF tÞ þ Y ðj3oF Þ expðj3oF tÞ þ Y ð�joF Þ expð�joF tÞ þ Y ð�j3oF tÞ expð�j3oF tÞ þ eðtÞ, (37)

where eðtÞ is the truncation error.
Substituting (37) into (2) and extracting the coefficients of the harmonic component of frequency oF on the

left side of Eq. (2) yields

G1ðjoF Þ ¼
1

GH
1 ðjoF Þ

ðGH
1 ðjoF ÞA1ðjoF Þ þ GH

3 ðjoF ÞA3ðjoF ÞÞ

þ k3ð3GH
1 ðjoF ÞA1ðjoF ÞG

H
1 ðjoF ÞA1ðjoF ÞG

H
1 ð�joF ÞA1ð�joF Þ

þ 3GH
1 ðjoF ÞA1ðjoF ÞG

H
1 ðjoF ÞA1ðjoF ÞG

H
3 ð�joF ÞA3ð�joF Þ

þ 6GH
1 ðjoF ÞA1ðjoF ÞG

H
3 ðjoF ÞA3ðjoF ÞG

H
1 ð�joF ÞA1ð�joF Þ

þ 3GH
1 ð�joF ÞA1ð�joF ÞG

H
1 ð�joF ÞA1ð�joF ÞG

H
3 ðj3oF ÞA3ðj3oF Þ

þ 3GH
1 ð�joF ÞA1ð�joF ÞG

H
3 ðjoF ÞA3ðjoF ÞG

H
3 ðjoF ÞA3ðjoF Þ

þ 6GH
1 ðjoF ÞA1ðjoF ÞG

H
3 ð�joF ÞA3ð�joF ÞG

H
3 ðjoF ÞA3ðjoF Þ

þ 6GH
1 ð�joF ÞA1ð�joF ÞG

H
3 ð�joF ÞA3ð�joF ÞG

H
3 ðj3oF ÞA3ðj3oF Þ

þ 6GH
1 ð�joF ÞA1ð�joF ÞG

H
3 ð�j3oF ÞA3ð�j3oF ÞG

H
3 ðj3oF ÞA3ðj3oF Þ

þ 3GH
3 ð�joF ÞA3ð�joF ÞG

H
3 ðjoF ÞA3ðjoF ÞG

H
3 ðjoF ÞA3ðjoF Þ

þ 3GH
3 ð�joF ÞA3ð�joF ÞG

H
3 ð�joF ÞA3ð�joF ÞG

H
3 ðj3oF ÞA3ðj3oF ÞÞ. ð38Þ

Obviously, if the harmonic components determined using the NOFRFs are one of the solutions obtained
using the HBM, G1ðjoF Þ should be equal to A1ðjoF Þ.

According to Eqs. (26) and (29), it can be deduced that the third term in (38) is equal to �GH
3 ðjoF ÞA3ðjoF Þ.

Similarly, from Eqs. (31) and (26), it can also be known that the sum of the 4th, 5th and 6th terms in (38) is
equal to �GH

5 ðjoF ÞA5ðjoF Þ, and from Eqs. (33) and (26), it can be deduced that the 7th, 8th, 9th and 10th
terms are a part of �GH

7 ðjoF ÞA7ðjoF Þ. In fact, the 11th and 12th terms can be also deduced to be a part of
�GH

9 ðjoF ÞA9ðjoF Þ. Therefore, compared to the terms GH
1 ðjoF ÞA1ðjoF Þ and GH

3 ðjoF ÞA3ðjoF Þ, the contributions
of GH

5 ðjoF ÞA5ðjoF Þ, GH
7 ðjoF ÞA7ðjoF Þ, and GH

9 ðjoF ÞA9ðjoF Þ to the whole response are negligible, therefore
Eq. (38) can be simplified to

GH
1 ðjoF ÞG1ðjoF Þ ¼ GH

1 ðjoF ÞA1ðjoF Þ þ GH
3 ðjoF ÞA3ðjoF Þ � GH

3 ðjoF ÞA3ðjoF Þ þ D5ðjoF Þ

¼ GH
1 ðjoF ÞA1ðjoF Þ þ D5ðjoF Þ, ð39Þ

where D5ðjoF Þ is a negligible error caused by ignoring the insignificant terms. Therefore, G1ðjoF Þ ¼ A1ðjoF Þ, if
D5ðjoF Þ ¼ 0.

Following the same procedure, it can be proved that, for other harmonic components of frequencies �oF ,
3oF and �3oF , the coefficients are also balanced. Therefore, it is demonstrated that the proposition holds for
the Duffing oscillator.

The proposition reveals the relationship between the NOFRF method and the HBM. In fact, from the
perspective of practical applications, the proposition implies that, if a nonlinear system response to a
harmonic input can be expanded as a convergent Volterra series, the harmonic components calculated by the
NOFRFs using Eq. (35) can approximate one solution of the HBM to an arbitrary accuracy if a sufficient
number of terms are taken into account.
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5. Numerical studies and discussions

5.1. Case studies

In this section, the performances of the NOFRF and the HBM in nonlinear system analysis will be
compared via two case studies where two different nonlinear oscillators including a nonlinear stiffness
oscillator and a nonlinear damping oscillator are used to conduct the comparison studies.

5.1.1. Case 1: nonlinear stiffness oscillator studies

For the nonlinear stiffness oscillator, the well-known Duffing oscillator given by Eq. (1) is adopted, which
can be rewritten as

€yþ 2mo0 _yþ o2
0yþ �3o6

0y3 ¼ A0 cosðoF tÞ, (40)

where m ¼ c
�

2
ffiffiffiffiffiffiffi
km
p� �

, o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, �3 ¼ k3=k3

1, A0 ¼ A=m. Denote

t ¼ o0t; g ¼ oF=o0; Z ¼ o2
0y=A0; r ¼ A2

0�3,

then Eq. (40) can be written in the following non-dimensional form:

€Zþ 2m_Zþ Zþ rZ3 ¼ cosðgtÞ. (41)

For this case study, the values of the used parameters in Eq. (40) are m ¼ 0:04, o0 ¼ 12p, �3 ¼ 0:1, and the
corresponding non-dimensional equation is

€Zþ 0:08_Zþ Zþ 0:1A2
0Z

3 ¼ cosðgtÞ. (42)

It can be seen that the nonlinearity strength of the Duffing oscillator is determined by the value of the
coefficient r, which is dependent on both the coefficient �3 and the excitation level A0. Duffing oscillators with
such strong nonlinearities have been studied using Volterra series in [36,37]. Practical systems with such strong
nonlinearities can also be found in [38] where a torsional spring with a strong nonlinear cubic stiffness was
used to join two Euler–Bernoulli beams together.

First, consider the case where the amplitude of the sinusoidal input is 1 (A0 ¼ 1) and the range of oF is
o0=10poFp3o0. The HB3 method was used to calculate the first harmonics and the third harmonics by
solving Eqs. (12)–(15). In addition, the forced responses of the oscillator under different input frequencies have
been calculated using the fourth-order Runge–Kutta method, from which the first and third harmonics have
also been extracted.

Fig. 1 shows the amplitudes of the first harmonics and the third harmonics obtained by the HB3 method
and the Runge– Kutta method respectively. For the HB3 method, the amplitudes of the first harmonic and the

third harmonic are, respectively, defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ b2

1

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
3 þ b2

3

q
. The simulations using the Runge– Kutta

method clearly show that, around the frequency oF ¼ 1:5o0, the well-known jump phenomenon has occurred.
At the jump point, the amplitudes of the first and third harmonic have suddenly changed. Obviously, the HB3
method has successfully captured the jump phenomenon. Over the whole frequency range considered, there
always exists one solution obtained using the HB3 method that matches the result by the Runge– Kutta method
very well for both the first harmonics and the third harmonics.

Fig. 2 shows the comparison between the amplitudes of the first harmonics and the third harmonics
obtained by the NOFRF expansion up to the seventh order and the Runge– Kutta method, respectively. It can
be seen that, apart from the frequency range between 0:7o0 and 1:5o0, the results obtained by the NOFRF
method match the results by the Runge– Kutta method very well. At the frequency range between 0:7o0 and
1:5o0, there is a big deviation between the results of the two methods. Actually, at this frequency range, the
representation of the Volterra series may be divergent, and the NOFRF expansion thus fails to represent the
harmonic components of the responses of the Duffing oscillator in this frequency range.

The problem regarding the convergence of the Volterra series in representing nonlinear systems is very
complicated. As far as we are aware, there is no criterion available that is valid for any nonlinear system to
judge whether the Volterra series representation is convergent or not. For the Duffing oscillator subjected to
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Fig. 1. Comparison between the HB3 and the Runge– Kutta method (star-HB3): (a) the first harmonic and (b) the third harmonic.
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Fig. 2. Comparison between the NOFRF and the Runge– Kutta method (star-NOFRFs): (a) the first harmonic and (b) the third harmonic.
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harmonic excitation loading, Tomlinson et al. [39] have proposed a simple criterion given as

A0o
3

2
�o2

0jG
H
1 ðjoF Þj

3

� ��2
. (43)

For example, according to the criterion (43), for the Duffing oscillator in Eq. (40), when the frequency of
excitation is 0:8o0, if A040:5709, then the Volterra series representation is divergent. As the amplitude of the
excitation used in the case study is 1.0, which is larger than 0.5709, the Volterra series representation therefore
becomes divergent. This makes the NOFRF expansion fail to represent the harmonic components at
oF ¼ 0:8o0. The failure of NOFRF expansion to represent the harmonics at other frequencies can also be
explained in a similar way. In addition, it is worth noting that for the Duffing oscillator the occurrence of the
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jump phenomenon generally implies a divergent Volterra series representation and, therefore, the NOFRFs are
not able to capture the jump phenomenon in the Duffing oscillator.

Figs. 3 and 4 show comparisons under the situation where the frequency of the input is taken as o0=2 but the
amplitude A0 is changed between 0.05 and 3. Fig. 3 gives the comparison between the HB3 method and
the Runge– Kutta method. It can be seen that, at the region of A0o1:2, the results from the HB3 method match the
results of the Runge– Kutta method very well, which implies that the HB3 method can predict the motion of the
oscillator accurately for the region A0o1:2. However, when A041:2, the deviation between the results obtained by
the two different methods increases sharply as the amplitude A0 increase, especially for the third harmonic. It is
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Fig. 3. Comparison between the HB3 and the Runge– Kutta method (star-HB3): (a) the first harmonic and (b) the third harmonic.
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believed that the deviations are introduced by ignoring the other higher-order harmonics, which can contribute
significantly to the response of the oscillator when the excitation becomes stronger. Unfortunately, when more
harmonics are taken into account in the application of the HBM, the software often fails to find a solution.

Fig. 4 shows the comparison between the NOFRF method and the Runge– Kutta method. In the small
amplitude region, the NOFRF method can accurately predict the motion of the oscillator. When the
frequency of excitation is o0=2, according to the criterion (43), if the amplitude of the excitation is larger than
1.6806, the Volterra series representation will be divergent. The results shown in Fig. 4 are basically consistent
with the prediction from the criterion.

5.1.2. Case 2: nonlinear damping oscillator studies

The nonlinear damping oscillator is a model that has been widely used to represent shock absorbers [40,41],
and is given by

m €yþ c _yþ c2 _y
2 þ c3 _y

3 þ ky ¼ A cosðotÞ. (44)
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harmonic; and (c) the third-order harmonic.
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The values of the system parameters used in this study are m ¼ 240, c ¼ 296, c2 ¼ 3000, c3 ¼ 800,
k ¼ 240� (4p)2, o0 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 4p.

Fig. 5 shows the amplitudes of the first, the second and the third harmonics obtained by the HB3 method
and the Runge– Kutta method, respectively. The amplitude of the input is A=m ¼ 3, and the range of oF is
0:2o0poFp1:7o0. It can be seen that the results by the HB3 method cannot match the results by the
Runge– Kutta method well, especially for the second harmonic and the third harmonic. The differences
between the results are mainly introduced by ignoring the higher-order harmonics. As indicated by the time
domain response and the Fourier spectrum in Fig. 6, which was obtained at oF ¼ 0:5o0, the oscillator’s
behaviour is strongly nonlinear: the other higher-order harmonics are very significant in the spectrum.
Ignoring these higher-order harmonics has led to the inaccuracy of the HB3 method.

Fig. 7 shows a comparison between the NOFRF method and the Runge– Kutta method for the harmonics
up to the third order. Clearly, from Fig. 7 the results by the NOFRF expansions match the results by the
Runge– Kutta method very well for all harmonics except for a few points around the maximal peaks. This
means that the NOFRF expansion can accurately predict the motion of the system (44) in this case. The results
shown in Figs. 5 and 7 indicate that the NOFRF up to seventh order is much better than the HBM in the
description of the nonlinear damping system.

Figs. 8 and 9 show comparisons under the situations where the frequency of the input is taken as o0=2 but
the amplitude A=m is changed between 0.2 and 4. It can be seen that, in the region A=mo2:5, the results by the
HB3 method match the results of the Runge– Kutta method very well, which implies that the HB3 method can
predict the motion of the oscillator (44) accurately in the region A=mo2:5. However, when A=m42:5, the
deviation between the results obtained by the two different methods increases with the amplitude A=m for all
the first, second and third harmonics. This is because in the region A=m42:5, the contributions of the other
higher-order harmonics to the response of the nonlinear damping oscillator (44) are too significant to be
ignored. On the contrary, Fig. 9 shows that, at all amplitudes, the results by the NOFRFs always accurately
match the results from the Runge– Kutta method, especially for the first harmonic. The results shown in Figs. 8
and 9 have again indicated that the NOFRF methods give a better performance compared to the HBM in the
analysis of the nonlinear damping oscillator.

5.2. Discussion

From the above analyses for two kinds of nonlinear oscillators, it can be seen that the HBM and NOFRF
each have advantages and drawbacks in nonlinear system analysis. The HBM can capture the jump
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phenomenon of the Duffing oscillator, but it is difficult for the HBM to get solutions for the higher-order
harmonics. In the present study, when more harmonic components are taken into account in the application of
the HBM, the software fails to find solutions. Therefore, although it has been claimed that the HBM is able to
handle strongly nonlinear systems whose higher-order harmonics can make significant contributions to the
system responses, in practice, due to computational limits the HBM is still not that powerful for analyzing
complex nonlinear systems. That is why the HBM method cannot provide accurate predictions on the
nonlinear damping oscillator (44). Moreover, it usually takes quite a long time for the HBM method to find
the solutions, and it can be half an hour or even longer. The time used for the HBM method depends on the
complexity of the nonlinear system under study and the number of the harmonics considered, for example, the
HB3 can be accomplished in few minutes for Case 1 and, however, it took more than one hour for Case 2.

On the other hand, there is no computational limit for the NOFRF approach as the NOFRFs don’t involve
any equation solution procedure. However, the NOFRFs cannot capture the jump phenomenon of the Duffing
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oscillator. Although the occurrence of jump phenomenon usually indicates a strongly nonlinear behaviour, the
inability of the NOFRF to capture the jump phenomenon does not mean that NOFRFs cannot handle other
cases of strongly nonlinear systems. The case study for the nonlinear damping oscillator (44) shows that the
NOFRF can accurately predict the response of this oscillator. As noted in Section 3, the Volterra series can
describe the class of nonlinear systems which are stable at zero equilibrium. For some nonlinear systems like
the Duffing oscillator, it is well-known that, for the input amplitude is over a certain value, and then a tiny
change of the amplitude can introduce a large change in the behaviour of the nonlinear system. The NOFRF
cannot handle this phenomenon because Volterra series theory, on which the NOFRF are based, cannot
represent nonlinear systems in such situations. That is why the NOFRF cannot predict the motion of the
Duffing oscillator (40) for the frequency range between 0:7o0 and 1:5o0. However, for some damping
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nonlinear systems like the oscillator (44), although the nonlinear damping can make the system behave
strongly nonlinearly, it also makes the system behave more stable at zero equilibrium and thus helps the
system to sustain stronger inputs. Fig. 10(a) shows the response and its spectrum obtained from a linear
oscillator where m, k, c are the same as those used in Case 2. The frequency of the input is o0 (the natural
frequency of the linear oscillator) and the amplitude of the input is A/m ¼ 3. Fig. 10(b) shows the response and
the spectrum of the oscillator (44) subjected to the same force. Obviously, the nonlinear damping force has
caused the oscillator to behave strongly nonlinearly because the significant super-harmonics have appeared
but, compared to the response of the linear oscillator, the vibration amplitude of the nonlinear oscillator has
greatly decreased. This is essentially the principle used in nonlinear damping shock absorbers.

It is worth noting that the convergence regarding the Volterra series representation for nonlinear systems is
a quite difficult and challenging problem. Great efforts [39,42–47] have been made to address this problem.
But there are still no general criteria or methods available which can determine the convergence of the Volterra
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series representation for nonlinear systems. The available criteria are often very conservative and can only
provide a rough estimation for the real convergence region. The only exception may be for the case of the
Duffing oscillator subjected to a harmonic excitation. Three different criteria [39,44,45] are available and they
can all accurately predict an upper limit on the amplitude of the harmonic excitation under which the Volterra
series representation for the oscillator’s response will converge.

6. Conclusions and remarks

The HBM is a well-established method for the analysis of nonlinear systems, the time domain response of
which can be expressed as a Fourier series. The NOFRFs are a new concept proposed by the authors, which
has been derived from the Volterra series and can be considered to be an extension of the classic FRF to the
nonlinear case. When a nonlinear system is subjected to harmonic inputs, the system response can be directly
expressed as a Fourier series using the NOFRFs. In this paper, using the well-known Duffing oscillator as a
case study, the relationship between the HBM and the NOFRFs has been investigated. The results revealed
that the harmonic components calculated using the NOFRFs are one of the solutions obtained using the
HBM. The concept of the NOFRF has a solid theoretical basis—the Volterra series. The relationship which
has been investigated in this study between the two methods should help researchers and engineers to
understand the HBM and the NOFRF methods. The HBM is based on the assumption that the responses of
the nonlinear systems consist of only harmonic components, but the method cannot explain why super-
harmonics will appear when the nonlinear system is subject to a sinusoidal input. Even though the HBM can
reveal sub-resonance phenomenon, for example the maximum at oF ¼ 1=3o0 in Fig. 1(b), it cannot account
for this nonlinear phenomenon. However, the NOFRFs can give a theoretical explanation for both the
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appearances of super-harmonics and sub-resonance; more details can be found in reference [35]. In addition,
comparative studies using numerical methods have shown the HBM can capture the well-known jump

phenomenon, but it will suffer from the computational limits. If more frequency components are taken into
account in the HBM, it is highly possible for the software to fail to find solution. Therefore, for some strongly
nonlinear systems, the HBM cannot provide accurate predictions of the harmonic components in the
responses. The NOFRFs cannot capture jump phenomenon in the Duffing oscillator because the Volterra series
theory doesn’t work at the region around the jump point. But the NOFRFs does not suffer from the
computational limits and can always be implemented in a few seconds. For some nonlinear systems, like the
nonlinear damping oscillator (44), the NOFRFs can give much better predictions of the harmonic components
compared to the HBM even if such systems are strongly nonlinear.
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